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Abstract. The aim of this work is to prove some basic properties of coquater-
nions and to find the zeros of polynomials involving coquaternionic elements.
We also provide some expansions of hyperholomorphic function on coquater-
nion algebra by using Fueter polynomials.
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1. Introduction to Coquaternions

Let C be the complex field, and let AH = {a0+a1i+a2e+a3f} be the coquaternion
algebra over the real field R, where a0, a1, a2, a3 ∈ R, i2 = −1, e2 = f2 = 1,
ie = −ei = f , fi = −if = e, and ef = −fe = −i.

Coquaternions were initially introduced by James Cockle [1] and they are
also called para-quaternions [2] or anti-quaternions [3].

The conjugate of w = a0+a1i+a2e+a3f is defined as w = a0−a1i−a2e−a3f .
Thus ww = ww = a2

0 +a2
1−a2

2−a2
3. The module |w| of w is defined as

√
ww. When

ww < 0 then the value of the module is a complex number from the upper half of
the complex plane [3]. Coquaternions are also named split-quaternions because of
the special signature of the quadratic form defined by their modules.

The coquaternion algebra is an associative and noncommutative 4-dimen-
sional Clifford algebra [1, 3].

Similarly to the quaternions notation we will denote by Sc(w) =
w + w

2
and Vec(w) =

w − w

2
the scalar and vector part of w respectively. The following
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properties can be checked by routine calculations: For any v, w ∈ AH we have that
v + w = v+w and wv = v w. From these properties, it follows that vwvw = vww v,
hence |vw|2 = |v|2|w|2.

Now, let c1, c2 be complex numbers and w be a coquaternion. It is easy to
see that any coquaternion w can be represented in the form c1 + c2e. Indeed,
a0 + a1i + a2e + a3f = (a0 + a1i) + (a2 + a3i)e.

2. On the Set of Zeros of Coquaternion Polynomials

Let us denote as Z(AH) the set of zero divisors of algebra AH. The following
lemma can be easily proved

Lemma 2.1. w ∈ Z(AH) iff |w| = 0.

Let us introduce an equivalence relation ∼ over AH as follows: For any two
coquaternions w and w′, w ∼ w′ if there exists x ∈ AH \ Z(AH) such that w′ =
x−1wx. The congruence class of w, denoted by [w], is the set {v ∈ AH : v ∼ w}.
Lemma 2.2. For any w ∈ AH, [w] is the set [w] = {v ∈ AH : Sc(v) = Sc(w) and
|v|2 = |w|2}.
Proof. Suppose that w = a0+a1i+a2e+a3f and v = b0+b1i+b2e+b3f belong to
the congruence class [w]. Then, there exists x = x0+x1i+x2e+x3f ∈ AH\Z(AH)
such that

wx = xv. (2.1)
Comparing coefficients of i, e and f in Eq. (2.1), we get

(a0 − b0)x0 + (b1 − a1)x1 + (a2 − b2)x2 + (a3 − b3)x3 = 0
(a1 − b1)x0 + (a0 − b0)x1 + (a3 + b3)x2 − (a2 + b2)x3 = 0
(a2 − b2)x0 + (a3 + b3)x1 + (a0 − b0)x2 − (a1 + b1)x3 = 0
(a3 − b3)x0 − (a2 + b2)x1 + (a1 + b1)x2 + (a0 − b0)x3 = 0.

(2.2)

The system of equations (2.2) has a nontrivial solution iff

det




a0 − b0 b1 − a1 a2 − b2 a3 − b3

a1 − b1 a0 − b0 a3 + b3 −a2 − b2

a2 − b2 a3 + b3 a0 − b0 −a1 − b1

a3 − b3 −a2 − b2 a1 + b1 a0 − b0


 = 0. (2.3)

Eq. (2.3) is fulfilled iff a0 = b0 and a2
1 − a2

2 − a2
3 = b2

1 − b2
2 − b2

3. �

Let us consider the following polynomial of coquaternionic variable w:

pn(w) = anwn + an−1w
n−1 + · · · + a0, (2.4)

where ak ∈ AH for k = 1, 2, . . . , n.
Since w is a zero of the quadratic equation with real coefficients

w2 − pw + q = 0,
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where p = 2Sc(w) = w + w, q = |w|2 = ww, we have w2 = pw − q. Hence,
w3 = pw2 − qw = (p2 − q)w − pq. Continuing with the same procedure we get

wn = Fn(w)w + Gn(w),

where Fn(w) and Gn(w) are real-valued functions defined by the recurrent formulae

Fn+1(w) = pFn(w)w + Gn(w) = pFn(w) − qFn−1(w)

and
Gn+1(w) = −qFn(w),

with F1(w) = 1, F2(w) = w + w, G1(w) = 0 and G2(w) = −|w|2.
Therefore, the polynomial (2.4) can be represented in the following form

pn(w) = F (w)w + G(w), (2.5)

where F (w) =
∑

n

anFn(w) and G(w) =
∑

n

anGn(w).

Lemma 2.3. For any equivalent coquaternions w0 ∼ w1, where w0, w1 ∈ AH, we
have

F (w0) = F (w1),

G(w0) = G(w1).

Proof. The functions Fn(w) and Gn(w) depend on Sc(w) and the norm of w. Then,
it follows from Lemma 2.2 that Fn(w0) = Fn(w1) and Gn(w0) = Gn(w1) for any
n ≥ 1. From these results, it follows that F (w0) = F (w1) and G(w0) = G(w1). �

Theorem 2.4. Assume that w0 ∈ AH, and Vec(w0) is not a zero divisor. If w1 ∼ w0

and w0, w1 are different zeroes of polynomial (2.4), then any coquaternion w ∈ [w0]
is a zero of (2.4). So, we might say that the congruence class of w is a zero of
polynomial (2.4).

Proof. By using Eq. (2.5) and Lemma 2.4, we have

pn(w0) = F (w0)w0 + G(w0) = 0,

pn(w1) = F (w0)w1 + G(w0) = 0.

Hence,
F (w0)(w0 − w1) = 0. (2.6)

Since Vec(w0) is not a zero divisor then the coquaternion w0 −w1 cannot be
a zero divisor. Indeed, let w0 = a0 + a1i+ a2e+ a3f and w1 = a0 + b1i+ b2e+ b3f .
Since w0 ∼ w1 we have a2

1 − a2
2 − a2

3 = b2
1 − b2

2 − b2
3 �= 0, i.e., points A(a1, a2, a3)

and B(b1, b2, b3) lie on a hyperboloid. Suppose that w0 −w1 is a zero divisor, then
it follows from Lemma 2.2 that the point C(a1 − b1, a2 − b2, a3 − b3) lies on the
asymptotic cone x2

1 − x2
2 − x2

3 = 0 of the hyperboloid, but this is impossible. In
this case, it follows from Eq. (2.6) that F (w0) = 0. Therefore, G(w0) = 0 and any
w ∈ [w0] is a zero of polynomial (2.4). �
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A set of polynomial zeros [w0] will be called a hyperboloidal zero.
It is easy to see that the polynomial pn(w) = wnan + wn−1an−1 + · · · + a0

can be investigated much in a similar manner.

Theorem 2.5. Suppose coefficients rk, k = 0, 1, . . . , n of a polynomial over AH

pn(w) = rnwn + rn−1w
n−1 + · · · + r0 are real numbers then all non-real zeros of

the polynomial pn(w) are hyperboloidal.

Proof. Suppose w0 is a zero of pn(w), then it is easily verified that for any x ∈
AH \ Z(AH):

rn(x−1w0x)n + rn−1(x−1w0x)n−1 + · · · + r1(x−1w0x) + r0 = 0.

Since a complex number a+ bi belongs to [w], where w = a+ a1i+ a2e+ a3f with
a2
1 − a2

2 − a2
3 = b2, and the theorem is proved. �

The set of zeros of quaternionic polynomials was studied in [4].

3. Hyperholomorphic Functions on Coquaternion Algebra

Let us consider the following Cauchy-Fueter type of operator for coquaternions

D :=
∂

∂x0
+ i

∂

∂x1
+ e

∂

∂x2
+ f

∂

∂x3
.

Similarly to Fueter ideas [5], we determine a hyperholomorphic function on AH as
follows:

A function g : R4 −→ AH is called left-hyperholomorphic or left-monogenic
if it satisfies the equation Dg = 0. A right-hyperholomorphic function g is the
solution of the equation gD = 0. As in the case of quaternion algebra the set of
hyperholomorphic functions on the coquaternion algebra does not contain polyno-
mials. To overcome these difficulties we consider the so-called Fueter polynomials

ς1(x) = x1 − ix0, ς2(x) = x2 − ex0, ς3(x) = x3 − fx0.

It is easy to show that Fueter polynomials are both right and left hyperholomor-
phic.

Lemma 3.1. Suppose g is a left-hyperholomorphic function then for any real t we
have

dg

dt
(tx) =

3∑
k=1

ςk(x)
∂g

∂xk
(tx). (3.1)

Proof. Since g is left-hyperholomorphic we have
∂

∂x0
g = −i

∂

∂x1
g − e

∂

∂x2
g − f

∂

∂x3
g.

By plugging this expression into

dg

dt
(tx) =

3∑
k=0

xk
∂g

∂xk
(tx),
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the proof of the lemma is achieved. �

Now, it follows from Eq. (3.1) that

g(x) = g(0) +
3∑

k=1

ςk(x)
∫ 1

0

∂g

∂xk
(tx) dt. (3.2)

Let us assume that g(x) = u0(x) + u1(x)i + u2(x)e + u3(x)f , where uk(x) ∈
C∞. Thus, it is easy to verify that the function m(x) :=

∫ 1

0

∂g

∂xk
(tx) dt is left-

hyperholomorphic as well. Thus, by applying Eq. (3.2) to m(x), we obtain

g(x) = g(0) +
3∑

k=1

ςk(x)
∂g

∂xk
(0) +

3∑
l=1

3∑
k=1

(ςl(x)ςk(x))
∫ 1

0

∫ 1

0

∂2g

∂xl∂xk
(stx) dtds,

where s, t ∈ R.
By iterating this procedure, we can expand the function g(x) in terms of

products of Fueter polynomials

g(x) = g(0) +
3∑

k=1

ςk(x)
∂g

∂xk
(0) +

3∑
l=1

3∑
k=1

ςl(x)ςk(x)
∂2g

∂xl∂xk
(0) + · · ·

+
3∑

j1=1

3∑
j2=1

· · ·
3∑

jn=1

ςj1(x)ςj2 (x) · · · ςjn(x)
∂ng

∂xj1∂xj2 · · · ∂xjn

(0) + · · · .

(3.3)

Denote by S the set

S =

{
x ∈ AH : |x| lim

n→∞
n

√
sup

j1,...,jn

∣∣∣∣
∂ng

∂xj1∂xj2 · · · ∂xjn

(0)
∣∣∣∣ ≤ c <

1
3

}
.

Hence, it is easy to show that for x ∈ S the series in Eq. (3.3) is convergent.
As a consequence of this fact we have that if a polynomial is left-hyperholomorphic
then it has to be of the following form

pn(x) =
n∑

k=1




3∑
j1=1

3∑
j2=1

· · ·
3∑

jk=1

ςj1(x)ςj2 (x) · · · ςjk
(x)


 aj1j2...jk

.

In the particular case when aj1j2...jk
= ak for all j1, j2, . . . , jk ∈ {1, 2, 3} we

have

pn(x) =
n∑

k=1

(ς1(x) + ς2(x) + ς3(x))k
ak.

Remark 3.2. An expansion of hyperholomorphic quaternion functions in Fueter
polynomials has been reported in [6].
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4. Conclusions

The mapping w′ = x−1wx in coquaternionic algebra represents a hyperbolic rota-
tion and has a tight relationship to the Lorentz group used in relativity theory. So,
coquaternions are interesting not only from the mathematical point of view but
also from their applications in modern physics [7]. In spite of their importance,
the problem of finding the roots of coquaternionic polynomials and the notion of
hyperholomorphic function and its properties have not been reported in the lit-
erature. So far, in most of the papers dealing with coquaternions the authors are
limited to mention just a few of their basic properties and the possible application
of this algebra to geometry and physics. In this paper, we investigated the set
of zeros of one-sided polynomials, and by following the ideas of Fueter, we have
introduced the notion of hyperholomorphic function or monogenic function and
we provide an expansion of such functions in series of Fueter polynomials.
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