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Extremal problems on the generalized
(n, d)-equiangular system of points

Abstract

The paper of Lavrent’ev [1] was the beginning of geometrical theory
of functions of the complex variable. He solved a problem on the product
of conformal radiuses of two non-overlapping domains. In many papers
(see [2] – [13]) the Lavrent’ev’s result are generalized. In this paper are
obtained the new results of this direction.

A. Targonskii

Let N, R and C be the sets of natural, real and complex numbers respec-
tively. We define C := C

⋃
{∞} and R+ := (0,∞).

Let n,m, d ∈ N such that m = nd. Consider the set of natural numbers
{mk}nk=1 such that

n∑
k=1

mk = m. (1)

The following system of points

An,d :=
{
ak,p ∈ C : k = 1, n, p = 1,mk

}
,

are called the generalized (n, d)-equiangular system of points on the rays, if
the condition (1) is fulfilled and if for all k = 1, n, p = 1,mk the following
relations are true:

0 < |ak,1| < . . . < |ak,mk | <∞;
arg ak,1 = arg ak,2 = . . . = arg ak,mk = 2π

n (k − 1).
(2)

Key Words: inner radius of domain, quadratic differential, piecewise-separating trans-
formation, the Green function, radial systems of points, logarithmic capacity, variational
formula.
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An arbitrary generalized (n, d)-equiangular system of points (with variable
number of points on the rays An,d) formed the set of domains {Pk}nk=1, where

Pk :=

{
w ∈ C\{0} :

2π

n
(k − 1) < argw <

2π

n
k

}
, k = 1, n.

For an arbitrary generalized (n, d)-equiangular system of points (with the
variable amount of points on the rays An,d) we consider the following ”man-
aging” functional

µ (An,d) :=

n∏
k=1

mk∏
p=1

[
χ

(∣∣∣ak,p∣∣∣n2) |ak,p|] ,
where χ(t) = 1

2

(
t+ t−1

)
.

Let {B0, Bk,p} , {Bk,p, B∞} be the arbitrary non-overlapping domains such
that

0 ∈ B0, ak,p ∈ Bk,p, ∞ ∈ B∞, B0, Bk,p, B∞ ⊂ C, k = 1, n, p = 1,mk.

Let D ⊂ C be an arbitrary open set and w = a ∈ D. Then D(a) is
a connected component of D which contain the point a. For an arbitrary
system of points An,d and for open set D, An,d ⊂ D we define Dk(al,p) as
the connected component of the set for which D(al,p)

⋂
Pk contain the point

al,p for k = 1, n, l = k, k + 1, p = 1,ml, where mn+1 = m1, an+1,p := a1,p.
We have that Dk(0) (respectively Dk(∞)) define the connected component of
the set D(0)

⋂
Pk (respectively D(∞)

⋂
Pk) which contain the point w = 0

(respectively w =∞).
An open set D with {0}∪An,d ⊂ D satisfies the non-overlapping conditions

with respect to the system of points {0} ∪An,d if satisfies the condition:[
Dk(as,p)

⋂
Dk(al,q)

]⋃[
Dk(0)

⋂
Dk(al,q)

]
= ∅, (3)

k = 1, n, l, s = k, k + 1, p = 1,ms, q = 1,ml

for all corners Pk.
An open set D with {∞} ∪ An,d ⊂ D satisfies the non-overlapping condi-

tions with respect to the system of points {∞}∪An,d if satisfies the condition:[
Dk(as,p)

⋂
Dk(al,q)

]⋃[
Dk(∞)

⋂
Dk(al,q)

]
= ∅, (4)

k = 1, n, l, s = k, k + 1, p = 1,ms, q = 1,ml

for all corners Pk.
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The system of domains {B0∪Bk,p} ({B∞∪Bk,p}), k = 1, n, p = 1,mk, are

defined as system of partially non-overlapping domains if D :=
n⋃
k=1

mk⋃
p=1

Bk,p ∪

B0 (D :=
n⋃
k=1

mk⋃
p=1

Bk,p ∪B∞) is an open set and if it satisfies the condition (3)

(condition (4)).
The definition of inner radius r(B; a) of domain B ⊂ C with respect to a

point a ∈ B can be found in the papers [4 – 6].

For an arbitrary n, d ∈ N, n ≥ 2 we denote by A
(1)
n,d the generalized (n, d)-

equiangular system of points which is formed by poles of the quadratic differ-
ential Q1(w)dw2, where

Q1(w)dw2 := − wn−2(1 + wn)2d−1[
(1− iw n

2 )2d+1 − (1 + iw
n
2 )2d+1

]2 dw2. (5)

We denote by A
(2)
n,d the generalized (n, d)-equiangular system of points which

is formed by poles of the quadratic differential Q2(w)dw2, where

Q2(w)dw2 :=
wn−2(1 + wn)2d−1[

(1− iw n
2 )2d+1 + (1 + iw

n
2 )2d+1

]2 dw2. (6)

We remark that the condition (2) is satisfied for the system of points A
(1)
n,d,

A
(2)
n,d when mk = d, k = 1, n. This statement easy follows from the general

theory of quadratic differentials [16].
In this paper we investigate the following problem.
Problem. Let n,m, d ∈ N, m = nd, n ≥ 2. We intend to find a maximum

of the functional In and to describe all its extremals, if

In := r
n2

4 (D, 0) ·
n∏
k=1

mk∏
p=1

r(D, ak,p),

where An,d = {ak,p} is an arbitrary generalized (n, d)-equiangular system of
points satisfying relation (2) andD is an arbitrary open set satisfying condition
(3).

We remark that this problem is more general with respect to the conditions
which are considered in [8 – 13].

Theorem 1. Let n,m, d ∈ N, m = nd, n ≥ 2 and let An,d = {ak,p},
µ(An,d) = µ(A

(1)
n,d) be an arbitrary generalized (n, d)-equiangular system of

points; the set of numbers {mk}nk=1 satisfies the condition (1); an arbitrary
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open set D, An,d ⊂ D ⊂ C satisfies the non-overlapping conditions with respect
to the system of points An,d. Then we have the inequality

r
n2

4 (D, 0) ·
n∏
k=1

mk∏
p=1

r(D, ak,p) ≤
(

8

2m+ n

)m
·
(

2n

2m+ n

)n
2

· µ.

The equality sign holds, if the open set D =
n⋃
k=1

mk⋃
s=1

Bk,s, where Bk,s is the

system of circular domains of the quadratic differential (5).
Corollary 1. Let n,m, d ∈ N, m = nd, n ≥ 2 and let An,d = {ak,p},

µ(An,d) = µ(A
(1)
n,d) be an arbitrary generalized (n, d)-equiangular system of

points; the set of numbers {mk}nk=1 satisfies the condition (1). Let also {Bk,p},
ak,p ∈ Bk,p ⊂ C be an arbitrary set of non-overlapping domains. Then we have
the inequality

r
n2

4 (B0, 0) ·
n∏
k=1

mk∏
p=1

r(Bk,p, ak,p) ≤
(

8

2m+ n

)m
·
(

2n

2m+ n

)n
2

· µ.

The equality sign holds, if the points ak,p and domains Bk,p are the poles and
the circular domains of the quadratic differential (5).

Corollary 2. Let n,m, d ∈ N, m = nd, n ≥ 2 and let An,d = {ak,p},
µ(An,d) = µ(A

(1)
n,d) be an arbitrary generalized (n, d)-equiangular system of

points; the set of numbers {mk}nk=1 satisfies the condition (1). Let also {Bk,p},
ak,p ∈ Bk,p ⊂ C be an arbitrary set of partially non-overlapping domains.
Then the inequality of Corollary 1 is true.

Theorem 2. Let n,m, d ∈ N, m = nd, n ≥ 2 and let An,d = {ak,p},
µ(An,d) = µ(A

(2)
n,d) be an arbitrary generalized (n, d)-equiangular system of

points; the set of numbers {mk}nk=1 satisfies condition (1); an arbitrary open
set D, An,d ⊂ D ⊂ C satisfies the non-overlapping conditions with respect to
the system of points An,d. Then we have the inequality

r
n2

4 (D,∞) ·
n∏
k=1

mk∏
p=1

r(D, ak,p) ≤
(

8

2m+ n

)m
·
(

2n

2m+ n

)n
2

· µ.

The equality sign holds, if the open set D =
n⋃
k=1

mk⋃
s=1

Bk,s, where Bk,s is the

system of circular domains of the quadratic differential (6).
Corollary 3. Let n,m, d ∈ N, m = nd, n ≥ 2 and let An,d = {ak,p},

µ(An,d) = µ(A
(2)
n,d) be an arbitrary generalized (n, d)-equiangular system of

points; the set of numbers {mk}nk=1 satisfies condition (1). Let also {Bk,p},
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ak,p ∈ Bk,p ⊂ C be an arbitrary set of non-overlapping domains. Then we
have the inequality

r
n2

4 (B∞,∞) ·
n∏
k=1

mk∏
p=1

r(Bk,p, ak,p) ≤
(

8

2m+ n

)m
·
(

2n

2m+ n

)n
2

· µ.

The equality sign is holds, if the points ak,p and domains Bk,p are the poles
and the circular domains of the quadratic differential (6).

Corollary 4. Let n,m, d ∈ N, m = nd, n ≥ 2 and let An,d = {ak,p},
µ(An,d) = µ(A

(2)
n,d) be an arbitrary generalized (n, d)-equiangular system of

points; the set of numbers {mk}nk=1 satisfies the condition (1). Let also {Bk,p},
ak,p ∈ Bk,p ⊂ C be an arbitrary set of partially non-overlapping domains.
Then the inequality of Corollary 3 is true.

Proof of Theorem 1. We note that from the non-overlapping condition
follows that capC\D > 0 and the set D with respect to a point a ∈ D
possesses the Green generalized function gD(z, a), which has the form

gD(z, a) :=


gD(a)(z, a), z ∈ D(a),

0, z ∈ C\D(a),

lim
ζ→z

gD(a)(ζ, a), ζ ∈ D(a), z ∈ ∂D(a),

where gD(a)(z, a) is the Green function of the domain D(a) with respect to a
point a ∈ D(a).

Further, we will use the methods of the paper [8]. Consider the sets E0 =
C\D; U t = {w ∈ C : |w| 6 t} , E(ak,p, t) = {w ∈ C : |w − ak,p| 6 t}, k =
1, n, p = 1,mk, n > 2, n,mk ∈ N, t ∈ R+. For a rather small t > 0, we
consider the condenser

C (t, D, An,d) =
{
E0, U t, E1

}
,

where E1 =
n⋃
k=1

mk⋃
p=1

E(ak,p, t). The capacity of the condenser C (t, D, An,d) is

defined as

capC (t, D, An,d) = inf

∫ ∫ [
(G′x)2 + (G′y)2

]
dxdy

(see [5]), where an infimum takes in C over all Lipschitzian functions G =

G(z), such that G
∣∣∣
E0

= 0, G
∣∣∣
E1

= 1, G
∣∣∣
Ut

= n
2 .

The module of the condenser C is defined as

|C| = [capC]
−1
.
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From the Theorem 1 from [8] we get

|C (t,D,An,d) | =
1

2π
· 1
n2

4 +m
· log

1

t
+M(D,An,d) + o(1), t→ 0, (7)

where

M(D,An,d) =
1

2π
· 1(

n2

4 +m
)2 · [n24 log r(D, 0) +

n∑
k=1

mk∑
p=1

gD(0, ak,p)+

+

n∑
k=1

mk∑
p=1

log r(D, ak,p) +
∑

(k,p) 6=(q,s)

gD(ak,p, aq,s)
]
. (8)

The function
zk(w) = (−1)k i · w n

2 ,

k = 1, n realizes univalent and conformal transformations of domain Pk on the
right half-plane Rez > 0.

Therefore function

ζk(w) :=
1− zk(w)

1 + zk(w)
(9)

is a univalent and conformal mapping of the domain Pk on the unit circle
U = {z : |z| ≤ 1}, k = 1, n.

Obviously, we have ζk (0) = 1, k = 1, n.

Let ω
(1)
k,p := ζk (ak,p), ω

(2)
k−1,p := ζk−1 (ak,p), an+1,p := a1,p, ω

(2)
0,p := ω

(2)
n,p,

ζ0 := ζn (k = 1, n, p = 1,mk). For any domain ∆ ∈ C, we define (∆)∗ :={
w ∈ C : 1

w ∈ ∆
}

.
From the formula (9) from [7], we obtain the following asymptotic expres-

sions ∣∣∣ζk(w)− ζk(ak,p)
∣∣∣ ∼ [ 2

n
· χ
(∣∣∣ak,p∣∣∣n2) |ak,p|]−1 · |w − ak,p|,

w → ak,p, w ∈ P k.∣∣∣ζk−1(w)− ζk−1(ak,p)
∣∣∣ ∼ [ 2

n
· χ
(∣∣∣ak,p∣∣∣n2) |ak,p|]−1 · |w − ak,p|,

w → ak,p, w ∈ P k−1, k = 1, n, p = 1,mk. (10)

The coefficients of piece-dividing transformation at the point w = 0 are
defined by the following asymptotic equalities∣∣∣ζk(w)− 1

∣∣∣ ∼ 2|w|n2 , w → 0, w ∈ P 0

k, k = 1, n. (11)
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Let Ω
(1)
k,p be a connected component

ζk
(
D
⋂
P k
)⋃ (

ζk
(
D
⋂
P k
))∗

containing the point ω
(1)
k,p and let Ω

(2)
k−1,p be a

connected component ζk−1
(
D
⋂
P k−1

)⋃ (
ζk−1

(
D
⋂
P k−1

))∗
containing the

point ω
(2)
k−1,p, k = 1, n, p = 1,mk, P 0 := Pn, Ω

(2)
0,p := Ω

(2)
n,p. It is clear that

in generally Ω
(s)
k,p are multiconnected domains, k = 1, n, p = 1,mk, s = 1, 2.

Pair of the domains Ω
(2)
k−1,p and Ω

(1)
k,p is the result of piece-dividing transfor-

mation of the open set D with respect to the family {Pk−1, Pk}, {ζk−1, ζk}
at the point ak,p, k = 1, n, p = 1,mk. Let Ω

(0)
k be a connected component

ζk
(
D
⋂
P k
)⋃ (

ζk
(
D
⋂
P k
))∗

containing the point 1, k = 1, n. The family of

the domains
{

Ω
(0)
k

}n
k=1

is the result of piece-dividing transformation of the

open set D with respect to the family {Pk}nk=1 and the functions {ζk}nk=1 at
the point w = 0, k = 1, n.

In the following, we consider the condensers

Ck (t, D, An,d) =
(
E

(k)
0 , U

(k)

t , E
(k)
1

)
,

where

E(k)
s = ζk

(
Es
⋂
P k

)⋃[
ζk

(
Es
⋂
P k

)]∗
,

U
(k)

t = zk

(
U t
⋂
Pk

)⋃{
zk

(
U t
⋂
Pk

)}∗
,

k = 1, n, s = 0, 1, {Pk}nk=1 is a system of corners corresponding to a system
of points An,d; the set [A]∗ is a set which is symmetrical to the set A with
respect a unit circle |w| = 1. From this, it follows that for dividing transfor-
mation with respect to {Pk}nk=1 and {ζk}nk=1 for the condenser C (t, D, An,d)
corresponds the set of condensers {Ck (t, D, An,d)}nk=1. The last condensers
are symmetrical with respect to {z : |z| = 1}. According to the paper [8], we
obtain

capC (t,D,An,d) >
1

2

n∑
k=1

capCk (t,D,An,d) . (12)

Therefore we obtain

|C (t,D,An,d) | 6 2

(
n∑
k=1

|Ck (t,D,An,d) |−1
)−1

. (13)

The formula (7) gives a module of asymptotic C (t, D, An,d) when t → 0
and M (D,An,d) is a module of the set D with respect to An,d. Using the
formulae (10), (11), and the fact that the set D satisfies a non-overlapping
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conditions with respect to the system of points 0∪An,d, we have the following
asymptotic representations for the condensers Ck (t,D,An,d), k = 1, n:

|Ck (t,D,An,d) | =

=
1

2π
(
n
2 +mk +mk+1

) log
1

t
+Mk (D,An,d) + o(1), t→ 0, mn+1 := m1,

(14)
where

Mk (D,An,d) =
1

2π
(
n
2 +mk +mk+1

)2 ·
log

r
(
Ω

(0)
k , 1

)
2

+

+

mk∑
p=1

log
r
(
Ω

(1)
k,p, ω

(1)
k,p

)
[
2
n · χ

(
|ak,p|

n
2

)
|ak,p|

]−1 +

mk+1∑
t=1

log
r
(
Ω

(2)
k,t , ω

(2)
k,t

)
[
2
n · χ

(
|ak+1,t|

n
2

)
|ak+1,t|

]−1
 ,

and k = 1, n.
Using (14), we get

|Ck (t,D,An,d)|−1 =
2π
(
n
2 +mk +mk+1

)
log 1

t

×

×

(
1 +

2π
(
n
2 +mk +mk+1

)
log 1

t

Mk (D,An,d) + o

(
1

log 1
t

))−1
=

=
2π
(
n
2 +mk +mk+1

)
log 1

t

−

−

(
2π
(
n
2 +mk +mk+1

)
log 1

t

)2

Mk (D,An,d) + o

((
1

log 1
t

)2
)
, t→ 0. (15)

Using the equality
n∑
k=1

mk = m and the condition (15), we have

n∑
k=1

|Ck (t,D,An,d)|−1 =
2π
(
n2

2 + 2m
)

log 1
t

−

−
(

2π

log 1
t

)2

·
n∑
k=1

(n
2

+mk +mk+1

)2
Mk (D,An,d) + o

((
1

log 1
t

)2
)
, t→ 0.

(16)
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In turn, from the relation (16), we obtain the following asymptotic repre-
sentation(

n∑
k=1

|Ck (t,D,An,d)|−1
)−1

=
log 1

t

2π
(
n2

2 + 2m
) (1− 2π(

n2

2 + 2m
) · 1

log 1
t

×

×
n∑
k=1

(n
2

+mk +mk+1

)2
Mk (D,An,d) + o

(
1

log 1
t

))−1
=

log 1
t

2π
(
n2

2 + 2m
)+

+
1(

n2

2 + 2m
)2 · n∑

k=1

(n
2

+mk +mk+1

)2
Mk (D,An,d) + o(1), t→ 0. (17)

From the inequalities (12) and (13), using (7) and (17), we obtain

1

2π
(
n2

4 +m
) log

1

t
+M (D,An,d) + o(1) 6

6
1

2π
(
n2

4 +m
) log

1

t
+

2(
n2

2 + 2m
)2 · n∑

k=1

(n
2

+mk +mk+1

)2
Mk (D,An,d)+o(1).

(18)
From (18) when t→ 0, we get

M(D,An,d) 6
2(

n2

2 + 2m
)2 · n∑

k=1

(n
2

+mk +mk+1

)2
Mk (D,An,d) . (19)

The formulae (8), (14) and (19) imply the following expression

1

2π
· 1(

n2

4 +m
)2 · [n24 log r(D, 0) +

n∑
k=1

mk∑
p=1

gD(0, ak,p)+

+

n∑
k=1

mk∑
p=1

log r(D, ak,p) +
∑

(k,p)6=(q,s)

gD(ak,p, aq,s)
]
≤ 1

4π
· 1(

n2

2 +m
)2×

×
n∑
k=1

log
r
(
Ω

(0)
k , 1

)
2

+

mk∑
p=1

log
r
(
Ω

(1)
k,p, ω

(1)
k,p

)
[
2
n · χ

(
|ak,p|

n
2

)
|ak,p|

]−1 +

+

mk+1∑
t=1

log
r
(
Ω

(2)
k,t , ω

(2)
k,t

)
[
2
n · χ

(
|ak+1,t|

n
2

)
|ak+1,t|

]−1
 , k = 1, n.
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Therefore, we have

r
n2

4 (D, 0) ·
n∏
k=1

mk∏
p=1

r(D, ak,p) ≤ 2−
n
2 ·
(

2

n

)m
· µ (An,d)×

×
n∏
k=1

{
r
(
Ω

(0)
k , 1

)
·
mk∏
p=1

r
(
Ω

(1)
k,p, ω

(1)
k,p

)
·
mk+1∏
t=1

r
(
Ω

(2)
k,t , ω

(2)
k,t

)} 1
2

. (20)

From results of the paper [6, 8, 9], we have the following inequalities

r
(
Ω

(0)
k , 1

)
·
mk∏
p=1

r
(
Ω

(1)
k,p, ω

(1)
k,p

)
·
mk+1∏
t=1

r
(
Ω

(2)
k,t , ω

(2)
k,t

)
≤

≤
mk+mk+1+1∏

s=1

r
(
G(k)
s , e

i 2π
mk+mk+1+1 (s−1)

)
, (21)

where G
(k)
s is a system of circular domains of the quadratic differential

Q (ζk) dζ2k = −
ζ
mk+mk+1−1
k(

ζ
mk+mk+1+1
k − 1

)2 · dζ2k .
Using the inequalities (20), (21), we obtain

r
n2

4 (D, 0) ·
n∏
k=1

mk∏
p=1

r(D, ak,p) ≤ 2−
n
2 ·
(

2

n

)m
· µ (An,d)×

×
n∏
k=1

{
mk+mk+1+1∏

s=1

r
(
G(k)
s , e

i 2π
mk+mk+1+1 (s−1)

)} 1
2

. (22)

Now consider the family of functions

ξk = n
√
ζk · ei

2π
n (k−1), k = 1, n,

which transform the unit circle to a sector with size 2π
n . Then the domainsG

(k)
s ,

k = 1, n, s = 1,mk +mk+1 + 1 will be transformed to the domain Σ
(k)
s and the

points e
i 2π
mk+mk+1+1 (s−1) will be transformed into e

i 2πn

(
s−1

mk+mk+1+1+k−1
)
.

By union all sectors we obtain the unit circle containing (2m + n) non-

overlapping domains Σ
(k)
s , k = 1, n, s = 1,mk +mk+1 + 1. Then

r
(
G(k)
s , e

i 2π
mk+mk+1+1 (s−1)

)
≤ n · r

(
Σ(k)
s , e

i 2πn

(
s−1

mk+mk+1+1+k−1
))

. (23)
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Using the inequalities (22), (23), we have

r
n2

4 (D, 0) ·
n∏
k=1

mk∏
p=1

r(D, ak,p) ≤ 2m ·
(n

2

)n
2 · µ (An,d)×

×

{
n∏
k=1

mk+mk+1+1∏
s=1

r

(
Σ(k)
s , e

i 2πn

(
s−1

mk+mk+1+1+k−1
))} 1

2

. (24)

Using the results of the paper [6, 8, 9], we obtain the following inequality

n∏
k=1

mk+mk+1+1∏
s=1

r

(
Σ(k)
s , e

i 2πn

(
s−1

mk+mk+1+1+k−1
))
≤

2m+n∏
t=1

r (Bt, bt)(25)

=

(
4

2m+ n

)2m+n

.

The sign of equality is obtained when the domains Bt and the points bt are
the circular domains and the poles of the quadratic differential

Q (ξ) dξ2 = − ξ2m+n−2

(ξ2m+n − 1)
2 · dξ

2. (26)

Finally, from the inequalities (25), (24), we obtain

r
n2

4 (D, 0) ·
n∏
k=1

mk∏
p=1

r(D, ak,p) ≤
(

8

2m+ n

)m
·
(

2n

2m+ n

)n
2

· µ (An,d) . (27)

The statement of the theorem follows directly from the inequality (27)
and from the quadratic differential (26), in which we must make a necessary
exchange of variables. The theorem is proved.

Proof of the Theorem 2 is similar to the proof of the Theorem 1.
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