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Stationary probability distribution of a system with N equal
customers with bursty demands connected to a single buffer

R. D. Rodriguez-Said, A. A. Pogorui, and R. M. Rodriguezgbino

Communicated by A. Turbin

Abstract. In this paper we study the stationary probability distribatof a system consisting
of a finite capacity buffer connected 16 equal customers with bursty on-off demands. We
assume that the buffer is filled up at a constant rate and wigznthe case when this filling
rate satisfies an optimization condition according to the@mer demands. First, we consider
semi-Markov on-off demands for the cade= 2 and we model the dynamics of the system
using a semi-Markov evolution environment. We show that &e ase the phase merging
algorithm to reduce the problem to a Markov evolution envinent case. Then, we generalize
the results for anw using a birth-and-death process.
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1. Introduction

The availability of information or product for the supplydifferent customer demands
is a problem that normally involves a buffer (reservoir ontainer). It is desirable to
optimize the amount of stored information according to thgeeted customer needs
and to the amount of incoming information or product feedirtg the buffer from the
supply line. We will model this system to find the stationarghmbility distribution
of the amount of information stored in the buffer at any time.

In this paper we consider the case of an information servér wisingle buffer
being filled at a constant rate whilé equal customers are connected to it. The buffer
has finite capacity and the customers demand product omiafiion in a random
alternating manner, i.e., they switch from the active (oy state to the inactive (or
off) state. First, we will assume that the alternating dedisacan be modeled by a
semi-Markov stochastic process for the cage= 2. Then, we will show that we can
reduce the semi-Markov process to a Markov process by lugtimtes according to
the phase merging algorithm [2, 3]. We continue finding the stationary probability
distribution of the system considering a Markov evolutigwieonment and a birth-
and-death process.

During the active state, each customer demands informati@ratef. Hence,
whenn customers are active, information is demanded at arratef. On the other
hand, an unproductive situation is considered if the buffermpty, i.e.o = 0. No
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product is required when all customers are inactive. Thiadilfate of the bufferr'
is considered a constant. The buffer is filled as long as theuatrof information is
below its maximum capacity’, see Figure 1.
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Figure 1. A system ofN independent customers and one buffer filled up at a constant
rate F.

The dynamics of this system can be captured by a first ordfareliftial equation
that has a random component or the so-called random evolptmcess [4]. In Sec-
tion 2 we elaborate our semi-Markov mathematical modelorglie caseV = 2 as
an intermediate step to obtain the general solution for amgher N of customers.
In Section 3 we elaborate our Markov mathematical modelorgahy numberV of
customers and we find a set of recursive equations. In Settiensolve the recursive
equations to find the stationary probability distributian N customers.

2. Mathematical model for N = 2

We begin studying the cast¥ = 2. Consider the semi-Markov proce$s(t)}
which is the superposition of two independent alternatergisMarkov processes with

the phase spacg = {(h,xi) cheH,z’ e R@} , whereH = {h: h = (hy, h),
h;=0,1;i=1,2},andR? = {7: & = (2,0),z > 0} J{7: 7= (0,x),z > 0}.
We have defined; as

b — 1, if .S; is active;
"1 o0, ifS;is notactive,

wheresS; stands for subsystem The component: of the vector(z, 0) (respectively
(0, z)) is the residual life from the last state change&e{respectivelyS,). The initial
distribution ofx(¢) is P {x(0) = (1,1;0,0)} = 1.

Let us write this in more detail:

(1,1;0,x) - subsystens; starts to be active and subsyst&ghas been active for the
time z,
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(1,1;z,0) - subsystens, starts to be active and subsystéirhas been active for the
time z,

(1,0;0,x) - subsysteny; starts to be active and subsystémhas been inactive for
the timex,

(1,0;x,0) - subsysteny, starts to be inactive and subsystémhas been active for
the timex,

(0,1;0,x) - subsysteny; starts to be inactive and subsystémhas been active for
the timez,

(0,1;x,0) - subsysteny, starts to be active and subsystéfnhas been inactive for
the timex,

(0,0;0,z) - subsysten; starts to be inactive and subsystémhas been inactive
for the timez,

(0,0;z,0) - subsystent, starts to be inactive and subsystémhas been inactive
for the timez.

The embedded Markov chain of this semi-Markov process hfafotlowing transi-
tion probabilities [2]:

— Yy—xr _
P [(h1,h2;0,2), { (h1, h2; 0, u),u < y}] = ﬁ%(x) /0 F2 (@ + w)dFy (u),
h2
. = 1 U ) 2)
P I:(hlth!Oux)ﬂ {(hl,hz,ﬂ,O),U S y}] - F_’(TCL‘) Fhl (u_x)thz ('LL),
hy @
. - 1 [V e (1)
P [(h1, h2;2,0), {(h1,h2;0,u),u < y}| = }F(T@) Fy(u— z)dF, 7 (u),
hy @
. = 1 M=) 2)
P [(hl,hZ,l‘,O),{(hl,hz,u,O),USy}] = F_’(TCL‘) 0 Fhl (U+l‘)th2 (U),
hi
2.1)

whereh; = 1—h;, F(z) = 1— F(z), andF(z) is the cumulative distribution function.
The sojourn times corresponding to the stochastic progg@gsvith phase spacg,
have the following expected values

1 [ - _
m(hi, ho;z,0) = T/ F;(l?(ﬂc + y)F,f)(y) dy,
Fhl (x) Jo
1 [® -y, =
m(hy, h2;0,2) = — / FY () B2 (x+y) dy.
Fy (z) Jo
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The density of the stationary distribution for the Markowaghembedded i (¢) is
of the following form [2]:

p(h1,h2;0,2) = ¢ lf:lg)(x) and p(ha, ho; z,0) = cy0 }':,Ei)(x), (2.2)
where
_ *sa (2
¢ (ha, ha) = /O (A2 @)+ B2 () de.

Consider a functio’(w) on the spac&V = Z x [0, V'] which expresses the rate of
change of the amount of information in the buffer and is defiag

F, w={(0,0;Z),v}, { = (x,0)}or{Z = (0,2)},0< v < V;
Fof, w={(0.18),0}, {F = (0} or{F=(0,2)},0< v < V;
Clw)=q F-f w={(10a),v} {Z=(z,0}or{Z=(0,2)},0<v<V;

F-2f, w={(1,1,%),v}, {¥=(z,00}or{Zf=(0,2)},0<v <V,

0, in other cases.
(2.3)
Let v(¢) be the amount of information in the buffer at time Hence, it is easily
verified thatv(¢) obeys to the differential equation:

= C(x(®),v(t)), (2.4)

with the initial conditionv(0) = vg € [0,V]. C(w) = C(x(t),v(t)) for x(t) € Z
andu(t) € [0,V]. It can be said that Eq. (2.4) determines the random evaoluifo
the system. Meaning that the procegs) is the stochastic transfer process in the
semi-Markov mediumy(¢) [2], [3]. By using thephase merging algorithm with the
merging functiork(hq, ho; &) = (h1, h2), we can obtain a Markov averaged evolution
v(t) which is a close approximation to the original semi-Markese, see Chapter 5
in [3]. Hence the averaged evolutioli) obeys to the following differential equation

dilt)

at C (x(1),0(t)), v(0) = o € [0, V],

where

C(ha, ha), v) = /0 " Cf(hn, hoi ), 0} [p(ha, h: 0, 3) + p(he, o, 0)]
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is a function orX x [0, V], whereX = {00, 01, 10,11}. The stochastic proce$g(t)}
is a Markov process with the phase spéce et us writeC'((h1, h2),v) in more detail,

C ((h1, h2), v) (2.5)

cho/oo(‘,g?( )+ 72 )) dr,  (h1,h2)=(0,0),0< v < V;

Dea [ (FY@+FD @) do, (sl

=3 (P cso/ GRE <j>(x)) dr,  (ha,ha)=(0,1), 0 < v < V:
0

(1,0),0<v < V;

(F — 2f) cso/ooo ( f%)) dz, (hi,h2)=(1,1),0<v < V;

0, in other cases.

From Egs. (2.1) and (2.2), we can obtain the following eapunesti

P {(h,h2)(h1, h2)}

- 1 [/ p(h1, h2;0,2)P [(ha, h2;0,2), {(h1, h2;0,u)}, u < o] dz
0

Cs1

+/ p(hla hz,I,O)P [(hla hz;xao)a {(ﬁla hz;oau)a u S OO}] dl‘:| 3
0

P {(h1,h2)(h1, h2)}

= @11 |:/0 p(hla thoal‘)P [(hla hz;oal‘)? {(hlaEZ; 03 U)}, u S OO] dx

+/ p(hla hz,I,O)P [(hla hz;xao)a {(hla ];Z;Oau)a u S OO}] dl‘:| 3
0

(2.6)
where

Cop = /0 (p(h1,h2;0,2)) + p(h1, h2; x,0)) da.

The transition probabilities of the corresponding embedslkarkov chain can be
obtained from Egs. (2.6) and they are as follows:

P {(h1,h2) (El, h2))} (2.7)

// :r—i—u dF d:r—i—// duF (x—l—u)dx

/0 f)( )dz+ /0 Fh2>(:r)dx
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P {(h1, h2) (h1, h2)) } (2.8)

// F()(aH-u dF d:c+// duF (x+u)dx
_Jo Jo .

/0 P (@ )dx+/0 Fh?(x)dx

The mean sojourn times of the procegs) in states fronX are given by

oo
m(hi,h2) = / p(h1, ho; z,0)m(hq, ho; x,0)dx
0

+/ (hl, hz, 0 :L') (hl, hz; 07 x)dx, (2.9)

ol [ R s
/ / x+y ()( )dydx)

In summary, by using the merging algorithm, the random eiaiw (¢) in the semi-
Markov mediumy(¢) can be reduced to the Markov evolutiefit) in the Markov
mediumyx(¢). So, as an example we consider an evolution in a Markov medium

Let us introduce the following stochastic procgsst)} such that

0, if no customer is active;
_ 1, if S1is active;
x(t) = o

2, if Sy is active;

3

if customersS; andS, are active;

The stochastic processis a Markov process on the phase space (or states)
© = {0,1,2 3}. Hence, the generating operator (or matrix)x@f) can be written
as [9]

—2)\ A A 0
— —(A+ 0 A
1 0 —(A+p) A

0 p p —2p

whereq = [¢;0i5;1,7 € {0,1,2,3}] is a diagonal matrix of sojourn times intensities
of different states andp = 2\, g1 = A + 1, ¢2 = A+ p andgs = 2u. Here, the
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Kronecker delta is defined as
1 i
by=4 0 '
0, i#j.
We should notice thafy = (m(hl, hz))_l, with the equivalence

(hihz) = {00,01,10,11} < {0,1,2,3} = © 5 4.

The elements of the matrik are the transition probabilities of the Markov chain
embedded in the Markov procegé&), i.e

_ 11 -
0 -z
2 2 0
_E g 9 A
p—| Atnu AJ)Tu
A p A+ p
o 11 g
L 2 2 |

If we consider that customef andS-» are equal we can construct a birth-and-death
process x? (t)} as a simplification of procesg ).

We consider the superposition of two on-off Markov processe thebirth-and-
death process{x(?(¢)} of the following form:

0, if no customer is active
X(Z)(t) =< 1, ifone customer is active . (2.10)
2, if two customers are active

The stochastic process? is a Markov process on the phase space (or states)
2) = {0, 1,2} with the state diagram shown in Fig. 2.

=y €)

Figure 2. A system of two independent customers that is a birth-armdihdprocess
with three states.

Then, for this system we have the following matrix of sojotinme intensities
22 0 0
¢@=10 A+p 0 |. (2.11)
0 0 2
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Also, we have a transition probability matrix given by

0o 1 0
A
pa—| H_ g . 2.12
A A+ ( )
0 1 0

Hence, the generating operator (or matrix) can be writtg8Jas

-2\ 2\ 0
QY = 4¢P — )= o —(A4p) A ) (2.13)
0 2 —2u

Then, we consider a functiafi® (w) on the spac&(® = {0,1,2} x [0, V] defined
as

F w={0,v}, O0<v<V;
F—f w={Lv}, O<v<V;
F-2f w={2v},0<v<V;

0 other cases

CA(w) = (2.14)

Denote a(t) the amount of information in the buffer at tinte It can be easily
verified thatv(t) satisfies the following equation

= CA (D (1), v(t)), (2.15)

with the initial conditionv(0) = vo € [0,V]. EQ. (2.15) determines the random
evolution of the system in the Markov mediugit) [1].

The sojourn time distribution functions, sﬁ)}z)(t), have the following form for the
different states:

FPM) =1-e 2 FA(1) =1 W andF2 (1) = 1 - e,

Now, denote as

(2
2  dFy7(1) @ ot
T = =g a9 =1 Em

forallg € @2, i.e.,r =2, % = App, v = 2. Theng@ (1) = (x (1), v(t))
is a Markov process with the generator [1, 4]

ARG(0,0) = C20,0)2-6(0,0) + 1D [PA0(0,0) — (0.0, (216)
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where
PP¢(0,v) = poy(y,v),
yeO®
or equivalently,
AR5(0,0) = O (0,0)2-6(0,v) + @260, v). 217

Denote byp the stationary distribution of proces®)(¢). Then, for every function
¢(+) belonging to the domain of the operatémwe have

/ AP p(2)p(dz) = 0. (2.18)
W)

The analysis of the properties of proc&$3(t) leads up to the conclusion that, for
casef < F < 2f, the stationary distributiop has atoms at point&, 0), (0, V') and
(1,V). We denote them ag[2, 0], p[0, V] and p[1, V]. The continuous part gf is

denoted by (6, v).
Let us write Eg. (2.18) in more detail.

/ ADg(2)p(d)
w2

- [

(F - f)%(b(la U) + /’L¢(07 U) - (M + A)¢(17 'U) + )‘¢(27 U)‘| p(lv 'U)

F%q&(o, v) — 2X\p(0,v) + 2A¢(1, v)] p(0,v)

+

+

(F —2)5-6(2,0) + 200(1,0) ~ 200(2, v)] p(2,0) }dw

+ [Z,Ud)(la 0) — 2u9(2, 0)] p[2,0]
+[ = 2Xp(0,V) + 2Ap(1, V)| p[O, V]
+[1p(0,V) — (u+ N)d(L, V) + Xp(2,V)] p[1,V] = 0.

Let A(@* be the conjugate operator df2. By changing the order of integration in
Eq. (2.18) we can obtain the following expression for thetitmous part ofA(2*p,

“20p(0,0) + pp(L) = Fap(0,0)
200(0.0) ~ (14 Np(Lv) + 2up(20) = (Fflop(a) - (219)

ML o)~ 2up(20) = (F—20) 2 p(2,0)



190 R. Rodriguez-Said, A. Pogorui, R. Rodriguez-Dagnino

Egs. (2.19) can also be stated in the following form:

p(0,v) F 0 0 o | PO
QU | p(Lv) | =] 0 (F=f) 0 50 | PLv) |- (2:20)
p(2,v) 0 0 (F-2f) p(2,v)

Even though it is not difficult to find a closed-form solutia this system, we find
its solution is an intermediate step to obtain the genetatisa for any numberV of
customers. Then, we should generalize(m@ matrix.

We obtain the expressions for the atoms for cAse I' < 2f as

—Fp(0,0+4) = 0

—(F — f)p(1,04) +2up[2,0] = O , (2.21)
~(F ~ 2/)p(2,0+) — 2up[2,0] = 0O
and
Fp(0,V—) —2X\p[0, V] + up[l,V] = 0
(F — f)p(L,V=)+2\p[0, V] — (u+ AN)p[L,V] = O . (2.22)
(F—2f)p2. V=) +M[LV] = 0

In these equations we have defined the notation

p(0,04) := |irfg p(6,v) (2.23)
and
p(0,V—) = Lim,o(@,v). (2.24)

It follows from Egs. (2.19) that
Fp(0,v) + (F — f)p(L,v) + (F — 2f)p(2,v) = ¢ = constant (2.25)
From Egs. (2.21) and (2.22) we get 0. Then, we obtain

Fp(0,v) + (F — f)p(Lv) + (F — 2f)p(2,v) = 0. (2.26)

For instance, if we choosE < f instead, we obtain the same result as the one in
Eq. (2.26). By analyzing this procedure, it is not difficdtdee that this equation can
also be generalized t& customers. Also, It should be mentioned that the procedure
used to reduce the initial problem to the Markov case is getépfor anyN.
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3. Generalization toN customers

We consider the superposition 6f on-off Markov processes as tihath and death
process y(V)} of the following form:

0, if no customer is active
1, if one cutomer is active
M) =< 2, iftwo customers are active

N, if N customers are active

The stochastic procesg™) is a Markov process on the phase space (or states)
©N) =0,1,2,..., N with the state diagram shown in Fig. 3.

o~
Ouu)ntnEul)
T 2n 3 (N —1)n—" Ny

Figure 3. A system ofN independent customers that is a birth-and-death procélss wi
N + 1 states.

Then, for this system we have the following matrix of sojotinme intensities

[ N 0 0 0 0
0 pu+(N-1 0 0 0
) _ 0 0 2,LL+(]IV—2))\ 9 0
0 0 0 (N=Dpu+Xx O

0 0 0 0 Nu |

Also, we have a transition probability matrix given by
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pWN)
[ 0 1 0 0 0 1
[ (N -1)A
0 0 0
p+ (N =1\ 5 w4 (N =1\
n
0 0 0 0
20+ (N —2)\
' A
0 0 0 0
A+ (N—=1u
I 0 0 0 1 0 |

Hence, the generating operator (or matrix) can be writtd@Jas

QW) — (M pt) _ ] = (3.1)
) N 0 . 0 0 |
0 —NA+A—p (N — 1) - 0 0
0 2u “NAX+2(N—p) ... 0 0
0 0 0 2\ 0
0 0 0 . SA—(N=Du A
0 0 0 Nu —Npu

Then, we consider a functiof"¥) (w) on the spac&N) = {0,1,2,...,N} x
[0, V] defined as

F w={0,v}, 0<v<V;
F—f w={1lv}, 0<v<V;
F-2f w={2v}, O<v<V;
CM(w) = : :
F—-(N-1)f w={N-1v}, 0<v<V;
F-Nf w={N,v}, 0<v <V,
0 other cases.

Denote byv(t) the amount of information in the buffer at tinte It can be easily
verified thatv(t) satisfies the following equation

du(t)

S = M), o)), (3.2)
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with the initial conditionv(0) = vo € [0, V]. Eq. (3.2) determines the random evolu-
tion of the system in the Markov mediugt™)(¢) [1].

The sojourn time probability distribution functions, sEé}N)(t), have the following
form for the different states:

FEM@) = 1—e N
Fl(N) t = 1- e—((N—l))\+u)t’
FM(@) = 1-e-(N-232m
FM @) = 1- e O+N-Dut,
) = 1—e N,
Now, denote ag,") = % andr{) = =1 fe}(f)(t) forall§ ¢ @), i.e
- Fy
T(()N) = N,
PN = (N DA+,
réN) = (N—=2X+2pu,
7“5\][\7,)1 = A+ (N-=-1)pu,
TE\],V) = Nu.

Then,éM (1) = (x™)(t),v(t)) is a Markov process with generator [1, 4]

AN§(0,0) = M) (9,0) 2

aﬂ(‘)’”) g [PMo(0.0) — 9(0.0),  (@3)

whereP N)dy 0,v) Zp9y¢ (y,v), or equivalently,
ye®

AN ¢, v) = CM (0, v)=— 0

55 0(0:0) + QW6 (9,v).

Denote byp the stationary distribution of the procegééf)(t). Then, for every func-
tion ¢(-) belonging to the domain of the operatémwe have

/ AN g (2)p(dz) = 0. (3.4)
W)

Let AV)* be the conjugate operator dfN). By changing the order of integration
in Eq. (3.4) we can obtain the following expression for thatawous part ofA(N)*p
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F 0 0 0 0
0 F—f 0 0 0
0 0 F-2f 0 0
QT (V) _ : 9 ,m,
v
0 0 0 0 0
0 o0 0 F—(N-1)f 0
0 0 0 0 F—-Nf
) i (3.5)
p(0,v)
p(L,v)
p(2,v)
wherepV) = : andp(6,v) denote the continuous part of
p(N —2,v)
p(N —1,v)
p(N,v)

Let us write Egs. (3.5) in more detail.
~NAp(0.0) + pip(Lv) = F-p(0.0)
NA(0,) ~ [(N = DA+ ulp(Lv) + 2up(20) = (F ~ )-p(1,0)
(N = DAp(L,0) ~ (N = DA+ Zulol20) + 3up(3,0) = (F = 2) 5 p(2,0)

(N =2)Ap(2,0) = [(N = 3)A + 3ulp(3,v) + 4up(4,v) = (F - 3f)%p(3vv)

Mo(N = L0) = Nup(N,v) = (F = NJ)5-p(N,0).

(3.6)
Then, we can write a general equation for angs

(F—(n=Df)apln—1v) = (N~ (n—2)ro(n—27)
[N = (0= D)X+ (n — Dulp(n — 1,0)
+npp(n,v), (3.7)

such that I< n < N.
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Solving for p(n, v) we have

— (n— 0
o) = E=OZDD D01
OGP U Y PP

nj

_wp(n —2,v), (3.8)
nj
for1 < n < N. We also know that

pL.0) =L pl0,0) + 2 2p(0,0) (3.9)

4. Stationary distribution

We can use Egs. (3.8) and (3.9) to solve the continuous péreddtationary distribu-
tion of the system with two customer®’(= 2).
As a first step we can evaluate Egs. (3.8) and (3.9)Mat 2. Then we obtain

pLe) = 2p(0.0) + 2 p(0,0) (4.1)
and
—(n—1)f) 8
p(n,v) = W%;}(n —-10)
+ ((3 B TL))\ + (TL B l).u‘) ,O(TL _ 17,0)
ny
—7(4 _ n))\p(n - 2,v), (4.2)
ny
forn = N = 2. Then, we obtain
- 0
piz0) =D L0+ C e - 200, @)

So far, we have from Eq. (4.1) an expressiond@t, v) in terms ofp(0,v). If we
use this expression into Eq. (4.3) we can also obtain an sgjme ofp(2, v) in terms
of p(0,v) as follows

F(F—f) 0%

F 3F\ —2f\+uF) 0 A2
p(2,0) = (zu ( fA+ pF)

2 8U2p<0’v)+ 2,LLZ %P(O,U)‘f‘ﬁp(o,v) (44)
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Then, we can use Eq. (2.26) and evaluate expressions (4113 &) forp(1,v) and
p(2,v). We obtain

F(F — f)(F - 2f) &

2M2 W,O(O,U)
FE-f)  F-NE=2)N  FE-2)A+n)) 9
+< ; + 2 + N )a p(0,v)
+<F+2A(f;— f)+(F—2fZLgA+u)A_ (F_sz)A)p(Ovv) 0

(4.5)
If we solve this equation we get the following result:

p(0,v) = Cmexp{—ZM U} + Cozexp{ A+ p) } . (4.6)

F(F —2f) F—f
If we considerF’' (A + u) — 2f A = 0 and we solve fo#", we obtain
2f A
=— 4.7
-t (4.7)

which is a consistent condition for systems withcustomers. Actually, this condition
can also be constructed if we makeequal to the expected average demand of a
two-customer system. We start considering the long-teiwpgation of time that one

customer is active, i.eﬁ. If we multiply this proportion byf then we obtain the

long-term average customer demand. Let us remember thatceatomer process is
independent. Then, if we makié equal to the average demand of the two-customer

2F\

system, we havé' = , which could be considered as an optimizing condition.

g
By considering condition (4.7) in Eq. (4.5) we can express ¢lguation in the fol-
lowing form:

92 ()\ + u) 0 B
which has the following solution:
(A +p)?
0,v) = ——— . 4.9
p(0,v) 001+C026XP{ o= (4.9)
If we look at Egs. (4.1) and (4.4) it is not difficult to see that
- QA p?
(4.10)
_ (w2
p(2,v) = 021+ngexp{ f()\—,u)v .
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Now, we can think again about the system with three custanievge recall Egs.
(3.8) and (3.9), and we evaluate them for= 3. Then, we obtain

pLe) = 2p(0.0) + 2 p(0,0) (4.11)
and
p(n,v) = %ﬂ_l)f% (n—121,v) + (4- n))\TL(n — Dup(n —1,v)
-2 (4.12)

for 1 < n < N. Then we may evaluate this equation fo= 2 andn = 3 giving

F— 0 2\ 3\
p(2,0) = 2Mf L2 a0+ L)+ pp00)  (@3)
and
F—2f) 0 A+ 2 2\
R X B X B C RO CEY)

It is not difficult to prove that, as an extension of Eq. (2,46} the two-customer
system, the following equality holds for the three-custosystem

Fp(0.v) + (F = f)p(L.v) + (F = 2/)p(2,0) + (F — 3f)p(3,v) = 0.  (4.15)

Now, we can use expressions (4.11), (4.13) and (4.14) in£45) just as in the
case for a two-customer system and we can obtain an expndesjo(0, v). If we use

the condition
3fA

= )\—’_'u’

which resembles condition (4.7), then we can express Etp)4h the following form:

(4.16)

3 2

FP(201) ~210) o (0, 0) HAF ) ) (0, 0) 200 41)* 2 (0,) = O

%P

Eq. (4.16) can be constructed by makiAgequal to the expected average demand
of the three-customer system in the same way we construge(ME) for the two-
customer system. Also, we may find Eq. (4.16) as a conditiainoinate one of the
roots in the equation fos(0, v), just as we found Eq. (4.7). Conditions like these are
present ahead in equations for systems with a larger nunfiloeistomers.

It is not difficult to see that the solution for differentiadj@ation (4.17) is of the
following manner:
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_ 2

p(0,v) = Cor+ CozeXp{—Q)\ (25\#_2;6\)\—5)2(:); . U}
(22— 21 = V2AW) (A + )2

+Cosexp{— (2N — ) (N —2u) f U} '

(4.17)

Therefore, solutions fas(1,v), p(2,v) andp(3, v) take the general form gf(0, v)

o (A — 2+ VD) (A + 1)’
p(i,v) = Ci1+Ci2eXp{_ 2 — ) (A —2u)f v}

(2 — 20 — V2 (A + p)? U}

+Ci3 exp{— (4.18)

(@A = p)(A=2p)f
fori =0,1,2,3.
Let us focus on equations f@x0, v), which lead to the general form of the rest of

the continuous part of the stationary distribution.
We can use Egs. (3.8), (3.9) along with tNegeneral form equation

N

Z(F —nf)p(n,v) =0, (4.19)

n=0

that comes from the generalization of Egs. (2.26) and (4df%) the condition

NfA
F=17 4.20
N (4.20)

that comes from the generalization of conditions (4.7) ahdf), to find the set of
equations forV = 1,4,5,6,7,8 just as it is shown in Table 1.

If we look at the equations in Table 1, it is not difficult to liea the pattern govern-
ing them. It can be seen that there is a difference betweeatiegs for even and odd

N according to factor
o A+ u)2>
—+—=. 4.21

((% (A—n)f .20

The rest of the equations follow the same pattern for evéryrhen, we can write a
tentative general equation for a system with any> 2 customers.
For oddN > 2 we may say that
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J

N=1 %p(o,v) =0
N R LT AN B
N2 | (g5 + iy ) 670 =
N=3 (f2<2A ) 20) AR ) P+ 20+ u)“)
x%p(o,v) =0
- 2 82 2 0 4
N=t | (3 = W= 3 + 60— W)+ P+ 30+
o (Aw?\ 0 B
(g frng) 300 =0
N=5 | (0= O ) 5 BT W+ P+ 4+
2
< ((£2(30— 2023 — 35 + 1283 — WA+ )P 4 6(A+ u)“)
x%p(o,v) =0
- 2 62 2 a 4
V=6 (f (5% — )\~ 81) s + 10 (A — i) (A 1)+ 5(A 4 1) )
< <f2<4A — 20)(2A — A1)y + 167\ )N+ )P + B+ u)“)
o  (A+w?\ o B
o Gy F it
- 2 82 2 0 4
N=T | (6 = 8 60y + 12700~ W)+ P+ 601+ 1)
x <f2(5>\ —2u)(2n — 5#)88—; 4 20f(N — (A + u)Z% + 100\ + u)“)
x [ 241 — 3u)(3\ — 4#)88—; L 24F (A — @) (A + u)Z% 1200+ u)“)
x%p(o,v) =0
— 2 82 2 a 4
N=8 (f (A = 1A = Th)-y + 14F (3 — ) )+ 70 + 1) )

02

2

X <f2(6)\ —2p)(2\ — GM)% +24f (N — p)(A + u)Z% + 120\ + u)“)

2

X <f2(5)\ —3u)(3\ — 5@% +30F (A — (A + M% + 150\ + u)“)

(A + p)?
B

(24
ov

—u)f) v

0

a_p(ovv) =0

Table 1. p(0, v) equations fotV = 1,2,3,4,5,6,7,8
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(N-1)/2 92
( [T (P =m)A—nm)nr - (N - nH) 5
n=1

F2AN — )= )+ )

+(N —n)n(A+ ,u)4)> %p(O,v) =0.

(4.22)

For evenN > 2 we may say that

[T (PN —=m)A—np)(nr— (N - n) 53

n=1

(N/2)-1 )
( 0 (4.23)

ov

o (Ap?\ 0 B
(5 Gy e =0

Now we can proceed to find a general solution for (4.22) an2i3j4.As it can be
seen, equations in Table 1 are factored in second order golats, therefore it is not
difficult to find their roots. We obtain the general soluti@ssfollows:

For oddN > 2,

F2AN = ) f (A — @) A+ p)2 + (N = mn(\ + m“))

(N-1)/2
p(i,v)=Cio+ > Cin
n=1

{ ((N —n)n(A—pu)+ (N —2n)y/(N — n)n)\u) (A4 )2 }
x exp{ — v

(N =)A= np)(nA = (N = n)u) f
(N-1)/2
+ >, Cin-m (4.24)
m=1

(V= mym(x = ) = (V= 2m) /(N = mymA) (A+ )’
Sl (N = m)x — mp)(mA — (N —m)p) 0

For evenN > 2,
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(N/2)-1
, A+ p)?

p(i,v) = Cio+ Ci ny2 exp{—ﬁ U} + Cin
n=1

{ ((N — (A — ) + (N — 2n) /(N — n)n)\u) (A + )2 }
X eXp{ — v

(N —n)A—nu)(mh— (N —m)n)f
(N/2)—1
+ Z C(i,N—m (425)
m=1

(V= mym(x = ) = (V= 2m) /TN = mymA) (A+ )’
e T (N = m)A — mp)(mA — (N — m)u)f ’

As we know, these solutions are not only valid fg0, v), but also for the general
form of the rest of the stationary distribution. Nevertlssleve may just consider the
constants fromp(0, v) asCop,, < Cp, n € {0,1,..., N — 1} in order to simplify the
solution and we may express the rest of the distributiefisv) in terms ofp(0, v)
using Egs. (3.8) and (3.9).

The analysis of the properties of the proc€§¥)(¢) leads up to the conclusion
that, for the casef < I’ < bf, the stationary distributiop has atoms at the points
(b,0), (b+1,0),...,(N,0), and at the point§0, V'), (1,V),...,(a,V). We denote
them as[b,0], p[b+ 1,0],...,p[N,0] andp[0, V], p[1,V],...,pla,V].

We get from the discrete part of Eq. (3.4) the following exgsiens.

F 0 0o .. 0 0 p(0,0+)
0O F—f 0 .. 0 0 p(1,04)
0 0 F-2f .. 0 0 p(2,0+)
0 o0 0o ... 0 0 p(N — 2,0+)
0 o0 0 ... F-(N-1)f 0 p(N —1,04)
0 o0 0o ... 0 F—Nf p(N,0+)
= QWTR(0), (4.26)
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0
0
whereR(0) = p[b, O] . Also,
plb+1,0]
p[N, 0]
[ F 0 0 0
0O F—f O 0
0 0 F-2f 0
0 0 0 0
0 0 0 F—(N-1f
0 0 0 0 F-Nf
_Q(N)TR‘( )7
[ pl0,V] ]

whereR (V) = p[a; V]

T D
—
= O
o O
¥ T
N—
o o

pla—1,0+) = 0.

Also, from Eq. (4.27) we obtain that

(4.28)
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p<a + 23 V_)
pla+3,V—-) = 0,

|
o

(4.29)

p(N,V—). = 0.

Itis not difficult to use Eqgs. (4.28) and (4.29) to obtain exg®ions for the constants
Cn,ne{l,2,...,N—1}.

Also, by using expressions in Eq. (4.26) not equal to zero &g obtain expres-
sions for the atoms iR (0) in terms of the continuous papi(¢,0+). In the same
way we may use (4.27) to obtain expressions for the atoni(ii) in terms of the
continuous parp(6,V —).

After that it is not difficult to calculate consta@t using the normalization condition

/W(N> p(w)dw = 1.

That completes the calculation of the stationary distidsup of the system.

5. Conclusions

It is possible to use phase merging algorithmto reduce a semi-Markov process to an
approximated Markov process. Once this is done, it is ptessibfind some closed-
form expression for the stationary probability distriloutiof the system.

We have found that the problem of the single buffer withequal customers con-
nected to it has a general solution for the stationary pritibaklistribution of the
amount of stored information. We found this general sofutonsidering only one
condition that could be considered as an optimizing coowlitiWe constructed this
condition so that the stream of information is equal to theeexed average demand
of the system, and it is also present as one of the roots ofeéhergl equation to be
solved. By having this condition, the general equationrnigxified so that the solution
may present one less exponential term.

Even though it was mentioned as part of the system funcitgridat the main
streamF' turnsoff when the buffer reaches its maximum capacity, the resudtsgmted
here also match to those of a system with an overflowed buifeat is, a system where
the main streant’ is alwayson and when the buffer reaches its maximum capacity
some data may be thrown away.
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