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Stationary probability distribution of a system with N equal
customers with bursty demands connected to a single buffer

R. D. Rodrı́guez-Said, A. A. Pogorui, and R. M. Rodrı́guez-Dagnino

Communicated by A. Turbin

Abstract. In this paper we study the stationary probability distribution of a system consisting
of a finite capacity buffer connected toN equal customers with bursty on-off demands. We
assume that the buffer is filled up at a constant rate and we analyze the case when this filling
rate satisfies an optimization condition according to the customer demands. First, we consider
semi-Markov on-off demands for the caseN = 2 and we model the dynamics of the system
using a semi-Markov evolution environment. We show that we can use the phase merging
algorithm to reduce the problem to a Markov evolution environment case. Then, we generalize
the results for anyN using a birth-and-death process.
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1. Introduction

The availability of information or product for the supply ofdifferent customer demands
is a problem that normally involves a buffer (reservoir or container). It is desirable to
optimize the amount of stored information according to the expected customer needs
and to the amount of incoming information or product feedinginto the buffer from the
supply line. We will model this system to find the stationary probability distribution
of the amount of information stored in the buffer at any time.

In this paper we consider the case of an information server with a single buffer
being filled at a constant rate whileN equal customers are connected to it. The buffer
has finite capacity and the customers demand product or information in a random
alternating manner, i.e., they switch from the active (or on) state to the inactive (or
off) state. First, we will assume that the alternating demands can be modeled by a
semi-Markov stochastic process for the caseN = 2. Then, we will show that we can
reduce the semi-Markov process to a Markov process by lumping states according to
the phase merging algorithm [2, 3]. We continue finding the stationary probability
distribution of the system considering a Markov evolution environment and a birth-
and-death process.

During the active state, each customer demands informationat a ratef . Hence,
whenn customers are active, information is demanded at a raten × f . On the other
hand, an unproductive situation is considered if the bufferis empty, i.e.,v = 0. No
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product is required when all customers are inactive. The filling rate of the bufferF
is considered a constant. The buffer is filled as long as the amount of information is
below its maximum capacityV , see Figure 1.
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Figure 1. A system ofN independent customers and one buffer filled up at a constant
rateF .

The dynamics of this system can be captured by a first order differential equation
that has a random component or the so-called random evolution process [4]. In Sec-
tion 2 we elaborate our semi-Markov mathematical modeling for the caseN = 2 as
an intermediate step to obtain the general solution for any numberN of customers.
In Section 3 we elaborate our Markov mathematical modeling for any numberN of
customers and we find a set of recursive equations. In Section4 we solve the recursive
equations to find the stationary probability distribution for N customers.

2. Mathematical model forN = 2

We begin studying the caseN = 2. Consider the semi-Markov process{χ(t)}
which is the superposition of two independent alternating semi-Markov processes with

the phase spaceZ =
{

(h, xi) : h ∈ H, xi ∈ R
(2)
+

}

, whereH = {h : h = (h1, h2),

hi = 0, 1; i = 1, 2} , andR
2
+ = {~x : ~x = (x, 0), x ≥ 0}⋃ {~x : ~x = (0, x), x ≥ 0} .

We have definedhi as

hi =

{

1, if Si is active;

0, if Si is not active,

whereSi stands for subsystemi. The componentx of the vector(x, 0) (respectively
(0, x)) is the residual life from the last state change ofS1 (respectivelyS2). The initial
distribution ofχ(t) is P {χ(0) = (1, 1; 0, 0)} = 1.

Let us write this in more detail:

(1, 1; 0, x) - subsystemS1 starts to be active and subsystemS2 has been active for the
timex,
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(1, 1;x, 0) - subsystemS2 starts to be active and subsystemS1 has been active for the
timex,

(1, 0; 0, x) - subsystemS1 starts to be active and subsystemS2 has been inactive for
the timex,

(1, 0;x, 0) - subsystemS2 starts to be inactive and subsystemS1 has been active for
the timex,

(0, 1; 0, x) - subsystemS1 starts to be inactive and subsystemS2 has been active for
the timex,

(0, 1;x, 0) - subsystemS2 starts to be active and subsystemS1 has been inactive for
the timex,

(0, 0; 0, x) - subsystemS1 starts to be inactive and subsystemS2 has been inactive
for the timex,

(0, 0;x, 0) - subsystemS2 starts to be inactive and subsystemS1 has been inactive
for the timex.

The embedded Markov chain of this semi-Markov process has the following transi-
tion probabilities [2]:

P
[

(h1, h2; 0, x),
{

(h̄1, h2; 0, u), u ≤ y
}]

= 1
F̄

(2)
h2

(x)

∫ y−x

0
F̄

(2)
h2

(x + u)dF
(1)
h1

(u),

P
[

(h1, h2; 0, x),
{

(h1, h̄2; u, 0), u ≤ y
}]

= 1
F̄

(2)
h2

(x)

∫ y+x

x
F̄

(1)
h1

(u − x)dF
(2)
h2

(u),

P
[

(h1, h2; x, 0),
{

(h̄1, h2; 0, u), u ≤ y
}]

= 1
F̄

(1)
h1

(x)

∫ y+x

x
F̄

(2)
h2

(u − x)dF
(1)
h1

(u),

P
[

(h1, h2; x, 0),
{

(h1, h̄2; u, 0), u ≤ y
}]

= 1
F̄

(1)
h1

(x)

∫ y−x

0
F̄

(1)
h1

(u + x)dF
(2)
h2

(u),

(2.1)
whereh̄i = 1−hi, F̄ (x) = 1−F (x), andF (x) is the cumulative distribution function.

The sojourn times corresponding to the stochastic processχ(t) with phase spaceZ,
have the following expected values

m(h1, h2; x, 0) =
1

F̄
(1)
h1

(x)

∫ ∞

0
F̄

(1)
h1

(x + y)F̄
(2)
h2

(y) dy,

m(h1, h2; 0, x) =
1

F̄
(2)
h2

(x)

∫ ∞

0
F̄

(1)
h1

(y)F̄
(2)
h2

(x + y) dy.
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The density of the stationary distribution for the Markov chain embedded inχ(t) is
of the following form [2]:

ρ(h1, h2; 0, x) = cs0 F̄
(2)
h2

(x) and ρ(h1, h2; x, 0) = cs0 F̄
(1)
h1

(x), (2.2)

where

c−1
s0 (h1, h2) =

∫ ∞

0

(

F̄
(1)
h1

(x) + F̄
(2)
h2

(x)
)

dx.

Consider a functionC(w) on the spaceW = Z× [0, V ] which expresses the rate of
change of the amount of information in the buffer and is defined as

C(w) =



















































F, w = {(0, 0;~x), v}, {~x = (x, 0)}or{~x = (0, x)}, 0 < v < V ;

F − f, w = {(0, 1;~x), v}, {~x = (x, 0)}or{~x = (0, x)}, 0 < v < V ;

F − f, w = {(1, 0;~x), v}, {~x = (x, 0)}or{~x = (0, x)}, 0 < v < V ;

F − 2f, w = {(1, 1;~x), v}, {~x = (x, 0)}or{~x = (0, x)}, 0 < v < V ;

0, in other cases.
(2.3)

Let v(t) be the amount of information in the buffer at timet. Hence, it is easily
verified thatv(t) obeys to the differential equation:

dv(t)

dt
= C (χ(t), v(t)) , (2.4)

with the initial conditionv(0) = v0 ∈ [0, V ]. C(w) = C(χ(t), v(t)) for χ(t) ∈ Z

andv(t) ∈ [0, V ]. It can be said that Eq. (2.4) determines the random evolution of
the system. Meaning that the processv(t) is the stochastic transfer process in the
semi-Markov mediumχ(t) [2], [3]. By using thephase merging algorithm with the
merging functionk(h1, h2;~x) = (h1, h2), we can obtain a Markov averaged evolution
v̄(t) which is a close approximation to the original semi-Markov case, see Chapter 5
in [3]. Hence the averaged evolution ¯v(t) obeys to the following differential equation

dv̄(t)

dt
= C̄ (χ̄(t), v̄(t)) , v̄(0) = v̄0 ∈ [0, V ],

where

C̄((h1, h2), v) =

∫ ∞

0
C{(h1, h2;~x), v}[ρ(h1, h2; 0, x) + ρ(h1, h2; x, 0)] dx
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is a function onX× [0, V ], whereX = {00, 01, 10, 11}. The stochastic process{χ̄(t)}
is a Markov process with the phase spaceX. Let us writeC̄((h1, h2), v) in more detail,

C̄ ((h1, h2), v) (2.5)

=











































































Fcs0

∫ ∞

0

(

F̄
(1)
h1

(x) + F̄
(2)
h2

(x)
)

dx, (h1, h2)=(0, 0), 0 < v < V ;

(F − f)cs0

∫ ∞

0

(

F̄
(1)
h1

(x)+F̄
(2)
h2

(x)
)

dx, (h1, h2)=(1, 0), 0 < v < V ;

(F − f)cs0

∫ ∞

0

(

F̄
(1)
h1

(x)+F̄
(2)
h2

(x)
)

dx, (h1, h2)=(0, 1), 0 < v < V ;

(F − 2f)cs0

∫ ∞

0

(

F̄
(1)
h1

(x)+F̄
(2)
h2

(x)
)

dx, (h1, h2)=(1, 1), 0 < v < V ;

0, in other cases.

From Eqs. (2.1) and (2.2), we can obtain the following equations:

P
{

(h1, h2)(h̄1, h2)
}

= 1
cs1

[
∫ ∞

0
ρ(h1, h2; 0, x)P

[

(h1, h2; 0, x), {(h̄1, h2; 0, u)}, u ≤ ∞
]

dx

+

∫ ∞

0
ρ(h1, h2; x, 0)P

[

(h1, h2; x, 0),
{

(h̄1, h2; 0, u), u ≤ ∞
}]

dx

]

,

P
{

(h1, h2)(h1, h̄2)
}

= 1
cs1

[
∫ ∞

0
ρ(h1, h2; 0, x)P

[

(h1, h2; 0, x), {(h1, h̄2; 0, u)}, u ≤ ∞
]

dx

+

∫ ∞

0
ρ(h1, h2; x, 0)P

[

(h1, h2; x, 0),
{

(h1, h̄2; 0, u), u ≤ ∞
}]

dx

]

,

(2.6)
where

cs1 =

∫ ∞

0
(ρ(h1, h2; 0, x)) + ρ(h1, h2; x, 0)) dx.

The transition probabilities of the corresponding embedded Markov chain can be
obtained from Eqs. (2.6) and they are as follows:

P
{

(h1, h2)
(

h̄1, h2)
)}

(2.7)

=

∫ ∞

0

∫ ∞

0
F̄

(2)
h2

(x+u)dF
(1)

h̄1
(u)dx +

∫ ∞

0

∫ ∞

0
F̄

(2)
h2

(u)duF
(1)

h̄1
(x+u)dx

∫ ∞

0
F̄

(1)
h1

(x)dx+

∫ ∞

0
F̄

(1)
h2

(x)dx

,
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P
{

(h1, h2)
(

h1, h̄2)
)}

(2.8)

=

∫ ∞

0

∫ ∞

0
F̄

(1)
h1

(x+u)dF
(2)

h̄2
(u)dx+

∫ ∞

0

∫ ∞

0
F̄

(1)
h1

(u)duF
(2)

h̄2
(x+u)dx

∫ ∞

0
F̄

(1)
h1

(x)dx +

∫ ∞

0
F̄

(1)
h2

(x)dx

.

The mean sojourn times of the process ¯χ(t) in states fromX are given by

m(h1, h2) =

∫ ∞

0
ρ(h1, h2; x, 0)m(h1, h2; x, 0)dx

+

∫ ∞

0
ρ(h1, h2; 0, x)m(h1, h2; 0, x)dx, (2.9)

= cs0

(
∫ ∞

0

∫ ∞

0
F̄

(1)
h1

(y)F̄
(2)
h2

(x + y)dydx

+

∫ ∞

0

∫ ∞

0
F̄

(1)
h1

(x + y)F̄
(2)
h2

(y)dydx

)

.

In summary, by using the merging algorithm, the random evolution v(t) in the semi-
Markov mediumχ(t) can be reduced to the Markov evolution ¯v(t) in the Markov
mediumχ̄(t). So, as an example we consider an evolution in a Markov medium.

Let us introduce the following stochastic process{χ̄(t)} such that

χ̄(t) =























0, if no customer is active;

1, if S1 is active;

2, if S2 is active;

3, if customersS1 andS2 are active;

The stochastic process ¯χ is a Markov process on the phase space (or states)
Θ = {0, 1, 2, 3}. Hence, the generating operator (or matrix) of ¯χ(t) can be written
as [9]

Q = q[P̄ − I] =













−2λ λ λ 0

µ −(λ + µ) 0 λ

µ 0 −(λ + µ) λ

0 µ µ −2µ













,

whereq = [qiδij ; i, j ∈ {0, 1, 2, 3}] is a diagonal matrix of sojourn times intensities
of different states andq0 = 2λ, q1 = λ + µ, q2 = λ + µ andq3 = 2µ. Here, the
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Kronecker delta is defined as

δij =

{

1, i = j;

0, i 6= j.

We should notice thatqθ =
(

m(h1, h2)
)−1

, with the equivalence

(h1h2) = {00, 01, 10, 11} ⇔ {0, 1, 2, 3} = Θ ∋ θ.

The elements of the matrix̄P are the transition probabilities of the Markov chain
embedded in the Markov process ¯χ(t), i.e.,

P̄ =





















0
1
2

1
2

0
µ

λ + µ
0 0

λ

λ + µ
µ

λ + µ
0 0

λ

λ + µ

0
1
2

1
2

0





















.

If we consider that customersS1 andS2 are equal we can construct a birth-and-death
process{χ(2)(t)} as a simplification of process ¯χ(t).

We consider the superposition of two on-off Markov processes as thebirth-and-
death process{χ(2)(t)} of the following form:

χ(2)(t) =











0, if no customer is active

1, if one customer is active

2, if two customers are active

. (2.10)

The stochastic processχ(2) is a Markov process on the phase space (or states)
Θ(2) = {0, 1, 2} with the state diagram shown in Fig. 2.

��
��

0
-2λ

�
µ ��

��
1

-λ

�
2µ ��

��
2

Figure 2. A system of two independent customers that is a birth-and-death process
with three states.

Then, for this system we have the following matrix of sojourntime intensities

q(2) =







2λ 0 0

0 λ + µ 0

0 0 2µ






. (2.11)
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Also, we have a transition probability matrix given by

P (2) =









0 1 0
µ

λ + µ
0

λ

λ + µ

0 1 0









. (2.12)

Hence, the generating operator (or matrix) can be written as[9]

Q(2) = q(2)[P (2) − I] =







−2λ 2λ 0

µ −(λ + µ) λ

0 2µ −2µ






. (2.13)

Then, we consider a functionC(2)(w) on the spaceW(2) = {0, 1, 2} × [0, V ] defined
as

C(2)(w) =























F w = {0, v}, 0 < v < V ;

F − f w = {1, v}, 0 < v < V ;

F − 2f w = {2, v}, 0 < v < V ;

0 other cases

. (2.14)

Denote asv(t) the amount of information in the buffer at timet. It can be easily
verified thatv(t) satisfies the following equation

dv(t)

dt
= C(2)(χ(2)(t), v(t)), (2.15)

with the initial conditionv(0) = v0 ∈ [0, V ]. Eq. (2.15) determines the random
evolution of the system in the Markov mediumχ(t) [1].

The sojourn time distribution functions, sayF
(2)
θ (t), have the following form for the

different states:

F
(2)
0 (t) = 1− e−2λt, F

(2)
1 (t) = 1− e−(λ+µ)t, andF

(2)
2 (t) = 1− e−2µt.

Now, denote as

f
(2)
θ =

dF
(2)
θ (t)

dt
and r

(2)
θ =

fθ(t)

1− Fθ(t)

for all θ ∈ Θ(2), i.e.,r(2)
0 = 2λ, r(2)

1 = λ+µ, r(2)
2 = 2µ. Then,ξ(2)(t) =

(

χ(2)(t), v(t)
)

is a Markov process with the generator [1, 4]

A(2)φ(θ, v) = C(2)(θ, v)
∂

∂v
φ(θ, v) + r

(2)
θ [P (2)φ(θ, v) − φ(θ, v)], (2.16)
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where
P (2)φ(θ, v) =

∑

y∈Θ

pθyφ(y, v),

or equivalently,

A(2)φ(θ, v) = C(2)(θ, v)
∂

∂v
φ(θ, v) + Q(2)φ(θ, v). (2.17)

Denote byρ the stationary distribution of processξ(2)(t). Then, for every function
φ(·) belonging to the domain of the operatorA we have

∫

W(2)

A(2)φ(z)ρ(dz) = 0. (2.18)

The analysis of the properties of processξ(2)(t) leads up to the conclusion that, for
casef < F < 2f , the stationary distributionρ has atoms at points(2, 0), (0, V ) and
(1, V ). We denote them asρ[2, 0], ρ[0, V ] andρ[1, V ]. The continuous part ofρ is
denoted byρ(θ, v).

Let us write Eq. (2.18) in more detail.

∫

W(2)

A(2)φ(z)ρ(dz)

=

∫ V −

0+

{[

F
∂

∂v
φ(0, v) − 2λφ(0, v) + 2λφ(1, v)

]

ρ(0, v)

+

[

(F − f)
∂

∂v
φ(1, v) + µφ(0, v) − (µ + λ)φ(1, v) + λφ(2, v)

]

ρ(1, v)

+

[

(F − 2f)
∂

∂v
φ(2, v) + 2µφ(1, v) − 2µφ(2, v)

]

ρ(2, v)

}

dv

+
[

2µφ(1, 0) − 2µφ(2, 0)
]

ρ[2, 0]

+
[

− 2λφ(0, V ) + 2λφ(1, V )
]

ρ[0, V ]

+
[

µφ(0, V ) − (µ + λ)φ(1, V ) + λφ(2, V )
]

ρ[1, V ] = 0.

Let A(2)∗ be the conjugate operator ofA(2). By changing the order of integration in
Eq. (2.18) we can obtain the following expression for the continuous part ofA(2)∗ρ.



























−2λρ(0, v) + µρ(1, v) = F
∂

∂v
ρ(0, v)

2λρ(0, v) − (µ + λ)ρ(1, v) + 2µρ(2, v) = (F − f)
∂

∂v
ρ(1, v)

λρ(1, v) − 2µρ(2, v) = (F − 2f)
∂

∂v
ρ(2, v)

. (2.19)
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Eqs. (2.19) can also be stated in the following form:

Q(2)T







ρ(0, v)

ρ(1, v)

ρ(2, v)






=







F 0 0

0 (F − f) 0

0 0 (F − 2f)







∂

∂v







ρ(0, v)

ρ(1, v)

ρ(2, v)






. (2.20)

Even though it is not difficult to find a closed-form solution for this system, we find
its solution is an intermediate step to obtain the general solution for any numberN of
customers. Then, we should generalize theQ(2) matrix.

We obtain the expressions for the atoms for casef < F < 2f as











−Fρ(0, 0+) = 0

−(F − f)ρ(1, 0+) + 2µρ[2, 0] = 0

−(F − 2f)ρ(2, 0+) − 2µρ[2, 0] = 0

, (2.21)

and











Fρ(0, V −) − 2λρ[0, V ] + µρ[1, V ] = 0

(F − f)ρ(1, V −) + 2λρ[0, V ] − (µ + λ)ρ[1, V ] = 0

(F − 2f)ρ(2, V −) + λρ[1, V ] = 0

. (2.22)

In these equations we have defined the notation

ρ(θ, 0+) := lim
v↓0

ρ(θ, v) (2.23)

and

ρ(θ, V −) := lim
v↑V

ρ(θ, v). (2.24)

It follows from Eqs. (2.19) that

Fρ(0, v) + (F − f)ρ(1, v) + (F − 2f)ρ(2, v) = c = constant. (2.25)

From Eqs. (2.21) and (2.22) we getc = 0. Then, we obtain

Fρ(0, v) + (F − f)ρ(1, v) + (F − 2f)ρ(2, v) = 0. (2.26)

For instance, if we chooseF < f instead, we obtain the same result as the one in
Eq. (2.26). By analyzing this procedure, it is not difficult to see that this equation can
also be generalized toN customers. Also, It should be mentioned that the procedure
used to reduce the initial problem to the Markov case is acceptable for anyN .
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3. Generalization toN customers

We consider the superposition ofN on-off Markov processes as thebirth and death
process{χ(N)} of the following form:

χ(N)(t) =



































0, if no customer is active

1, if one cutomer is active

2, if two customers are active
...

...

N, if N customers are active

.

The stochastic processχ(N) is a Markov process on the phase space (or states)
Θ(N) = 0, 1, 2, . . . ,N with the state diagram shown in Fig. 3.

��
��

0
-

Nλ

�
µ ��

��
1

-
(N − 1)λ

�
2µ ��

��
2

-
(N − 2)λ

�
3µ

· · ·
-2λ

�

(N − 1)µ��
��
N − 1

-λ

�

Nµ��
��

N

Figure 3. A system ofN independent customers that is a birth-and-death process with
N + 1 states.

Then, for this system we have the following matrix of sojourntime intensities

q(N) =























Nλ 0 0 · · · 0 0

0 µ + (N − 1)λ 0 · · · 0 0

0 0 2µ + (N − 2)λ · · · 0 0
...

...
...

...
...

...

0 0 0 · · · (N − 1)µ + λ 0

0 0 0 · · · 0 Nµ























.

Also, we have a transition probability matrix given by
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P (N) =






























0 1 0 · · · 0 0
µ

µ + (N − 1)λ
0

(N − 1)λ

µ + (N − 1)λ
· · · 0 0

0
2µ

2µ + (N − 2)λ
0 · · · 0 0

...
...

...
...

...
...

0 0 0 · · · 0
λ

λ + (N − 1)µ

0 0 0 · · · 1 0































.

Hence, the generating operator (or matrix) can be written as[9]

Q(N) = q(N)[P (N) − I] = (3.1)




























−Nλ Nλ 0 . . . 0 0

µ −Nλ + λ − µ (N − 1)λ . . . 0 0

0 2µ −Nλ + 2(λ − µ) . . . 0 0
...

...
...

...
...

...

0 0 0 . . . 2λ 0

0 0 0 . . . −λ − (N − 1)µ λ

0 0 0 . . . Nµ −Nµ





























.

Then, we consider a functionC(N)(w) on the spaceW(N) = {0, 1, 2, . . . ,N} ×
[0, V ] defined as

C(N)(w) =























































F w = {0, v}, 0 < v < V ;

F − f w = {1, v}, 0 < v < V ;

F − 2f w = {2, v}, 0 < v < V ;
...

...

F − (N − 1)f w = {N − 1, v}, 0 < v < V ;

F − Nf w = {N, v}, 0 < v < V ;

0 other cases.

Denote byv(t) the amount of information in the buffer at timet. It can be easily
verified thatv(t) satisfies the following equation

dv(t)

dt
= C(N)(χ(N)(t), v(t)), (3.2)
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with the initial conditionv(0) = v0 ∈ [0, V ]. Eq. (3.2) determines the random evolu-
tion of the system in the Markov mediumχ(N)(t) [1].

The sojourn time probability distribution functions, sayF
(N)
θ (t), have the following

form for the different states:


















































F
(N)
0 (t) = 1− e−Nλt,

F
(N)
1 (t) = 1− e−((N−1)λ+µ)t,

F
(N)
2 (t) = 1− e−((N−2)λ+2µ)t,

...
...

...

F
(N)
N−1(t) = 1− e−(λ+(N−1)µ)t,

F
(N)
N (t) = 1− e−Nµt.

Now, denote asf (N)
θ =

dFθ

dt
andr

(N)
θ =

fθ(t)

1− Fθ(t)
for all θ ∈ Θ(N), i.e.,



















































r
(N)
0 = Nλ,

r
(N)
1 = (N − 1)λ + µ,

r
(N)
2 = (N − 2)λ + 2µ,

...
...

...

r
(N)
N−1 = λ + (N − 1)µ,

r
(N)
N = Nµ.

Then,ξ(N)(t) =
(

χ(N)(t), v(t)
)

is a Markov process with generator [1, 4]

A(N)φ(θ, v) = C(N)(θ, v)
∂

∂v
φ(θ, v) + r

(N)
θ [P (N)φ(θ, v) − φ(θ, v)], (3.3)

whereP (N)φ(θ, v) =
∑

y∈Θ

pθyφ(y, v), or equivalently,

A(N)φ(θ, v) = C(N)(θ, v)
∂

∂v
φ(θ, v) + Q(N)φ(θ, v).

Denote byρ the stationary distribution of the processξ(N)(t). Then, for every func-
tion φ(·) belonging to the domain of the operatorA we have

∫

W(N)

A(N)φ(z)ρ(dz) = 0. (3.4)

Let A(N)∗ be the conjugate operator ofA(N). By changing the order of integration
in Eq. (3.4) we can obtain the following expression for the continuous part ofA(N)∗ρ.
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Q(N)Tρ(N) =





























F 0 0 . . . 0 0

0 F − f 0 . . . 0 0

0 0 F − 2f . . . 0 0
...

...
...

...
...

...

0 0 0 . . . 0 0

0 0 0 . . . F − (N − 1)f 0

0 0 0 . . . 0 F − Nf





























∂

∂v
ρ(N),

(3.5)

whereρ(N) =





























ρ(0, v)

ρ(1, v)

ρ(2, v)
...

ρ(N − 2, v)

ρ(N − 1, v)

ρ(N, v)





























andρ(θ, v) denote the continuous part ofρ.

Let us write Eqs. (3.5) in more detail.

−Nλρ(0, v) + µρ(1, v) = F
∂

∂v
ρ(0, v)

Nλρ(0, v) − [(N − 1)λ + µ]ρ(1, v) + 2µρ(2, v) = (F − f)
∂

∂v
ρ(1, v)

(N − 1)λρ(1, v) − [(N − 2)λ + 2µ]ρ(2, v) + 3µρ(3, v) = (F − 2f)
∂

∂v
ρ(2, v)

(N − 2)λρ(2, v) − [(N − 3)λ + 3µ]ρ(3, v) + 4µρ(4, v) = (F − 3f)
∂

∂v
ρ(3, v)

... =
...

λρ(N − 1, v) − Nµρ(N, v) = (F − Nf)
∂

∂v
ρ(N, v).

(3.6)
Then, we can write a general equation for anyn as

(F − (n − 1)f)
∂

∂v
ρ(n − 1, v) = (N − (n − 2))λρ(n− 2, v)

− [(N − (n− 1))λ + (n − 1)µ]ρ(n − 1, v)

+nµρ(n, v), (3.7)

such that 1< n ≤ N .



Stationary probability distribution 195

Solving forρ(n, v) we have

ρ(n, v) =
(F − (n− 1)f)

nµ

∂

∂v
ρ(n − 1, v)

+
[(N − (n − 1))λ + (n − 1)µ]

nµ
ρ(n− 1, v)

−(N − (n − 2))λ

nµ
ρ(n − 2, v), (3.8)

for 1 < n ≤ N . We also know that

ρ(1, v) =
F

µ

∂

∂v
ρ(0, v) +

Nλ

µ
ρ(0, v). (3.9)

4. Stationary distribution

We can use Eqs. (3.8) and (3.9) to solve the continuous part ofthe stationary distribu-
tion of the system with two customers (N = 2).

As a first step we can evaluate Eqs. (3.8) and (3.9) forN = 2. Then we obtain

ρ(1, v) =
F

µ

∂

∂v
ρ(0, v) +

2λ

µ
ρ(0, v) (4.1)

and

ρ(n, v) =
(F − (n − 1)f)

nµ

∂

∂v
ρ(n − 1, v)

+
((3− n)λ + (n − 1)µ)

nµ
ρ(n − 1, v)

−(4− n)λ

nµ
ρ(n − 2, v), (4.2)

for n = N = 2. Then, we obtain

ρ(2, v) =
(F − f)

2µ

∂

∂v
ρ(1, v) +

(λ + µ)

2µ
ρ(1, v) − λ

µ
ρ(0, v). (4.3)

So far, we have from Eq. (4.1) an expression forρ(1, v) in terms ofρ(0, v). If we
use this expression into Eq. (4.3) we can also obtain an expression ofρ(2, v) in terms
of ρ(0, v) as follows

ρ(2, v) =
F (F − f)

2µ2

∂2

∂v2ρ(0, v)+
(3Fλ − 2fλ + µF )

2µ2

∂

∂v
ρ(0, v)+

λ2

µ2ρ(0, v). (4.4)
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Then, we can use Eq. (2.26) and evaluate expressions (4.1) and (4.4) forρ(1, v) and
ρ(2, v). We obtain

F (F − f)(F − 2f)

2µ2

∂2

∂v2ρ(0, v)

+

(

F (F − f)

µ
+

(F − f)(F − 2f)λ

µ2 +
F (F − 2f)(λ + µ)

2µ2

)

∂

∂v
ρ(0, v)

+

(

F +
2λ(F − f)

µ
+

(F − 2f)(λ + µ)λ

µ2 − (F − 2f)λ

µ

)

ρ(0, v) = 0.

(4.5)
If we solve this equation we get the following result:

ρ(0, v) = C01 exp

{

−2
F (λ + µ) − 2fλ

F (F − 2f)
v

}

+ C02 exp

{

(λ + µ)

F − f
v

}

. (4.6)

If we considerF (λ + µ) − 2fλ = 0 and we solve forF , we obtain

F =
2fλ

λ + µ
, (4.7)

which is a consistent condition for systems withN customers. Actually, this condition
can also be constructed if we makeF equal to the expected average demand of a
two-customer system. We start considering the long-term proportion of time that one

customer is active, i.e.,
λ

λ + µ
. If we multiply this proportion byf then we obtain the

long-term average customer demand. Let us remember that each customer process is
independent. Then, if we makeF equal to the average demand of the two-customer

system, we haveF =
2fλ

λ + µ
, which could be considered as an optimizing condition.

By considering condition (4.7) in Eq. (4.5) we can express this equation in the fol-
lowing form:

∂2

∂v2ρ(0, v) +
(λ + µ)2

f(λ − µ)

∂

∂v
ρ(0, v) = 0, (4.8)

which has the following solution:

ρ(0, v) = C01 + C02 exp

{

− (λ + µ)2

f(λ − µ)
v

}

. (4.9)

If we look at Eqs. (4.1) and (4.4) it is not difficult to see that

ρ(1, v) = C11 + C12exp

{

− (λ + µ)2

f(λ − µ)
v

}

,

ρ(2, v) = C21 + C22exp

{

− (λ + µ)2

f(λ − µ)
v

}

.

(4.10)
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Now, we can think again about the system with three customers. If we recall Eqs.
(3.8) and (3.9), and we evaluate them forN = 3. Then, we obtain

ρ(1, v) =
F

µ

∂

∂v
ρ(0, v) +

3λ

µ
ρ(0, v) (4.11)

and

ρ(n, v) =
F − (n − 1)f

nµ

∂

∂v
ρ(n − 1, v) +

(4− n)λ + (n − 1)µ

nµ
ρ(n − 1, v)

−(5− n)λ

nµ
ρ(n − 2, v) (4.12)

for 1 < n ≤ N . Then we may evaluate this equation forn = 2 andn = 3 giving

ρ(2, v) =
(F − f)

2µ

∂

∂v
ρ(1, v) +

2λ + µ

2µ
ρ(1, v) +

3λ

2µ
ρ(0, v) (4.13)

and

ρ(3, v) =
(F − 2f)

3µ

∂

∂v
ρ(2, v) +

λ + 2µ

3µ
ρ(2, v) +

2λ

3µ
ρ(1, v). (4.14)

It is not difficult to prove that, as an extension of Eq. (2.26), for the two-customer
system, the following equality holds for the three-customer system

Fρ(0, v) + (F − f)ρ(1, v) + (F − 2f)ρ(2, v) + (F − 3f)ρ(3, v) = 0. (4.15)

Now, we can use expressions (4.11), (4.13) and (4.14) in Eq. (4.15) just as in the
case for a two-customer system and we can obtain an expression for ρ(0, v). If we use
the condition

F =
3fλ

λ + µ
, (4.16)

which resembles condition (4.7), then we can express Eq. (4.15) in the following form:

f2(2λ−µ)(λ−2µ)
∂3

∂v3ρ(0, v)+4f(λ−µ)(λ+µ)2 ∂2

∂v2ρ(0, v)+2(λ+µ)4 ∂

∂v
ρ(0, v) = 0.

Eq. (4.16) can be constructed by makingF equal to the expected average demand
of the three-customer system in the same way we constructed Eq. (4.7) for the two-
customer system. Also, we may find Eq. (4.16) as a condition toeliminate one of the
roots in the equation forρ(0, v), just as we found Eq. (4.7). Conditions like these are
present ahead in equations for systems with a larger number of customers.

It is not difficult to see that the solution for differential equation (4.17) is of the
following manner:
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ρ(0, v) = C01 + C02 exp

{

−(2λ − 2µ +
√

2λµ)(λ + µ)2

(2λ − µ)(λ − 2µ)f
v

}

+C03 exp

{

−(2λ − 2µ −
√

2λµ)(λ + µ)2

(2λ − µ)(λ − 2µ)f
v

}

. (4.17)

Therefore, solutions forρ(1, v), ρ(2, v) andρ(3, v) take the general form ofρ(0, v)

ρ(i, v) = Ci1 + Ci2 exp

{

−(2λ − 2µ +
√

2λµ)(λ + µ)2

(2λ − µ)(λ − 2µ)f
v

}

+Ci3 exp

{

−(2λ − 2µ −
√

2λµ)(λ + µ)2

(2λ − µ)(λ − 2µ)f
v

}

, (4.18)

for i = 0, 1, 2, 3.
Let us focus on equations forρ(0, v), which lead to the general form of the rest of

the continuous part of the stationary distribution.
We can use Eqs. (3.8), (3.9) along with theN -general form equation

N
∑

n=0

(F − nf)ρ(n, v) = 0, (4.19)

that comes from the generalization of Eqs. (2.26) and (4.15), and the condition

F =
Nfλ

λ + µ
, (4.20)

that comes from the generalization of conditions (4.7) and (4.16), to find the set of
equations forN = 1, 4, 5, 6, 7, 8 just as it is shown in Table 1.

If we look at the equations in Table 1, it is not difficult to realize the pattern govern-
ing them. It can be seen that there is a difference between equations for even and odd
N according to factor

(

∂

∂v
+

(λ + µ)2

(λ − µ)f

)

. (4.21)

The rest of the equations follow the same pattern for everyN . Then, we can write a
tentative general equation for a system with anyN > 2 customers.

For oddN > 2 we may say that
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N=1
∂

∂v
ρ(0, v) = 0

N=2

(

∂

∂v
+

(λ + µ)2

(λ − µ)f

)

∂

∂v
ρ(0, v) = 0

N=3

(

f2(2λ − µ)(λ − 2µ)
∂2

∂v2 + 4f(λ − µ)(λ + µ)2 ∂

∂v
+ 2(λ + µ)4

)

× ∂

∂v
ρ(0, v) = 0

N=4

(

f2(3λ − µ)(λ − 3µ)
∂2

∂v2 + 6f(λ − µ)(λ + µ)2 ∂

∂v
+ 3(λ + µ)4

)

×
(

∂

∂v
+

(λ + µ)2

(λ − µ)f

)

∂

∂v
ρ(0, v) = 0

N=5

(

f2(4λ − µ)(λ − 4µ)
∂2

∂v2 + 8f(λ − µ)(λ + µ)2 ∂

∂v
+ 4(λ + µ)4

)

×
(

f2(3λ − 2µ)(2λ − 3µ)
∂2

∂v2 + 12f(λ − µ)(λ + µ)2 ∂

∂v
+ 6(λ + µ)4

)

× ∂

∂v
ρ(0, v) = 0

N=6

(

f2(5λ − µ)(λ − 5µ)
∂2

∂v2 + 10f(λ − µ)(λ + µ)2 ∂

∂v
+ 5(λ + µ)4

)

×
(

f2(4λ − 2µ)(2λ − 4µ)
∂2

∂v2 + 16f(λ − µ)(λ + µ)2 ∂

∂v
+ 8(λ + µ)4

)

×
(

∂

∂v
+

(λ + µ)2

(λ − µ)f

)

∂

∂v
ρ(0, v) = 0

N=7

(

f2(6λ − µ)(λ − 6µ)
∂2

∂v2 + 12f(λ − µ)(λ + µ)2 ∂

∂v
+ 6(λ + µ)4

)

×
(

f2(5λ − 2µ)(2λ − 5µ)
∂2

∂v2 + 20f(λ − µ)(λ + µ)2 ∂

∂v
+ 10(λ + µ)4

)

×
(

f2(4λ − 3µ)(3λ − 4µ)
∂2

∂v2 + 24f(λ − µ)(λ + µ)2 ∂

∂v
+ 12(λ + µ)4

)

× ∂

∂v
ρ(0, v) = 0

N=8

(

f2(7λ − µ)(λ − 7µ)
∂2

∂v2 + 14f(λ − µ)(λ + µ)2 ∂

∂v
+ 7(λ + µ)4

)

×
(

f2(6λ − 2µ)(2λ − 6µ)
∂2

∂v2 + 24f(λ − µ)(λ + µ)2 ∂

∂v
+ 12(λ + µ)4

)

×
(

f2(5λ − 3µ)(3λ − 5µ)
∂2

∂v2 + 30f(λ − µ)(λ + µ)2 ∂

∂v
+ 15(λ + µ)4

)

×
(

∂

∂v
+

(λ + µ)2

(λ − µ)f

)

∂

∂v
ρ(0, v) = 0

Table 1. ρ(0, v) equations forN = 1, 2, 3, 4, 5, 6, 7, 8
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(

(N−1)/2
∏

n=1

(

f2((N − n)λ − nµ)(nλ − (N − n)µ)
∂2

∂v2

+2(N − n)nf(λ − µ)(λ + µ)2 ∂

∂v
(4.22)

+(N − n)n(λ + µ)4)
)

∂

∂v
ρ(0, v) = 0.

For evenN > 2 we may say that

(

(N/2)−1
∏

n=1

(

f2((N − n)λ − nµ)(nλ − (N − n)µ)
∂2

∂v2 (4.23)

+2(N − n)nf(λ − µ)(λ + µ)2 ∂

∂v
+ (N − n)n(λ + µ)4)

)

×
(

∂

∂v
+

(λ + µ)2

(λ − µ)f

)

∂

∂v
ρ(0, v) = 0.

Now we can proceed to find a general solution for (4.22) and (4.23). As it can be
seen, equations in Table 1 are factored in second order polynomials, therefore it is not
difficult to find their roots. We obtain the general solutionsas follows:

For oddN > 2,

ρ(i, v) = Ci,0 +

(N−1)/2
∑

n=1

Ci,n

×exp







−

(

(N − n)n(λ − µ) + (N − 2n)
√

(N − n)nλµ
)

(λ + µ)2

((N − n)λ − nµ)(nλ − (N − n)µ)f
v







+

(N−1)/2
∑

m=1

Ci,N−m (4.24)

×exp







−

(

(N − m)m(λ − µ) − (N − 2m)
√

(N − m)mλµ
)

(λ + µ)2

((N − m)λ − mµ)(mλ − (N − m)µ)f
v







.

For evenN ≥ 2,
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ρ(i, v) = Ci,0 + Ci,N/2 exp

{

− (λ + µ)2

(λ − µ)f
v

}

+

(N/2)−1
∑

n=1

Ci,n

×exp







−

(

(N − n)n(λ − µ) + (N − 2n)
√

(N − n)nλµ
)

(λ + µ)2

((N − n)λ − nµ)(nλ − (N − n)µ)f
v







+

(N/2)−1
∑

m=1

Ci,N−m (4.25)

×exp







−

(

(N − m)m(λ − µ) − (N − 2m)
√

(N − m)mλµ
)

(λ + µ)2

((N − m)λ − mµ)(mλ − (N − m)µ)f
v







.

As we know, these solutions are not only valid forρ(0, v), but also for the general
form of the rest of the stationary distribution. Nevertheless we may just consider the
constants fromρ(0, v) asC0,n ⇔ Cn, n ∈ {0, 1, . . . ,N − 1} in order to simplify the
solution and we may express the rest of the distributionsρ(i, v) in terms ofρ(0, v)
using Eqs. (3.8) and (3.9).

The analysis of the properties of the processξ(N)(t) leads up to the conclusion
that, for the caseaf < F < bf , the stationary distributionρ has atoms at the points
(b, 0), (b + 1, 0), . . . , (N, 0), and at the points(0, V ), (1, V ), . . . , (a, V ). We denote
them asρ[b, 0], ρ[b + 1, 0], . . . , ρ[N, 0] andρ[0, V ], ρ[1, V ], . . . , ρ[a, V ].

We get from the discrete part of Eq. (3.4) the following expressions.





























F 0 0 . . . 0 0

0 F − f 0 . . . 0 0

0 0 F − 2f . . . 0 0
...

...
...

...
...

...

0 0 0 . . . 0 0

0 0 0 . . . F − (N − 1)f 0

0 0 0 . . . 0 F − Nf

























































ρ(0, 0+)

ρ(1, 0+)

ρ(2, 0+)
...

ρ(N − 2, 0+)

ρ(N − 1, 0+)

ρ(N, 0+)





























= Q(N)T
R(0), (4.26)
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whereR(0) =





























0
...

0

ρ[b, 0]

ρ[b + 1, 0]
...

ρ[N, 0]





























. Also,





























F 0 0 . . . 0 0

0 F − f 0 . . . 0 0

0 0 F − 2f . . . 0 0
...

...
...

...
...

...

0 0 0 . . . 0 0

0 0 0 . . . F − (N − 1)f 0

0 0 0 . . . 0 F − Nf

























































ρ(0, V −)

ρ(1, V −)

ρ(2, V −)
...

ρ(N − 2, V −)

ρ(N − 1, V −)

ρ(N,V −)





























= −Q(N)T
R(V ), (4.27)

whereR(V ) =





























ρ[0, V ]

ρ[1, V ]
...

ρ[a, V ]

0
...

0





























.

If we useb = a + 1, that is,a < F < a + 1 is easy to see from Eq. (4.26) that























ρ(0, 0+) = 0,

ρ(1, 0+) = 0,
...

ρ(a − 1, 0+) = 0.

(4.28)

Also, from Eq. (4.27) we obtain that



Stationary probability distribution 203























ρ(a + 2, V −) = 0,

ρ(a + 3, V −) = 0,
...

ρ(N,V −) = 0.

(4.29)

It is not difficult to use Eqs. (4.28) and (4.29) to obtain expressions for the constants
Cn, n ∈ {1, 2, . . . ,N − 1}.

Also, by using expressions in Eq. (4.26) not equal to zero we may obtain expres-
sions for the atoms inR(0) in terms of the continuous partρ(θ, 0+). In the same
way we may use (4.27) to obtain expressions for the atoms inR(V ) in terms of the
continuous partρ(θ, V −).

After that it is not difficult to calculate constantC0 using the normalization condition

∫

W
(N)

ρ(w) dw = 1.

That completes the calculation of the stationary distribution ρ of the system.

5. Conclusions

It is possible to use aphase merging algorithm to reduce a semi-Markov process to an
approximated Markov process. Once this is done, it is possible to find some closed-
form expression for the stationary probability distribution of the system.

We have found that the problem of the single buffer withN equal customers con-
nected to it has a general solution for the stationary probability distribution of the
amount of stored information. We found this general solution considering only one
condition that could be considered as an optimizing condition. We constructed this
condition so that the stream of information is equal to the expected average demand
of the system, and it is also present as one of the roots of the general equation to be
solved. By having this condition, the general equation is simplified so that the solution
may present one less exponential term.

Even though it was mentioned as part of the system functionality that the main
streamF turnsoff when the buffer reaches its maximum capacity, the results presented
here also match to those of a system with an overflowed buffer.That is, a system where
the main streamF is alwayson and when the buffer reaches its maximum capacity
some data may be thrown away.
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