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In this article, we study properties of hyperholomorphic functions on commutative
finite-dimensional algebras. The Cauchy—Riemann type conditions for hyperholomorphic
functions is investigated. We prove that a hyperholomorphic function on a commutative finite-
dimensional algebra can be expanded in a Taylor series. We also present a technique for
computing zeros of polynomials in commutative algebras.
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1. Introduction

The development of hyperholomorphic function analysis has renewed interest in
mathematics and physics because of fruitful applications. One of the most
popular hypercomplex analysis is quaternionic analysis; however, noncommutativity
of quaternion algebra causes many intractable problems, for instance, the problem
of expansion of a hyperholomorphic quaternionic function in a Taylor series. In this
regard, hyperholomorphic analysis on commutative unitary algebras is a natural
extension of complex analysis, despite the fact that in these algebras we have the
problem of zero divisors. There are many commutative generalizations of complex
numbers, say, hyperbolic numbers, bicomplex algebra etc. [1]. In [2], it is proved
that hyperholomorphic functions on bicomplex algebra can be expanded in a
Taylor series. In this article, we generalize this result to any finite-dimensional
commutative algebra.
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2. Differentiation in finite-dimensional commutative algebra

Let A be a finite-dimensional commutative unitary algebra over K = R (or C), a set of
vectors €, ei,...,e, be a basis of A, and ¢, be algebra identity. Consider a function
f: A — A of the following form

1) =Y (@),
k=0

where ;. (X) = ui(xo, X1, . .., X,) are real (or complex) functions of 7+ 1 arguments.

Definition 2.1 f(fc) is called A-differentiable at a point Xo € A if there exists the
function f":A — A such that for any 71 € A

. f(%o+eh) —f (3
hf’(fco>=“f%f(xo 8? f(xo)’ @.1)

where f/ doesn’t depend on I
A functlonfls said to be A-holomorphic lffIS A-differentiable at every point of A.

THEOREM 2.2 A function f(x) =Y o ektr(X) A-holomorphic if and only if there exists
the function f':A — A such that for all k=0,1,...,n, and VX € A

Y 4 C 8 G
af (%) = fim K —/( ). 2.2)
e—0 &
where ]7'/ does not depend on éy.
Proof Suppose that (2.2) is fulfilled, then it is easily verified that
7 7z n
/= llmf(x +edo) /) =) & %,
e—0 & =0 9x¢
k=
. X+ee) —f(xX "9 R L oug
erf = llmf( 1) U = e?kﬂ =e ey uk»
e £ = ax prarr 9x¢ (2.3)
L= >\ n . 9 . . . 9
enf, =1 f(x + €€n) f(X) = k ul =&y kﬂ~
€ = per R

Consider & = Y"_ hé. It follows from equation (2.3) that

- o ouy
hof =ho ) ex7—,
kgb 0x
5 2 noL Ou
he f =h e —,
e f’ 1k§0 ™
auk

hnenf =hy, Z € ax.
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This implies that

hozek%‘i‘hlze + +hnzekauk

n

_ limf(xo + 8/1) —f(xo) |

e—0 &

Furthermore, it follows from equation (2.3) that

hozek +h1 Zek_+ +hnzek gzk
k=0 n

ou L - O
_hozf k+hlelzek_+ I

k=0 8)(0
Therefore, for every hed
o g F (ot o) —F )
—o k 9x o sl—>0 &
or
F=ya (2.4)
= kT - .
=0 3X0
|
By using equation (2.3), we have
no o Quy L, ouy,
k" —=¢€ €k s
=0 x| : ; ax
noo Buk . n . auk
k =e ) er—
k=0  0x2 = oxo (2.5)
no 3 R n R 9
IR S
k=0 ax,, =0 X0

Equation (2.5) will be called the Cauchy-Riemann type conditions. It follows from
Theorem 1.2 that if /(X) = Y }_, exux(X) satisfies (1.5) then f'is A-holomorphic.

THEOREM 2.3 Iffls A-holomorphic and . € C°° k=1,...,n, then for all [ >1 there
exists fU) which is A-holomorphic andfw = i ek(aluk/axé).

Proof It is easy to see that functions u) = (auk/afco) k=1,...,n, satisfy conditions
(2.5) since ux € C*°. So f’ is A-holomorphic and f/ > o r(Pur/dx3) (see (2 4)).
In complete analogy with this we can show that ﬂ’) is A-holomorphic and f(b =
> o ex(dui/9xh). |
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THEOREM 2.4 Supposefzs an A-holomorphic function with uy € C*,k =0,1,...,n and
for fixed 3,1 € A there exists K>0 such that |fOhI|K' for [=1,2,.... Then [ can be
expanded in a Taylor series

f(?cw?) 7(®) f()h+ f(x)h2

Proof Consider  the function ﬁ(t) :f(fc—i—l/j).ﬁ It is easily verified that
d'F0)/di = f(x)hi Taking into account that ||fh|| K’ for >/=1,2,..., it follows
that the function F(7) can be expanded in a Taylor series as follows

1d'F(0) J
de

() = F(0) + Z

Putting 1=1, we get (2.6). |

In the particular case where a bicomplex (or hyperbolic) function is hyperholo-
morphic and satisfies Theorem 2.4, it can be expanded in a Taylor series (2.6) [1,2].

3. Zeros of polynomials in commutative algebras

Since on numerous occasions A-holomorphic function can be approximated by its
Taylor polynomial of finite degree, zeros of such functions might be studied if we can
calculate zeros of polynomials. Let p,(w)=a,w" 4+ a,_w" ' +---+ay be a poly-
nomial in the algebra A. Our purpose is to investigate the structure of the set of zeros of
the equation

Pm(W) =0. (31)

THEOREM 3.1 If A has n+1 non trivial idempotents iy, iy, ..., 1, such that i,i,=0 for
p#r, and Y | iy =1, then equation 3.1 can be reduced to the system of polynomial
equations in the field K.

Proof  As a preliminary to the proof of the theorem, we shall prove several auxiliary

lemmas. [ |
LEmMMA 3.2 Idempotents iy, iy,...,1i, are linearly independent vectors.
Proof Suppose the contrary, then there exist ko, k1, ..., k, € K such that ZZ:O lkpl > 0

and Z;zo kyi, = 0. By using the properties of idempotents, we have k,i,=0 for all
p=0,1,...,n, but this is impossible. Indeed, if k,i,=0 for k,#0, then
ke, (epiy) = iy = 0. [ |

Denote by I; = {aijJa € A} the principal ideal generated by i;, /=0, 1, ..., n. It follows
from Theorem 2.3 that the algebra A can be decomposed in the direct sum (the Pierce
decomposition): A =1y S, H--- & I,.

LemMA 3.3 If a € I; then there exists k € K such that a=ki, i.e., the ideal I, can be
represented in the following form I, = {kijk € K}.
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Proof For a € I; there exists b € A such that a=bi,. Since iy,i,...,i, are linearly

independent, there exist ko, ki,....,k, € K  such that b= Z;=0 kpip.

Thus, a = bi[ = (Z;=O k,,i,,)i] = k]i/. |
Let us consider decompositions

a=a” +---+d" r=0,1,..m,

3.2
w = Wy + e + Wi, ( )

where aff’),wpelp. Plugging (3.2) into (3.1), we obtain the following system
of polynomial equations

aﬁg)wg + a$11w81’1 4+ 4 af)o) =0,

dly Wi+ a, L wp ay) = 0, 53)

awr 4 al Wt al) = 0.

It follows from Lemma 1.3 that ¢! = kWi, w" = xi,, where k¥, x € K.
Therefore, taking i, out of the expression aWw” +a¥ w1 4... 44l =
0,s=0,...,n, the system (3.3) can be reduced to the system of n+ 1 polynomial

equations in K with coefficients k. [ |

Example 3.4 Let A be the bicomplex algebra, i.e., A = {cy+ eci|co, ¢c; € C}, where
¢*=1and A is commutative. The bicomplex algebra has two idempotents iy = (1 + ¢)/2
and i; = (1 —e)/2. It is easy to see that ipiy =0 and iy+i;=1. Thus, in this case
polynomial equation (3.1) can be reduced to the system of two polynomial equations
in C [3]. Many properties of quarternionic polynomials have been presented in [4].

Example 3.5 Suppose A is the commutative algebra of the following form
A = {ag + ea, + far + gas|ay € R}, where ¢*>=f=g>=1 and efg=1. This algebra has
four idempotents: iy =(1+e+f+g)/4, ii=1—e—f+g)/4, b=(1+e—f—g)/4,
iz=(1—e+f—g)/4. It is easy to see that i ;=0 for k#/ and iy+i+i+i3=1.
Therefore, in this case polynomial equation (3.1) can be reduced to the system of four
polynomial equations in R.
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