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Abstract. It is stated equicontinuity and normality of families RΦ of the so-called ring Q(x)-
homeomorphisms with integral constraints of the type

´
Φ(Q(x)) dm(x) < ∞ in a domain D ⊂ Rn,

n ≥ 2. It is shown that the found conditions on the function Φ are not only sufficient but also
necessary for equicontinuity and normality of such families of mappings. It is also given applications
of these results to families of mappings in the Sobolev class W 1,n

loc .

1. Introduction

Here dm(x) corresponds to the Lebesgue measure in a domain D in Rn, n ≥ 2.
In the theory of mappings called quasiconformal in the mean, conditions of the

type

(1.1)
ˆ

D

Φ(Q(x)) dm(x) < ∞

are standard for various characteristics Q of these mappings, see e.g. [1], [3], [7], [8],
[11]–[15], [18], [19], [21] and [25]. The study of classes with the integral conditions
(1.1) is also actual in the connection with the recent development of the theory of
degenerate Beltrami equations and the so-called mappings with finite distortion, see
e.g. related references in the monographs [9] and [17].

In the present paper we study the problems of equicontinuity and normality for
wide classes of the so-called ring Q(x)-homeomorphisms with the condition (1.1) and
give the corresponding applications to Sobolev’s classes.

Recall that the (conformal) modulus of a family Γ of curves γ in Rn, n ≥ 2, is
the quantity

M(Γ) = inf
ρ∈adm Γ

ˆ

Rn

ρn(x) dm(x)

where a Borel function ρ : Rn → [0,∞] is admissible for Γ, write ρ ∈ adm Γ, if
ˆ

γ

ρ(x) |dx| ≥ 1 ∀ γ ∈ Γ.
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One of the equivalent geometric definitions of K-quasiconformal mappings f with
K ∈ [1,∞) given in a domain D in Rn, n ≥ 2, is reduced to the inequality

(1.2) M(fΓ) ≤ K M(Γ)

that holds for an arbitrary family Γ of curves γ in the domain D. Similarly, given
a domain D in Rn, n ≥ 2, and a (Lebesgue) measurable function Q : D → [1,∞], a
homeomorphism f : D → Rn, Rn = Rn ∪ {∞}, is called Q(x)-homeomorphism if

(1.3) M(fΓ) ≤
ˆ

D

Q(x) · ρn(x) dm(x)

for every family Γ of curves γ in D and every ρ ∈ adm Γ, see e.g. [17].
In the case Q(x) ≤ K a.e., we again come to the inequality (1.2). In the general

case, the latter inequality means that the conformal modulus of the family fΓ is esti-
mated by the modulus MQ of Γ with the weight Q, M(fΓ) ≤ MQ(Γ), see e.g. [2]. The
inequality of the type (1.3) was first stated by Lehto and Virtanen for quasiconformal
mappings in the plane, see Section V.6.3 in [16]. The relation of the type (1.3) was
also stated by Bishop, Gutlyanskii, Martio and Vuorinen in [4] for quasiconformal
mappings in space where Q(x) is equal to KI(x, f).

Recall that the inner dilatation of a mapping f : D → Rn, n ≥ 2, at a point
x ∈ D of differentiability for f is

KI(x, f) =
|J(x, f)|
l (f ′(x))n

if J(x, f) 6= 0, KI(x, f) = 1 if f ′(x) = 0, and KI(x, f) = ∞ at the rest points, where
J(x, f) is the Jacobian of f at x and

l (f ′(x)) = inf
h∈Rn\{0}

|f ′(x)h|
|h| .

The following notion generalizes and localizes the above notion of a Q-homeomor-
phism. It is motivated by the ring definition of Gehring for quasiconformal mappings,
see e.g. [6], introduced first in the plane, see [23], and extended later on to the space
case in [22], see also Chapters 7 and 11 in [17]. Let E, F ⊂ Rn be arbitrary sets.
Denote by Γ(E, F, D) a family of all curves γ : [a, b] → Rn joining E and F in D, i.e.
γ(a) ∈ E, γ(b) ∈ F and γ(t) ∈ D as t ∈ (a, b).

Given a domain D in Rn, n ≥ 2, a (Lebesgue) measurable function Q : D →
[0,∞], x0 ∈ D, a homeomorphism f : D → Rn is said to be a ring Q-homeomorphism
at the point x0 if

(1.4) M (f (Γ (S1, S2, R))) ≤
ˆ

R

Q(x) · ηn(|x− x0|) dm(x)

for every ring R = R(r1, r2, x0) = {x ∈ Rn : r1 < |x − x0| < r2} and the spheres
Si = S(x0, ri) = {x ∈ Rn : |x − x0| = ri}, where 0 < r1 < r2 < r0 := dist(x0, ∂D),
and every measurable function η : (r1, r2) → [0,∞] such that

r2ˆ

r1

η(r) dr ≥ 1.
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Moreover, f is called a ring Q-homeomorphism in the domain D if f is a ring Q-
homeomorphism at every point x0 ∈ D. Note that, in particular, homeomorphisms
f : D → Rn in the class W 1,n

loc with KI(x, f) ∈ L1
loc are ring Q-homeomorphisms with

Q(x) = KI(x, f), see e.g. Theorem 4.1 in [17].
The notion of ring Q-homeomorphism can be extended in the natural way to ∞.

More precisely, under ∞ ∈ D ⊆ Rn a homeomorphism f : D → Rn is called a ring
Q-homeomorphism at ∞ if the mapping f̃ = f

(
x
|x|2

)
is a ring Q′-homeomorphism

at the origin with Q′(x) = Q
(

x
|x|2

)
. In other words, a mapping f : D → Rn is a ring

Q-homeomorphism at ∞ iff

M (f (Γ (S(R1), S(R2), R))) ≤
ˆ

R

Q(y) · ηn (|y|) dm(y)

holds for every ring R = R(R1, R2, 0) = {y ∈ Rn : R1 < |y| < R2} in D with
0 < R1 < R2 < ∞, S(Ri) = {x ∈ Rn : |x| = Ri} and for every measurable function

η : (R1, R2) → [0,∞] with
R2´
R1

η(r) dr ≥ 1.

2. Preliminaries

Let (X, d) and (X ′, d ′) be metric spaces with distances d and d ′, respectively.
A family F of continuous mappings from X into X ′ is said to be a normal if every
sequence of mappings fm in F has a subsequence fmk

converging to a continuous
mapping f : X → X ′ uniformly on each compact set C ⊂ X. Normality is closely
related to the following notion. A family F of mappings f : X → X ′ is said to
be equicontinuous at a point x0 ∈ X if for every ε > 0 there is δ > 0 such that
d ′ (f(x), f(x0)) < ε for all f ∈ F and x ∈ X with d(x, x0) < δ. The family F is called
equicontinuous if F is equicontinuous at every point x0 ∈ X. The following version
of the Arzela–Ascoli theorem will be useful later on, see e.g. Section 20.4 in [26].

Proposition 2.1. Let (X, d) be a separable metric space and let (X ′, d ′) be a
compact metric space. Then a family F of mappings f : X → X ′ is normal if and
only if F is equicontinuous.

In particular, Proposition 2.1 holds in the case when X = Rn with the usual
distance and X ′ is the extended space Rn = Rn ∪{∞} (compact) with the spherical
metric. Recall that the spherical (chordal) metric h(x, y) in Rn is equal to |π(x) −
π(y)| where π is the stereographic projection of Rn on the sphere Sn(1

2
en+1,

1
2
) in

Rn+1, i.e., in the explicit form,

h(x,∞) =
1√

1 + |x|2
, h(x, y) =

|x− y|√
1 + |x|2

√
1 + |y|2

, x 6= ∞ 6= y.

The spherical diameter of a set E in Rn is the quantity h(E) = sup
x1,x2∈E

h(x1, x2).

Let RQ,∆(D) be the class of all ring Q-homeomorphisms f in a domain D ⊆ Rn,
n ≥ 2, such that h

(
Rn\f(D)

) ≥ ∆ > 0. The following distortion estimate under
Q-homeomorphisms can be found in [22], see also Theorem 7.3 in [17].
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Proposition 2.2. Let ∆ > 0, Q : D → [0,∞] be a measurable function. Then

(2.1) h (f(x), f(x0)) ≤ αn

∆
exp




−

ε(x0)ˆ

|x−x0|

dr

rq
1

n−1
x0 (r)





for every f ∈ RQ,∆(D) and x ∈ B(x0, ε(x0)), ε(x0) < dist(x0, ∂D), where αn > 0
depends only on n and qx0(r) is the mean value of the function Q over the sphere
|z − x0| = r.

For every non-decreasing function Φ: [0,∞] → [0,∞], the inverse function Φ−1 :
[0,∞] → [0,∞] can be well defined by setting

(2.2) Φ−1(τ) = inf
Φ(t)≥τ

t.

As usual, here inf is equal to ∞ if the set of t ∈ [0,∞] such that Φ(t) ≥ τ is empty.
Note that the function Φ−1 is non-decreasing, too.

Remark 2.1. Immediately by the definition it is evident that

(2.3) Φ−1(Φ(t)) ≤ t ∀ t ∈ [0,∞]

with the equality in (2.3) except intervals of constancy of the function Φ(t).

Since the mapping t 7→ tp for every positive p is a sense-preserving homeomor-
phism [0,∞] onto [0,∞], we may rewrite Theorem 2.1 from [24] in the following
form which is more convenient for further applications. Here, in (2.5) and (2.6), we
complete the definition of integrals by ∞ if Φp(t) = ∞, correspondingly, Hp(t) = ∞
for all t ≥ T ∈ [0,∞). The integral in (2.6) is understood as the Lebesgue–Stieltjes
integral and the integrals in (2.5) and (2.7)–(2.10) as the ordinary Lebesgue integrals.

Proposition 2.3. Let Φ: [0,∞] → [0,∞] be a non-decreasing function. Set

(2.4) Hp(t) = log Φp(t), Φp(t) = Φ (tp) , p ∈ (0,∞).

Then the equality

(2.5)
∞̂

δ

H ′
p(t)

dt

t
= ∞

implies the equality

(2.6)
∞̂

δ

dHp(t)

t
= ∞

and (2.6) is equivalent to

(2.7)
∞̂

δ

Hp(t)
dt

t2
= ∞

for some δ > 0, and (2.7) is equivalent to every of the equalities:

(2.8)
∆̂

0

Hp

(
1

t

)
dt = ∞
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for some ∆ > 0,

(2.9)
∞̂

δ∗

dη

H−1
p (η)

= ∞

for some δ∗ > H(+0),

(2.10)
∞̂

δ∗

dτ

τΦ−1
p (τ)

= ∞

for some δ∗ > Φ(+0).
Moreover, (2.5) is equivalent to (2.6) and hence (2.5)–(2.10) are equivalent each

to other if Φ is in addition absolutely continuous. In particular, all the conditions
(2.5)–(2.10) are equivalent if Φ is convex and non-decreasing.

It is easy to see that conditions (2.5)–(2.10) become weaker as p increases, see
e.g. (2.7). It is necessary to give one more explanation. From the right hand sides
in the conditions (2.5)–(2.10) we have in mind +∞. If Φp(t) = 0 for t ∈ [0, t∗],
then Hp(t) = −∞ for t ∈ [0, t∗] and we complete the definition H ′

p(t) = 0 for
t ∈ [0, t∗]. Note, the conditions (2.6) and (2.7) exclude that t∗ belongs to the interval
of integrability because in the contrary case the left hand sides in (2.6) and (2.7)
are either equal to −∞ or indeterminate. Hence we may assume in (2.5)–(2.8) that
δ > t0, correspondingly, ∆ < 1/t0 where t0 : = sup

Φp(t)=0

t, t0 = 0 if Φp(0) > 0.

3. The main lemma and its corollaries

Recall that a function Φ: [0,∞] → [0,∞] is called convex if

Φ(λt1 + (1− λ)t2) ≤ λΦ(t1) + (1− λ)Φ(t2)

for all t1 and t2 ∈ [0,∞] and λ ∈ [0, 1]. In what follows, Rn(ε), ε ∈ (0, 1), denotes
the ring in the space Rn, n ≥ 2,

(3.1) Rn(ε) = {x ∈ Rn : ε < |x| < 1}.
The following statement is a generalization and strengthening of Lemma 3.1 from
[24].

Lemma 3.1. Let Q : Bn → [0,∞] be a measurable function and let Φ: [0,∞] →
(0,∞] be a non-decreasing convex function. Suppose that the mean value M(ε) of
the function Φ ◦Q over the ring Rn(ε), ε ∈ (0, 1), is finite. Then

(3.2)
1ˆ

ε

dr

rq
1
p (r)

≥ 1

n

M(ε)
εnˆ

eM(ε)

dτ

τ [Φ−1(τ)]
1
p

∀ p ∈ (0,∞)

where q(r) is the average of the function Q(x) over the sphere |x| = r.

Remark 3.1. Note that (3.2) is equivalent for each p ∈ (0,∞) to the inequality

(3.3)
1ˆ

ε

dr

rq
1
p (r)

≥ 1

n

M(ε)
εnˆ

eM(ε)

dτ

τΦ−1
p (τ)

, Φp(t) := Φ(tp).



236 Vladimir Ryazanov and Evgenĭı Sevost’yanov

Note also that M(ε) converges as ε → 0 to the average of Φ ◦ Q over the unit ball
Bn.

Proof. Denote t∗ = sup
Φp(t)=τ0

t, τ0 = Φ(0). Setting Hp(t) = log Φp(t), we see that

H−1
p (η) = Φ−1

p (eη), Φ−1
p (τ) = H−1

p (log τ). Thus, we obtain that

q
1
p (r) = H−1

p

(
log

h(r)

rn

)
= H−1

p

(
n log

1

r
+ log h(r)

)
∀ r ∈ R∗

where h(r) := rnΦ (q(r)) = rnΦp

(
q

1
p (r)

)
and R∗ = {r ∈ (ε, 1) : q

1
p (r) > t∗}. Then

also

(3.4) q
1
p (e−s) = H−1

p

(
ns + log h(e−s)

) ∀ s ∈ S∗

where S∗ = {s ∈ (0, log 1
ε
) : q

1
p (e−s) > t∗}.

Now, by the Jensen inequality and convexity of Φ we have that
log 1

εˆ

0

h(e−s) ds =

1ˆ

ε

h(r)
dr

r
=

1ˆ

ε

Φ(q(r))rn−1dr ≤
1ˆ

ε



 

S(r)

Φ(Q(x)) dA


 rn−1dr

≤ Ωn

ωn−1

·M(ε) =
1

n
·M(ε)

where we use the mean value of the function Φ ◦ Q over the sphere S(r) = {x ∈
Rn : |x| = r} with respect to the area measure. As usual, here Ωn and ωn−1 is the
volume of the unit ball and the area of the unit sphere in Rn, correspondingly. Then
arguing by contradiction it is easy to see that

(3.5) |T | =
ˆ

T

ds ≤ 1

n

where T = {s ∈ (0, log 1
ε
) : h(e−s) > M(ε)}. Next, let us show that

(3.6) q
1
p
(
e−s

) ≤ H−1
p (ns + log M(ε)) ∀ s ∈

(
0, log

1

ε

)
\ T∗

where T∗ = T ∩ S∗. Note that
(
0, log 1

ε

) \ T∗ =
[(

0, log 1
ε

) \ S∗
] ∪ [(

0, log 1
ε

) \ T
]

=[(
0, log 1

ε

) \ S∗
]∪ [S∗ \ T ]. The inequality (3.6) holds for s ∈ S∗ \ T by (3.4) because

H−1
p is a non-decreasing function. Note also that ensM(ε) > Φ(0) = τ0 for all

s ∈ (0, log 1/ε) and then t∗ < Φ−1
p (ensM(ε)) = H−1

p (ns + log M(ε)) for all s ∈
(0, log 1/ε). Consequently, (3.6) holds for s ∈ (0, log 1

ε
) \ S∗, too.

Since H−1
p is non-decreasing, we have by (3.5) and (3.6) that

1ˆ

ε

dr

rq
1
p (r)

=

log 1
εˆ

0

ds

q
1
p (e−s)

≥
ˆ

(0,log 1
ε)\T∗

ds

H−1
p (ns + ∆)

≥
log 1

εˆ

|T∗|

ds

H−1
p (ns + ∆)

≥
log 1

εˆ

1
n

ds

H−1
p (ns + ∆)

=
1

n

n log 1
ε
+∆ˆ

1+∆

dη

H−1
p (η)

(3.7)
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where ∆ = log M(ε). Note that 1 + ∆ = log eM(ε). Thus,

(3.8)
1ˆ

ε

dr

rq
1
p (r)

≥ 1

n

log
M(ε)

εnˆ

log eM(ε)

dη

H−1
p (η)

and, after the replacement η = log τ , we obtain (3.3) and hence (3.2). ¤

Corollary 3.1. Let Φ: [0,∞] → (0,∞] be a non-decreasing convex function,
Q : Bn → [0,∞] a measurable function, Q∗(x) = 1 if Q(x) < 1, and Q∗(x) = Q(x) if
Q(x) ≥ 1. Suppose that the mean M∗(ε) of the function Φ ◦Q over the ring Rn(ε),
ε ∈ (0, 1), is finite. Then

(3.9)
1ˆ

ε

dr

rq
λ
p (r)

≥ 1

n

M∗(ε)
εnˆ

eM∗(ε)

dτ

τ [Φ−1(τ)]
1
p

∀ λ ∈ (0, 1), p ∈ (0,∞),

where q(r) is the average of the function Q(x) over the sphere |x| = r.

Indeed, let q∗(r) be the average of the function Q∗(x) over the sphere |x| = r.

Then q(r) ≤ q∗(r) and, moreover, q∗(r) ≥ 1 for all r ∈ (0, 1). Thus, q
λ
p (r) ≤ q

λ
p
∗ (r) ≤

q
1
p
∗ (r) for all λ ∈ (0, 1), and hence by Lemma 3.1 applied to Q∗(x) we obtain (3.9).

Theorem 3.1. Let Q : Bn → [0,∞] be a measurable function such that

(3.10)
ˆ

Bn

Φ(Q(x)) dm(x) < ∞

where Φ: [0,∞] → [0,∞] is a non-decreasing convex function such that

(3.11)
∞̂

δ0

dτ

τ [Φ−1(τ)]
1
p

= ∞, p ∈ (0,∞),

for some δ0 > τ0 := Φ(0). Then

(3.12)
1ˆ

0

dr

rq
1
p (r)

= ∞

where q(r) is the average of the function Q(x) over the sphere |x| = r.

Remark 3.2. Since [Φ−1(τ)]
1
p = Φ−1

p (τ) where Φp(t) = Φ(tp), (3.11) implies
that

(3.13)
∞̂

δ

dτ

τΦ−1
p (τ)

= ∞ ∀ δ ∈ [0,∞),

but (3.13) for some δ ∈ [0,∞), generally speaking, does not imply (3.11). Indeed,
for δ ∈ [0, δ0), (3.11) evidently implies (3.13) and, for δ ∈ (δ0,∞), we have that

(3.14) 0 ≤
δˆ

δ0

dτ

τΦ−1
p (τ)

≤ 1

Φ−1
p (δ0)

log
δ

δ0

< ∞,
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because Φ−1
p is non-decreasing and Φ−1

p (δ0) > 0. Moreover, by the definition of the
inverse function Φ−1

p (τ) ≡ 0 for all τ ∈ [0, τ0], τ0 = Φp(0), and hence (3.13) for
δ ∈ [0, τ0), generally speaking, does not imply (3.11). If τ0 > 0, then

(3.15)
τ0ˆ

δ

dτ

τΦ−1
p (τ)

= ∞ ∀ δ ∈ [0, τ0).

However, (3.15) gives no information on the function Q(x) itself and, consequently,
(3.13) for δ < Φ(0) cannot imply (3.12) at all.

In view of (3.13), Theorem 3.1 follows immediately from Lemma 3.1.

Corollary 3.2. If Φ: [0,∞] → [0,∞] is a non-decreasing convex function and Q
satisfies the condition (3.10), then each of the conditions (2.5)–(2.10) for p ∈ (0,∞)
implies (3.12). Moreover, if in addition Φ(1) < ∞ or q(r) ≥ 1 on a subset of (0, 1) of
a positive measure, then each of the conditions (2.5)–(2.10) for p ∈ (0,∞) implies

(3.16)
1ˆ

0

dr

rq
λ
p (r)

= ∞ ∀ λ ∈ (0, 1)

and also

(3.17)
1ˆ

0

dr

rαq
β
p (r)

= ∞ ∀ α ≥ 1, β ∈ (0, α].

4. Sufficient conditions for equicontinuity

Let D be a fixed domain in the extended space Rn = Rn ∪ {∞}, n ≥ 2. Given a
function Φ: [0,∞] → [0,∞], M > 0, ∆ > 0, RΦ

M,∆ denotes the collection of all ring
Q(x)-homeomorphisms in D such that h

(
Rn \ f(D)

) ≥ ∆ and

(4.1)
ˆ

D

Φ (Q(x))
dm(x)

(1 + |x|2)n ≤ M.

Theorem 4.1. Let Φ: [0,∞] → [0,∞] be non-decreasing convex function. If

(4.2)
∞̂

δ0

dτ

τ [Φ−1(τ)]
1

n−1

= ∞

for some δ0 > τ0 := Φ(0), then the class RΦ
M,∆ is equicontinuous and, consequently,

forms a normal family of mappings for every M ∈ (0,∞) and ∆ ∈ (0, 1).

Remark 4.1. Note that the condition

(4.3)
ˆ

D

Φ (Q(x)) dm(x) ≤ M

implies (4.1). Thus, the condition (4.1) is more general than (4.3) and ring Q-
homeomorphisms satisfying (4.3) form a subclass of RΦ

M,∆. Conversely, if the domain
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D is bounded, then (4.1) implies the condition

(4.4)
ˆ

D

Φ (Q(x)) dm(x) ≤ M∗

where M∗ = M · (1 + δ2
∗) , δ∗ = sup

x∈D
|x|.

Proof. With no loss of generality we may assume that Φ(0) > 0. By Proposi-
tion 2.1 it is sufficient to show that mappings in RΦ

M,∆ are equicontinuous at every
point x0 ∈ D. If x0 6= ∞, then by the Proposition 2.2

(4.5) h (f(x), f(x0)) ≤ αn

∆
exp




−

ρˆ

|x−x0|

dr

rq
1

n−1
x0 (r)





for every fixed x ∈ B(x0, ρ) and every positive ρ = ρ(x0) < dist(x0, ∂D) where qx0(r)
is the mean value of Q(x) over the sphere |z − x0| = r and αn depends only on n.
After the replacement t = r/ρ, we have that the integral from the right hand side in
(4.5) is estimated by Lemma 3.1 in the following way

ρˆ

|x−x0|

dr

rq
1

n−1
x0 (r)

=

1ˆ

ε

dt

tq
1

n−1 (t)
≥ 1

n

M(ε)
εnˆ

eM(ε)

dτ

τ [Φ−1(τ)]
1

n−1

where ε = |x− x0|/ρ, q(t) = qx0(ρt) and

M(ε) =

 

R

Φ (Q(z)) dm(z) =
1

Ωnρn (1− εn)

ˆ

R

Φ (Q(z)) dm(z)

where R = {z ∈ Rn : |x− x0| < |z − x0| < ρ} is a ring centered at x0 and Ωn is the
volume of the unit ball Bn in Rn. Note that

M(ε) ≤ βn(x0)

Ωn(1− εn)

ˆ

R

Φ(Q(z))
dm(z)

(1 + |z|2)n

where βn(x0) = (1 + (ρ(x0) + |x0|)2)
n
/ρn(x0) because |z| ≤ |z − x0|+ |x0| ≤ ρ(x0) +

|x0|. Thus,
Φ(0) ≤ M(ε) ≤ 2βn(x0)

Ωn

M

if ε ≤ 1/ n
√

2 and, in particular, if ε ≤ 1/2. Consequently,

(4.6) h (f(x), f(x0)) ≤ αn

∆
exp




− 1

n

Φ(0)ρn(x0)
|x−x0|nˆ

λnβn(x0)M

dτ

τ [Φ−1(r)]
1

n−1





for all x such that |x − x0| < ρ(x0)/2 where λn = 2e/Ωn depends only on n. Thus,
f ∈ RΦ

M,∆ are equicontinuous at the point x0. The case x0 = ∞ is reduced to x0 = 0
by the inversion with respect to the unit sphere |x| = 1. ¤

Corollary 4.1. Each of the conditions (2.5)–(2.10) for p ∈ (0, n − 1] implies
equicontinuity and normality of the classes RΦ

M,∆ for all M ∈ (0,∞) and ∆ ∈ (0, 1).
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Given a function Φ: [0,∞] → [0,∞], M > 0 and ∆ > 0, SΦ
M,∆ denotes the class

of all homeomorphisms f of D in the Sobolev class W 1,n
loc with a locally integrable

KI(x, f) such that h
(
Rn \ f(D)

) ≥ ∆ and (4.1) holds for Q(x) = KI(x, f). Note
that if Φ is non-decreasing, convex and non-constant on [0,∞), then (4.1) itself
implies that KI(x, f) ∈ L1

loc. Note also that SΦ
M,∆ ⊂ RΦ

M,∆, see e.g. Theorem 4.1 in
[17]. Thus, we have the following consequence.

Corollary 4.2. Each of the conditions (2.5)–(2.10) for p ∈ (0, n − 1] implies
equicontinuity and normality of the class SΦ

M,∆ for all M ∈ (0,∞) and ∆ ∈ (0, 1).

Remark 4.2. The given conditions (2.5)–(2.10) for p = n− 1 are weakest that
lead to equicontinuity (normality) of the classes SΦ

M,∆ and RΦ
M,∆, see Theorem 5.1

further. The most interesting of them is (2.7) that can be rewritten in the following
form:

(4.7)
∞̂

δ

log Φ(t)
dt

tn′
= ∞

where 1
n′ + 1

n
= 1, i.e. n′ = 2 for n = 2, n′ is strictly increasing in n and n′ =

n/(n−1) → 1 as n →∞. Note also that the condition (4.2), as well as (5.1) further,
can be rewritten in the form

(4.8)
∞̂

δ

dτ

τΦ−1
n−1(τ)

= ∞, Φn−1(t) := Φ(tn−1).

5. Necessary conditions for equicontinuity

Theorem 5.1. If the classes SΦ
M,∆ ⊂ RΦ

M,∆ are equicontinuous (normal) for a
non-decreasing convex function Φ: [0,∞] → [0,∞], all M ∈ (0,∞) and ∆ ∈ (0, 1),
then

(5.1)
∞̂

δ∗

dτ

τ [Φ−1(τ)]
1

n−1

= ∞

for all δ∗ ∈ (τ0,∞) where τ0 := Φ(0).

It is evident that the function Φ(t) in Theorem 5.1 cannot be constant because
in the contrary case we would have no real restrictions for KI except Φ(t) ≡ ∞ when
the classes SΦ

M,∆ are empty. Moreover, by the known criterion of convexity, see e.g.
Proposition 5 in I.4.3 of [5], the slope [Φ(t) − Φ(0)]/t is nondecreasing. Hence the
proof of Theorem 5.1 follows from the next statement.

Lemma 5.1. Let a function Φ: [0,∞] → [0,∞] be non-decreasing and

(5.2) Φ(t) ≥ C · t 1
n−1 ∀ t ∈ [T,∞]

for some C > 0 and T ∈ (0,∞). If the classes SΦ
M,∆ ⊂ RΦ

M,∆ are equicontinuous
(normal) for all M ∈ (0,∞) and ∆ ∈ (0, 1), then (5.1) holds for all δ∗ ∈ (τ0,∞)
where τ0 := Φ(+0).
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Remark 5.1. As well-known, the critical exponent n − 1 takes a key part in
many problems of space mappings. The condition (5.2) can be rewritten in the form

(5.3) Φn−1(t) ≥ C · t ∀ t ∈ [T,∞]

where Φn−1(t) = Φ(tn−1) and C > 0, T ∈ (0,∞) that once more accentuates the
significance of the function Φn−1 in the question. In fact, it suffices also to require
the weaker condition of convexity of Φn−1 instead of Φ in Theorem 5.1.

Proof of Lemma 5.1. Let us assume that (5.1) is not true, i.e.

(5.4)
∞̂

δ0

dτ

τΦ−1
n−1(τ)

< ∞

for some δ0 ∈ (τ0,∞) where Φn−1(t) := Φ(tn−1) . Then also

(5.5)
∞̂

δ

dτ

τΦ−1
n−1(τ)

< ∞ ∀ δ ∈ (τ0,∞)

because Φ−1(τ) > 0 for all τ > τ0 and Φ−1(τ) is non-decreasing. Note that by (5.2)

(5.6) Φn−1(t) ≥ C · t ∀ t ≥ T

under some C > 0 and T ∈ (1,∞). Furthermore, applying the linear transformation
αΦ + β with α = 1/C and β = T, see e.g. (2.7), we may assume that

(5.7) Φn−1(t) ≥ t ∀ t ∈ [0,∞).

Of course, we may also assume that Φ(t) = t for all t ∈ [0, 1) because the values of
Φ in [0, 1) give no information on KI(x, f) ≥ 1 in (4.1). It is clear that (5.5) implies
Φ(t) < ∞ for all t < ∞, see the criterion (2.7), cf. (2.10).

Now, note that the function Ψ(t) := tΦn−1(t) is strictly increasing, Ψ(1) = Φ(1)
and Ψ(t) →∞ as t →∞. Hence the functional equation

(5.8) Ψ(K(r)) =
(γ

r

)2

∀ r ∈ (0, 1],

where γ = Φ1/2(1) ≥ 1, is well solvable with K(1) = 1 and a strictly decreasing
continuous K(r), K(r) < ∞, r ∈ (0, 1], and K(r) → ∞ as r → 0. Taking the
logarithm in (5.8), we have that

log K(r) + log Φn−1(K(r)) = 2 log
γ

r

and by (5.7) we obtain that
log K(r) ≤ log

γ

r
,

i.e.,

(5.9) K(r) ≤ γ

r
.

Then by (5.8)
Φn−1(K(r)) ≥ γ

r
and by (2.3)

(5.10) K(r) ≥ Φ−1
n−1

(γ

r

)
.
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It is sufficient to consider the case D = Bn. We define the following mappings in
the punctured unit ball Bn \ {0}:

f(x) =
x

|x| R(|x|), fm(x) =
x

|x|Rm(|x|), m = 1, 2, . . .

where
R(t) = exp{I(0)− I(t)}, Rm(t) = exp{I(0)− Im(t)},

I(t) =

1ˆ

t

dr

rK(r)
, Im(t) =

1ˆ

t

dr

rKm(r)

and

Km(r) =

{
K(r), if r ≥ 1/m,

K
(

1
m

)
, if r ∈ (0, 1/m).

By (5.10)

I(0)− I(t) =

tˆ

0

dr

rK(r)
≤

tˆ

0

dr

rΦ−1
n−1

(
γ
r

) =

∞̂

γ
t

dτ

τΦ−1
n−1(τ)

∀ t ∈ (0, 1]

where γ/t ≥ γ ≥ 1 > Φ(0) = 0. Hence by the condition (5.5)

(5.11) I(0)− I(t) ≤ I(0) =

1ˆ

0

dr

rK(r)
< ∞ ∀ t ∈ (0, 1].

Moreover, fm and f ∈ C1 (Bn \ {0}) because Km(r) and K(r) are continuous, and
hence locally quasiconformal in Bn \ {0}. Furthermore, fm are Km-quasiconformal
in Bn where Km = K (1/m), fm(0) = 0.

Next, the tangent and radial distortions under the mapping f on the sphere
|x| = ρ, ρ ∈ (0, 1), are easy calculated

δτ (x) =
|f(x)|
|x| =

exp

{
ρ́

0

dt
tK(t)

}

ρ
,

δr(x) =
∂|f(x)|

∂|x| =

exp

{
ρ́

0

dt
tK(t)

}

ρK(ρ)

and we see that δτ (x) ≥ δr(x) because K(r) ≥ 1. Consequently, by the spherical
symmetry we have that

KI(x, f) =
δn−1
τ (x) · δr(x)

δn
r (x)

= Kn−1(|x|)

at all points x ∈ Bn \ {0}, see e.g. Subsection I.4.1 in [20]. Note that

(5.12) fm(x) ≡ f(x) ∀ x :
1

m
< |x| < 1, m = 1, 2 . . . .
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Hence it is similarly calculated KI(x, fm) = KI(x, f) = Kn−1(|x|) for 1
m

< |x| < 1

and KI(x, fm) = K(1/m) for 0 < |x| < 1
m
. Thus, fm are quasiconformal in Bn, hence

fm ∈ W 1,n
loc and by (5.8)ˆ

Bn

Φ (KI(x, fm)) dm(x) ≤
ˆ

Bn

Φn−1 (K(|x|)) dm(x)

= ωn−1

1ˆ

0

Ψ (K(r))

rK(r)
· rndr ≤ γ2ωn−1

1ˆ

0

dr

rK(r)
≤ M := γ2ωn−1I(0) < ∞.

Note that fm map the unit ball Bn onto the ball centered at the origin with the
radius eI(0) < ∞. Thus, fm ∈ SΦ

M,∆ with M given above and some ∆ > 0.
On the other hand, it is easy to see that

(5.13) lim
x→0

|f(x)| = lim
t→0

ρ(t) = e0 = 1,

i.e. f maps the punctured ball Bn \ {0} onto the ring 1 < |y| < eI(0). Then by (5.12)
and (5.13) we obtain that

|fm(x)| = |f(x)| ≥ 1 ∀ x : |x| ≥ 1/m, m = 1, 2, . . . ,

i.e. the family {fm}∞m=1 is not equicontinuous at the origin. The contradiction dis-
proves the assumption (5.4). ¤

Remark 5.2. Theorem 5.1 shows that the condition (4.2) in Theorem 4.1 is not
only sufficient but also necessary for equicontinuity (normality) of classes with the
integral constraints of the type either (4.1) or (4.4) with a convex non-decreasing Φ.
In view of Proposition 2.3, the same concerns to all the conditions (2.5)–(2.10) with
p = n− 1.

Corollary 5.1. The equicontinuity (normality) of the classes SΦ
M,∆ ⊂ RΦ

M,∆ for
all M ∈ (0,∞), ∆ ∈ (0, 1) and a non-decreasing convex Φ implies that

(5.14)
∞̂

δ

log Φ(t)
dt

tn′
= ∞

for all δ > t0, where t0 := sup
Φ(t)=0

t, t0 = 0 if Φ(0) > 0, 1
n′ + 1

n
= 1, i.e. n ′ = n/(n− 1).

Recall that by Remark 4.2 and Proposition 2.3 the condition (5.14) is also suffi-
cient for equicontinuity (normality) of the classes SΦ

M,∆ and RΦ
M,∆.
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