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ON THE OPENNESS AND DISCRETENESS OF MAPPINGS WITH
UNBOUNDED CHARACTERISTIC OF QUASICONFORMALITY

E. A. Sevost’yanov UDC 517.5

The paper is devoted to the investigation of topological properties of space mappings. It is shown that ori-
entation-preserving mappings f WD ! Rn in a domain D � Rn; n � 2; which are more general than
mappings with bounded distortion, are open and discrete if a function Q corresponding to the control of
the distortion of families of curves under these mappings has slow growth in the domain f .D/; e.g., if
Q has finite mean oscillation at an arbitrary point y0 2 f .D/:

1. Introduction

For the main definitions and notation used in the present paper, see, e.g., [1]. In what follows,

A.r1; r2; x0/ D fx 2 RnW r1 < jx � x0j < r2g : (1)

We say that a mapping f WD ! Rn preserves orientation if the topological index �.y; f;G/ satisfies the condi-
tion �.y; f;G/ > 0 for an arbitrary domain G � D such that G � D and an arbitrary y 2 f .G/ n f .@G/ :

We say that a set H � Rn is everywhere discontinuous if every connected component of it degenerates into a
point. In this case, we write dimH D 0; where dim denotes the topological dimension of the set H (see [2]).
A mapping f WD ! Rn is called zero-dimensional if dim ff �1.y/g D 0 for every y 2 Rn: Recall that a
mapping f WD ! Rn is called a mapping with bounded distortion if the following conditions are satisfied:

(i) f 2 W
1;n

loc I

(ii) the Jacobian J.x; f / of the mapping f at a point x 2 D preserves its sign almost everywhere in DI

(iii) for almost all x 2 D and a certain constant K <1; the following relation is true:

kf 0.x/kn � KjJ.x; f /j; (2)

where, as usual, kf 0.x/k WD suph2Rn
WjhjD1 jf

0.x/hj (see, e.g., [3], Chap. I, Sec. 3, or Definition 2.1 in
[4], Chap. I, Sec. 2).

Extensive investigations of space mappings with bounded distortion were initiated by Reshetnyak. In par-
ticular, he proved the openness and discreteness of mappings f with bounded distortion (see Theorems 6.3 and
6.4 in [3], Chap. II, Sec. 6). Let KO.f / denote the least constant K for which relation (2) remains true. For a
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mapping f WD ! Rn; set E � D; and y 2 Rn; we define the multiplicity function N.y; f;E/ as the number
of preimages of the point y in the set E; i.e., N.y; f;E/ D card fx 2 EWf .x/ D yg ; and denote

N.f;E/ D sup
y2Rn

N.y; f;E/:

Here and in what follows, a curve 
 is understood as a continuous mapping of a segment Œa; b� (or an open
interval .a; b// into Rn; i.e., 
 W Œa; b�! Rn: A family of curves � is understood as a certain fixed collection of
curves 
; and f .�/ D ff ı 
 j
 2 �g : For the definitions presented below, see, e.g., [5], Chap. I, Secs. 1–6. A
Borel function �WRn ! Œ0;1� is called admissible for a family � of curves 
 in Rn if the curvilinear integral
of the first kind Z




�.x/ds

satisfies the condition Z



�.x/ds � 1

for all curves 
 2 �: In this case, we write � 2 adm�: The modulus of a family of curves � is defined as follows:

M.�/ D inf
�2adm�

Z
D

�n.x/dm.x/:

To a certain extent, properties of the modulus are analogous to properties of the Lebesgue measure m in Rn

(see, e.g., Theorem 6.2 in [5]). In particular, for arbitrary families �i of curves 
 in Rn; the modulus possesses
the property of semiadditivity (see [5]):

M

 
1[
iD1

�i

!
�

1X
iD1

M.�i /: (3)

It is known that, for an arbitrary mapping f WD ! Rn with bounded distortion, one has

M.�/ � N.f;A/KO.f /M.f .�// (4)

for an arbitrary Borel set A in the domain D such that N.f;A/ < 1 and an arbitrary family � of curves 

in A (see Theorem 3.2 in [6] or Theorem 6.7 in [4], Chap. II). In the present paper, we consider mappings that, for
a given Lebesgue-measurable function Q.x/; QW zD ! Œ1;1�; satisfy estimates more general than (4), namely,
estimates of the form

M.�/ �

Z
zD

Q.y/�n�.y/dm.y/; (5)
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where �� is an arbitrary function such that an arbitrary curve 
� 2 f .�/ has at least unit length in the metric ��;
i.e., Z


�

��.y/ds � 1 8
� 2 f .�/;

and zD � f .D/: The function Q.y/ in (5), is, generally speaking, unbounded [see, e.g., inequality (8.5) in [7],
Chap. VIII]. Relations of the form (5) were established for many classes of mappings, e.g., for so-called mappings
with finite distortion of length for specific values of Q.y/ (see, e.g., Theorem 8.5 in [7]; see also [8]). Note
that if Q.y/ � K almost everywhere, then, under the additional condition of homeomorphism of the mapping
f; inequality (5) defines quasiconformal mappings, and only them (see Definition 13.1 and Theorem 34.3 in [5]).
Also note that, even in the case of a bounded function Q.y/ in relation (5), the corresponding mapping f; which,
a priori, is not orientation-preserving, must be neither open, nor discrete, nor homeomorphic (see, e.g., Sec. 8.10 in
[7]).

It is clear that if the multiplicity function N.f;A/ in (4) is finite, then, by definition, the orientation-preserving
mapping f is discrete, and, hence, by virtue of the corollary in [9, p. 333], it is open. We pose the following inverse
problem: If an inequality of the form (5) is true, then what can be said about the discreteness and openness of the
mapping f ?

We now introduce some additional definitions and notation. Let QWD ! Œ0;1� be a Lebesgue-measurable
function. Then qx0

.r/ denotes the integral mean value of Q.x/ over the sphere S.x0; r/; namely,

qx0
.r/ WD

1

!n�1rn�1

Z
jx�x0jDr

Q.x/dS; (6)

where dS is an element of the area of the surface S: We say that a function 'WD ! R has finite mean oscillation
at a point x0 2 D .' 2 FMO.x0// if (see, e.g., [7], Sec. 6.1, Chap. VI)

lim sup
"!0

1

�n"n

Z
B.x0;"/

j'.x/ � '"j dm.x/ <1;

where

'" D
1

�n"n

Z
B.x0;"/

'.x/ dm.x/:

The main result of the present paper is the following theorem:

Theorem 1. Let f WD ! Rn be an orientation-preserving mapping. Suppose that, for every domain D0 �
f .D/; D0 � f .D/; there exists a function QWD0 ! Œ1;1� such that, for an arbitrary family � of curves 

in D and an arbitrary function ��.y/ 2 admf .�/; a relation of the form (5) is true. Suppose that the function
Q.y/ satisfies at least one of the following conditions:

(i) Q belongs to FMO.y0/ at an arbitrary point y0 2 D0I

(ii) qy0
.r/ D O

 �
log

1

r

�n�1!
as r ! 0 for all y0 2 D0; where the function qy0

.r/ is defined by (6);
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(iii) for every y0 2 D0; there exists a number ı.y0/ > 0; ı.y0/ < dist .y0; @D0/ ; such that

ı.y0/Z
0

dt

tq
1

n�1
y0

.t/

D1: (7)

Then the mapping f is open and discrete.

Remark 1. Strictly speaking, the function Q in Theorem 1 depends on the domain D0 and should have been
denoted by QD0 : Nevertheless, we omit this subscript, lest we complicate the notation.

Note that if Q.x/ � K D const; then Theorem 1 establishes the openness and discreteness of mappings that
satisfy the condition M.�/ � KM.f .�//; where, generally speaking, the constant K D KD0 depends on the
domain D0: In particular, all mappings with bounded distortion satisfy inequalities of this type in the case where
Q.x/ D N .f;D0/KO.f / [see relation (4)].

Theorem 1 remains true for mappings of the form f WD ! Rn under the condition that assertions (i)–(iii) are
reformulated at the point y0 D 0 for the mapping zf D f ı '; where

'.x/ D
x

jxj2
; 'W1 7! 0:

2. Formulation and Proof of the Main Lemma

We call a connected compact set C � Rn a continuum. Let E;F � Rn be arbitrary sets. Let �.E; F;D/
denote the family of all curves 
 W Œa; b� ! Rn that connect E and F in D; i.e., 
.a/ 2 E; 
.b/ 2 F; and

.t/ 2 D for t 2 .a; b/: We say that a family of curves �1 is minorized by a family �2 .�1 > �2/ if, for every
curve 
 2 �1; there exists a subcurve that belongs to the family �2: In this case, we have M.�1/ �M.�2/ (see,
e.g., Theorem 6.4 in [5]). The following lemma contains the main result of the present paper in the most general
case:

Lemma 1. Let f WD ! Rn be an orientation-preserving mapping. Suppose that, for every domain G �

f .D/ such that G � f .D/; there exists a Lebesgue-measurable function QWG ! Œ1;1� such that

M.�/ �

Z
f .D/

Q.y/�n�.y/dm.y/ (8)

for an arbitrary family � of curves 
 in G and an arbitrary function ��.y/ 2 admf .�/: Further, suppose that,
for every y0 2 G; there exists ".y0/ > 0 such thatZ

A.";".y0/;y0/

Q.y/ n.jy � y0j/dm.y/ D o
�
In."; "0/

�
(9)

for a certain Borel function  .t/W .0;1/! Œ0;1� such that

0 < I."; ".y0// WD

".y0/Z
"

 .t/dt <1 (10)
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for all " 2 .0; ".y0//; where A."; ".y0/; y0/ is defined by (1) for r1 D "; r2 D ".y0/; and x0 D y0: Then the
mapping f is open and discrete.

Remark 2. Under the conditions of Lemma 1, we can assume that, for an arbitrary fixed A such that 0 <
A < ".y0/ and all " 2 .0; A/; a condition of the form

AZ
"

 .t/dt > 0

is satisfied. Indeed, it follows from (9) and (10) that

AZ
"

 .t/dt !1 as "! 0

because Q � 1 and the value of the integral on the left-hand side of (9) increases as " decreases.

Proof of Lemma 1. Since every orientation-preserving mapping f WD ! Rn is open and discrete in the
domain D (see, e.g., the corollary in [9, p. 333]), to prove the lemma it suffices to show that f is a zero-di-
mensional mapping. Assume the contrary. Then there exists y0 2 Rn such that the set ff �1.y0/g is not
everywhere discontinuous. Therefore, by definition, there exists a continuum C � ff �1.y0/g: Since the mapping
f preserves orientation, we have f 6� y0: According to the theorem on the preservation of a sign, there exist
x0 2 D and "0 > 0 such that B.x0; "0/ � D and

f .x/ ¤ y0 8x 2 B.x0; "0/: (11)

We arbitrarily choose a domain G1 � D such that G1 � D so that C [ B.x0; "0/ � G1: Then, by virtue of
Lemma 1.15 in [10], we get

M
�
�
�
C;B.x0; "0/; G1

��
> 0: (12)

Note that, by virtue of inequality (11) and the relation f .C / D fy0g; none of the curves of the family � D

f
�
�
�
C;B.x0; "0/; G1

��
degenerates into a point. At the same time, all curves of the family � have the point

y0 as their endpoint. Let �i be a family of curves ˛i .t/W .0; 1/! Rn such that ˛i .1/ 2 S.y0; ri /; ri < ".y0/;
where ri is a certain strictly positive real sequence such that ri ! 0 as i ! 1 and ˛i .t/ ! y0 as t ! 0:

Then

�
�
C;B.x0; "0/; G1

�
D

1[
iD1

��i ; (13)

where ��i is the subfamily of all curves 
 from �
�
C;B.x0; "0/; G1

�
such that f .
/ has a subcurve in �i : We

fix i 2 N and, for every " 2 .0; ri /; consider the family of all curves �i;" that connect the spheres S.y0; ri / and
S.y0; "/ in f .G1/: Note that, for an any " 2 .0; ri /; we have

�i > �i;": (14)
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Consider the function

�i;".y/ D

8<: .jy � y0j/ =I."; ri /; y 2 A."; ri ; y0/;

0; y 2 Rn n A."; ri ; y0/;

where

I."; ri / D

riZ
"

 .t/dt:

Note that �i;".y/ 2 adm�i;": Indeed, by virtue of Theorem 5.7 in [5], the integral of an arbitrary radial function
‰.jy � y0j/ along a curve that connects the spheres S.y0; ri / and S.y0; "/ is not less than the corresponding
integral of the function ‰.t/ over the segment ."; ri /; namely,

Z



�i;".y/ds �
1

I ."; ri /

riZ
"

 .t/dt D 1

for any curve 
 2 �i;": Therefore, according to (14), we have �i;".y/ 2 adm�i and, by virtue of relation (8),

M.��i / �

Z
f .D/

Q.y/�ni;".y/dm.y/ D

Z
A.";".y0/;y0/

Q.y/�ni;".y/dm.y/ � Fi ."/; (15)

where

Fi ."/ D
1

I."; ri /
n

Z
A.";".y0/;y0/

Q.y/ n.jy � y0j/dm.y/

and

I."; ri / D

riZ
"

 .t/dt:

Taking (9) into account, we obtain

Z
A.";".y0/;y0/

Q.y/ n.jy � y0j/dm.y/ D G."/

0B@ ".y0/Z
"

 .t/dt

1CA
n

;

where G."/! 0 as "! 0 by virtue of the conditions of the lemma. Note that

Fi ."/ D G."/

0BBB@1C
Z ".y0/

ri

 .t/dtZ ri

"

 .t/dt

1CCCA
n

;
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where

".y0/Z
ri

 .t/dt <1

is a fixed number and

riZ
"

 .t/dt !1 as "! 0

because the value of the integral on the left-hand side of .9/ increases as " decreases. Thus, Fi ."/ ! 0 as
" ! 0: Passing to the limit as " ! 0 in inequality (15), whose left-hand side is independent of "; we obtain
M.��i / D 0 for any natural i: However, in this case, M

�
�
�
C;B.x0; "0/; G1

��
D 0 by virtue of (13) and (3),

which contradicts inequality (12). The contradiction obtained proves that the mapping f is zero-dimensional,
and, hence, according to the corollary in [9, p. 333], the mapping f is open and discrete, which was to be proved.

The lemma is proved.

3. On the Proof of the Main Result

The statement of Theorem 1 follows directly from Lemma 1 and Lemma 8 in [1].

Remark 3. The condition Q.x/ � 1 guarantees that qx0
.r/ � 1 for almost all values of r: Therefore,

"2Z
"1

dt

tq
1

n�1
x0

.t/

� log
"2

"1
<1 for all "1; "2 > 0I

in this connection, see also Lemma 8 in [1].

4. Examples

Example 1. The most important example of mappings that satisfy estimates of the form (5) is that of so-called
mappings with finite distortion of length (see, e.g., Chap. VIII in [7]). The introduction and investigation of this
class are motivated by the necessity of the description of “minimum” requirements on mappings under which the
distortion of the modulus of families of curves satisfies certain estimates. We introduce some notation.

The external dilation of a mapping f at a point x is defined as follows:

KO.x; f / D
kf 0.x/kn

jJ.x; f /j
if J.x; f / ¤ 0;

KO.x; f / D 1 if f 0.x/ D 0; and KO.x; f / D1 at the other points. We set

KI
�
y; f �1; E

�
WD

X
x2E\f �1.y/

KO.x; f /:
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Corollary 1. Let f WD ! Rn be an orientation-preserving mapping with finite distortion of length. Suppose
that, for every domain G � D; G � D; the function KI

�
y; f �1; G

�
satisfies at least one of conditions (i)–(iii)

of Theorem 1 at an arbitrary point y0 2 f .G/: Then the mapping f is open and discrete.

Proof. Note that every mapping f WD ! Rn with finite distortion of length satisfies the inequality

M.�/ �

Z
f .E/

KI
�
y; f �1; E

�
�n�.y/dm.y/

for any measurable set E � D; an arbitrary family � � E of curves 
 in E; and every function ��.y/ 2

admf .�/ (see, e.g., Theorem 8.5 in [7], Chap. VIII). The other assertions follow from the theorem.
The corollary is proved.

Example 2. Generally speaking, the condition of preservation of orientation of the mapping f in all state-
ments presented above cannot be omitted. An example of a mapping f with finite distortion of length that does
not preserve orientation and is such that M.f .�// D M.�/; i.e., Q � 1 in inequality (5), but is neither discrete
nor open is given in Sec. 8.10, Chap. VIII in [7].

We also give another example. Let x D .x1; : : : ; xn/: We define f as the identical mapping in the closed
domain fxn � 0g and set f .x/ D .x1; : : : ;�xn/ for xn < 0: This mapping is the reflection in the hyperplane
xn D 0 for xn < 0 (for nonnegative values of xn; it is the identical mapping). Note that f is a mapping with
finite distortion of length, and, moreover, the mapping f preserves the lengths of curves. Therefore, f satisfies
inequality (5) for Q � 1: This mapping is discrete but not open. For example, under the mapping f the ball Bn

is mapped into the semisphere fy D .y1; : : : ; yn/ 2 RnW jyj < 1; yn � 0g; which is not an open set in Rn:
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