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Abstract - Under a condition of the Calderon type on ϕ, we show that
continuous mappings f in W 1,ϕ

loc , in particular, f ∈ W 1,p
loc for p > n − 1

have the (N)-property by Lusin on a.e. hyperplane. It is proved on this
basis that under the given condition on ϕ the homeomorphisms f with finite
distortion in W 1,ϕ

loc and, in particular, f ∈ W 1,p
loc for p > n − 1 are the so-

called lower Q-homeomorphisms where Q(x) is equal to its outer dilatation
Kf (x). This makes possible to apply our theory of the boundary behavior
of the lower Q-homeomorphisms to homeomorphisms with finite distortion
in the Orlicz-Sobolev classes.

Key words and phrases : the Lusin property, Sobolev classes, Orlicz-
Sobolev classes, mappings of finite distortion, lower Q-homeomorphisms,
boundary behavior.

Mathematics Subject Classification (2010) : primary 30C65; sec-
ondary 30C75.

1. Introduction

In what follows, D is a domain in a finite-dimensional Euclidean space.
Following Orlicz, see [26], given a convex increasing function ϕ : [0,∞)
→ [0,∞), ϕ(0) = 0, denote by Lϕ the space of all functions f : D → R such
that ∫

D

ϕ

(
|f(x)|
λ

)
dm(x) <∞ (1.1)

for some λ > 0 where dm(x) corresponds to the Lebesgue measure in D.
Lϕ is called the Orlicz space. If ϕ(t) = tp, then we write also Lp. In other
words, Lϕ is the cone over the class of all functions g : D → R such that∫

D

ϕ (|g(x)|) dm(x) <∞ (1.2)

which is also called the Orlicz class, see [3].

The Orlicz-Sobolev class W 1,ϕ
loc (D) is the class of locally integrable func-

tions f given in D with the first distributional derivatives whose gradient∇f
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belongs locally inD to the Orlicz class. Note that by definitionW 1,ϕ
loc ⊆W

1,1
loc .

As usual, we write f ∈W 1,p
loc if ϕ(t) = tp, p > 1. It is known that a continu-

ous function f belongs to W 1,p
loc if and only if f ∈ ACLp, i.e., if f is locally

absolutely continuous on a.e. straight line which is parallel to a coordinate
axis, and if the first partial derivatives of f are locally integrable with the
power p, see, e.g., 1.1.3 in [24]. The concept of the distributional derivative
was introduced by Sobolev [32] in Rn, n > 2, and it is developed under wider
settings at present, see, e.g., [28].

Later on, we also write f ∈W 1,ϕ
loc for a locally integrable vector-function

f = (f1, . . . , fm) of n real variables x1, . . . , xn if fi ∈W 1,1
loc and∫

D

ϕ (|∇f(x)|) dm(x) <∞ (1.3)

where |∇f(x)| =
√∑

i,j

(
∂fi
∂xj

)2
. Note that in this paper we use the notation

W 1,ϕ
loc for more general functions ϕ than in the classical Orlicz classes giving

up the condition on convexity of ϕ. Note also that the Orlicz–Sobolev classes
are intensively studied in various aspects at present.

Recall that a homeomorphism f between domainsD andD′ in Rn, n > 2,
is called of finite distortion if f ∈W 1,1

loc and

‖f ′(x)‖n 6 K(x) · Jf (x) (1.4)

with a.e. finite function K where ‖f ′(x)‖ denotes the matrix norm of the
Jacobian matrix f ′ of f at x ∈ D, ||f ′(x)|| = sup

h∈Rn,|h|=1
|f ′(x) · h|, and

Jf (x) = detf ′(x) is its Jacobian. Later on, we use the notation Kf (x) for
the minimal function K(x) > 1 in (1.4), i.e., we set Kf (x) = ‖f ′(x)‖n/
Jf (x) if Jf (x) 6= 0, Kf (x) = 1 if f ′(x) = 0 and Kf (x) = ∞ at the rest
points.

First this notion was introduced on the plane for f ∈ W 1,2
loc in the work

[16]. Later on, this condition was changed by f ∈ W 1,1
loc but with the ad-

ditional condition Jf ∈ L1
loc in the monograph [15]. The theory of the

mappings with finite distortion had many successors, see, e.g., a number of
references in the monograph [23]. They had as predecessors the mappings
with bounded distortion, see [27] and [34], in other words, the quasiregular
mappings, see, e.g., [4], [5], [13], [21], [29] and [35].

Note that the above additional condition Jf ∈ L1
loc in the definition of

the mappings with finite distortion can be omitted for homeomorphisms.
Indeed, for each homeomorphism f between domains D and D′ in Rn with
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the first partial derivatives a.e. in D, there is a set E of the Lebesgue
measure zero such that f satisfies (N)-property by Lusin on D \ E and∫

A

Jf (x) dm(x) = |f(A)| (1.5)

for every Borel set A ⊂ D \ E, see, e.g., 3.1.4, 3.1.8 and 3.2.5 in [8]. On
this base, it is easy by the Hölder inequality to verify, in particular, that if
f ∈W 1,1

loc is a homeomorphism and Kf ∈ Lqloc for some q > n− 1, then also

f ∈W 1,p
loc for some p > n− 1, that we use further to obtain corollaries.

In this paper Hk(A), k > 0, dimHA denote the k-dimensional Hausdorff
measure and the Hausdorff dimension, correspondingly, of a set A in Rn,
n > 1. It was shown in [11] that a set A with dimH A = p can be transformed
into a set B = f(A) with dimH B = q for each pair of numbers p and
q ∈ (0, n) under a quasiconformal mapping f of Rn onto itself, cf. also [1]
and [2].

2. Preliminaries

First of all, the following fine property of functions f in the Sobolev classes
W 1,p

loc was proved in the monograph [12], Theorem 5.5, and can be extended
to the Orlicz-Sobolev classes. The statement follows directly from the Fubini
theorem and the known characterization of functions in Sobolev’s class W 1,1

loc

in terms of ACL (absolute continuity on lines), see, e.g., Section 1.1.3 in [24].

Proposition 2.1. Let U be an open set in Rn and let f : U → Rm, m =
1, 2, . . ., be a mapping in the Orlicz-Sobolev class W 1,ϕ

loc (U) with an increasing
function ϕ : [0,∞)→ [0,∞). Then, for a.e. hyperplane P which is parallel
to a coordinate hyperplane P0, the restriction of the function f on the set
P ∩ U is a function in the class W 1,ϕ

loc (P ∩ U).

Recall also the little-known Fadell theorem in [7] that makes it possible
to extend the well-known theorems of Gehring-Lehto-Menchoff in the plane
and Väisälä in Rn, n > 3, see, e.g., [9], [25] and [33], on differentiability
a.e. of open mappings in Sobolev’s classes to the open mappings in Orlicz-
Sobolev classes in Rn, n > 3. A mapping f : Ω → Rn is called open if the
image of every open set in Ω is an open set in Rn.

Proposition 2.2. Let f : Ω → Rn be a continuous open mapping on an
open set Ω in Rn, n > 3. If f has a differential a.e. on Ω with respect to
n − 1 variables, then f has a total differential a.e. on Ω with respect to all
n variables.
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Now, the Calderon result in [6], p. 208, can be formulated in the following
way.

Proposition 2.3. Let ϕ : [0,∞) → [0,∞) be an increasing function with
the condition

∞∫
1

[
t

ϕ(t)

] 1
k−1

dt < ∞ (2.1)

for a natural number k > 2 and let f : D → R be a continuous function
given in a domain D ⊂ Rk of the class W 1,ϕ(D). Then

diam f(C) 6 αk A
k−1
k

 ∫
C

ϕ∗ (|∇f |) dm(x)

 1
k

(2.2)

for every cube C ⊂ D whose edges are oriented along coordinate axes where
αk is a constant depending only on k,

A : =

[
1

ϕ(1)

] 1
k−1

+

∞∫
1

[
t

ϕ(t)

] 1
k−1

dt < ∞, (2.3)

ϕ∗(0) = 0, ϕ∗(t) ≡ ϕ(1) for t ∈ (0, 1), and ϕ∗(t) = ϕ(t) for t > 1.

The following statement is also due to Calderon [6].

Lemma 2.1. Let Ω be an open set in Rk, k > 2, and let f : Ω→ Rm, m >
1, be a continuous mapping in the class W 1,ϕ

loc (Ω) where ϕ : [0,∞)→ [0,∞)
is increasing with the condition (2.1). Then f has a total differential a.e. in
Ω.

Combining Lemma 2.1 and Proposition 2.1, we obtain the next state-
ment.

Corollary 2.1. Let Ω be an open set in Rn, n > 3, and let f : Ω → Rm,
m > 1, be a continuous mapping in the class W 1,ϕ

loc (Ω) where ϕ : [0,∞) →
[0,∞) is increasing and

∞∫
1

[
t

ϕ(t)

] 1
n−2

dt <∞. (2.4)

Then f : Ω → Rm has a total differential a.e. on a.e. hyperplane which is
parallel to a coordinate hyperplane.
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Combing Corollary 2.1 and Proposition 2.2, we have the following con-
clusion.

Theorem 2.1. Let Ω be an open set in Rn, n > 3, and let f : Ω→ Rn be a
continuous open mapping in the class W 1,ϕ

loc (Ω) where ϕ : [0,∞)→ [0,∞) is
increasing with the condition (2.4). Then f has a total differential a.e. in
Ω.

Corollary 2.2. If f : Ω→ Rn is a homeomorphism in W 1,1
loc with Kf ∈ Lploc

for p > n− 1, then f is differentiable a.e.

3. The Lusin and Sard properties on surfaces

Theorem 3.1. Let Ω be an open set in Rk, k > 2, and let f : Ω → Rm,
m > 1, be a continuous mapping in the class W 1,ϕ(Ω) where ϕ : [0,∞) →
[0,∞) is increasing with the condition (2.1). Then

Hk(f(E)) 6 γk,mA
k−1

∫
E

ϕ∗ (|∇f |) dm(x) (3.1)

for every measurable set E ⊂ Ω and γk,m = (mαk)
k where αk and A are

constants from (2.2), ϕ∗(0) = 0, ϕ∗(t) ≡ ϕ(1) for t ∈ (0, 1) and ϕ∗(t) = ϕ(t)
for t > 1.

Thus, we come to the following conclusion on the Lusin property of
mappings in the Orlicz-Sobolev classes.

Corollary 3.1. Under the hypotheses of Theorem 3.1 the mapping f has the
(N)-property of Lusin; furthermore, f is absolutely continuous with respect
to the k-dimensional Hausdorff measure.

We also obtain the following consequence of Theorem 3.1 of the Sard
type for mappings in the Orlicz-Sobolev classes, see in addition Theorem
VII.3 in [14].

Corollary 3.2. Under the hypotheses of Theorem 3.1, we have that
Hk(f(E)) = 0 whenever |∇f | = 0 on a measurable set E ⊂ Ω and hence
dimH f(E) 6 k and also dim f(E) 6 k − 1.

The proof of Theorem 3.1 is based on the following lemma.

Lemma 3.1. Let Ω be a domain in Rk, k > 2, and let f : Ω→ Rm, m > 1,
be a continuous mapping in the class W 1,ϕ(G) where ϕ : [0,∞)→ [0,∞) is
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increasing with the condition (2.1). Then

diam f(C) 6 mαk A
k−1
k
∗

 ∫
C

ϕ∗ (|∇f |) dm(x)

 1
k

(3.2)

for every cube C ⊂ Ω whose edges are oriented along coordinate axes.

Proof of Lemma 3.1. Let us prove (3.2) by induction in m = 1, 2, . . ..
Indeed, (3.2) holds by Proposition 2.3 for m = 1 and αk from (2.2). Let us
assume that (3.2) is valid for some m = l and prove it for m = l+1. Consider
an arbitrary vector ~V = (v1, v2, . . . , vl, vl+1) in Rl+1 and the vectors ~V1 =
(v1, v2, . . . , vl, 0) and ~V2 = (0, . . . , 0, vl+1). Then |~V | = |~V1 + ~V2| 6 |~V1|+ |~V2|.
Thus, denoting by Pr1

~V = ~V1 and Pr2
~V = ~V2 the projections of vectors

from Rl+1 onto the coordinate hyperplane yl+1 = 0 and on the (l + 1)th
axis in Rl+1, correspondingly, we obtain that diam f(C) 6 diam Pr1f(C) +
diam Pr2f(C) and, applying (3.2) under m = l and m = 1, we come by
monotonicity of ϕ to the inequality (3.2) under m = l + 1. The proof is
complete. 2

Proof of Theorem 3.1. In view of countable additivity of integral and
measure we may assume with no loss of generality that E is bounded and
E ⊂ G, i.e., E is a compactum in G. For each ε > 0 there is an open set
Ω ⊂ G such that E ⊂ Ω and |Ω \ E| < ε, see, e.g., Theorem III (6.6) in
[31]. By the above remark we may assume that Ω is a compactum and,
thus, the mapping f is uniformly continuous in Ω. Hence Ω can be covered
by a countable collection of closed oriented cubes Ci whose interiorities are
mutually disjoint and such that diam f(Ci) < δ for any prescribed δ > 0

and

∣∣∣∣ ∞⋃
i=1

∂Ci

∣∣∣∣ = 0. Thus, by Lemma 3.1 we have that

Hk
δ (f(E)) 6 Hk

δ (f(Ω)) 6
∞∑
i=1

[ diam f(Ci)]
k 6

6 γk,mA
k−1
∗

∫
Ω

ϕ∗ (|∇f |) dm(x).

Finally, by absolute continuity of the indefinite integral and arbitrariness of
ε and δ > 0 we obtain (3.1). 2

Combining Proposition 2.1 and Corollary 3.1 we obtain the following
statement.

Theorem 3.2. Let U be an open set in Rn, n > 3, and let ϕ : [0,∞) →
[0,∞) is increasing with the condition (2.4). Then each continuous mapping
f : U → Rm, m ≥ 1, in the class W 1,ϕ

loc has the (N)-property (furthermore,
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it is locally absolutely continuous) with respect to the (n − 1)-dimensional
Hausdorff measure on a.e. hyperplane P which is parallel to a fixed coor-
dinate hyperplane P0. Moreover, Hn−1(f(E)) = 0 whenever |∇f | = 0 on
E ⊂ P for a.e. such P.

Note that, if the condition (2.4) holds for an increasing function ϕ, then
the function ϕ∗ = ϕ(c t) for c > 0 also satisfies (2.4). Moreover, the Haus-
dorff measures are quasi-invariant under quasi-isometries. By the Lindelöf
property of Rn, U \ {x0} can be covered by a countable collection of open
segments of spherical rings in U \{x0} centered at x0 and each such segment
can be mapped onto a rectangular oriented segment of Rn by some quasi-
isometry, see, e.g., I.5.XI in [20] for the Lindelöf theorem. Thus, applying
piecewise Theorem 3.2, we obtain the following.

Corollary 3.3. Under (2.4) each f ∈ W 1,ϕ
loc has the (N)-property (further-

more, it is locally absolutely continuous) on a.e. sphere S centered at a
prescribed point x0 ∈ Rn. Moreover, Hn−1(f(E)) = 0 whenever |∇f | = 0
on E ⊆ S for a.e. such sphere S.

4. Lower Q-homeomorphisms and Orlicz-Sobolev classes

The following lemma is key for our further research, see the technical notion
of lower Q-homeomorphisms in the paper [17] or in the monograph [23].

Theorem 4.1. Let D and D′ be domains in Rn, n > 3, and let ϕ : [0,∞)→
[0,∞) be increasing with the condition (2.4). Then each homeomorphism f :
D → D′ of finite distortion in the class W 1,ϕ

loc is a lower Q-homeomorphism
at every point x0 ∈ D with Q(x) = Kf (x).

Proof. Let B be the (Borel) set of all points x ∈ D where f has a total
differential f ′(x) and Jf (x) 6= 0. Then, applying Kirszbraun’s theorem and
uniqueness of approximate differential, see, e.g., 2.10.43 and 3.1.2 in [8], we
see that B is the union of a countable collection of Borel sets Bl, l = 1, 2, . . . ,
such that fl = f |Bl

are bi-Lipschitz homeomorphisms, see, 3.2.2, 3.1.4 and
3.1.8 in [8]. With no loss of generality, we may assume that the Bl are
mutually disjoint. Denote also by B∗ the set of all points x ∈ D where f
has the total differential but with f ′(x) = 0.

By the construction the set B0 := D \ (B
⋃
B∗) has Lebesgue measure

zero, see Theorem 2.1. Hence by Theorem 2.4 in [18] or by Theorem 9.1 in
[23] the area AS(B0) = 0 for a.e. hypersurface S in Rn and, in particular,
for a.e. sphere Sr := S(x0, r) centered at a prescribed point x0 ∈ D. Thus,
by Corollary 3.3 AS∗r (f(B0)) = 0 as well as AS∗r (f(B∗)) = 0 for a.e. Sr
where S∗r = f(Sr).
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Let Γ be the family of all intersections of the spheres Sr, r ∈ (ε, ε0),
ε0 < d0 = sup

x∈D
|x − x0|, with the domain D. Given %∗ ∈ admf(Γ), %∗ ≡ 0

outside of f(D), set % ≡ 0 outside of D and on B0,

%(x) : = %∗(f(x))‖f ′(x)‖ for x ∈ D \B0 .

Arguing piecewise on Bl, l = 1, 2, . . ., we have by 1.7.6 and 3.2.2 in [8]
that ∫

Sr

%n−1 dA >
∫
Sr
∗

%n−1
∗ dA > 1

for a.e. Sr and, thus, % ∈ ext adm Γ.

The change of variables on each Bl, l = 1, 2, . . . , see, e.g., Theorem 3.2.5
in [8], and countable additivity of integrals give the estimate∫

D

%n(x)

Kf (x)
dm(x) 6

∫
f(D)

%n∗ (x) dm(x)

and the proof is complete. 2

Corollary 4.1. Each homeomorphism f of finite distortion in Rn, n > 3,
in the class W 1,p

loc for p > n− 1 is a lower Q-homeomorphism at every point
x0 ∈ D with Q(x) = Kf (x).

Corollary 4.2. In particular, each homeomorphism f in Rn, n > 3, with
Kf ∈ Lqloc for q > n−1 is a lower Q-homeomorphism at every point x0 ∈ D
with Q(x) = Kf (x).

5. The boundary behavior

The definitions of strongly accessible and weakly flat boundaries can be
found in [17] or in [23]. Note that all known regular domains as convex,
smooth, Lipschitz, uniform and QED (quasiextremal distance) by Gehring–
Martio have weakly flat and, consequently, strongly accessible boundaries
and are locally connected on their boundaries, see, e.g., Lemma 5.1 in [17]
or Lemma 3.15 in [23].

In view of Theorem 4.1, we have by Lemma 6.1 and Theorem 10.1 in
[17] or Lemma 9.4 and Theorem 9.6 in [23] the following result.

Theorem 5.1. Let D and D′ be bounded domains in Rn, n > 3, and let
f : D → D′ be a homeomorphism of finite distortion in W 1,ϕ

loc where ϕ :
[0,∞) → [0,∞) is increasing with the condition (2.4). Suppose that the
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domain D is locally connected on ∂D and that the domain D′ has a (strongly
accessible) weakly flat boundary. If

δ(x0)∫
0

dr

||Kf ||n−1(x0, r)
= ∞ ∀ x0 ∈ ∂D (5.1)

for some δ(x0) ∈ (0, d(x0)) where d(x0) = sup
x∈D
|x− x0| and

||Kf ||n−1(x0, r) =

 ∫
D∩S(x0,r)

Kn−1
f (x) dA


1

n−1

,

then f has a (continuous) homeomorphic extension f to D mapping D (into)
onto D′.

In particular, as a consequence of Theorem 5.1 we obtain the following
generalization of the well-known Gehring–Martio theorem on a homeomor-
phic extension to the boundary of quasiconformal mappings between QED
domains, see [10], cf. [22].

Corollary 5.1. Let D and D′ be bounded domains with weakly flat bound-
aries in Rn, n > 3, and let f : D → D′ be a homeomorphism of finite
distortion in the class W 1,p

loc , p > n− 1, in particular, a homeomorphism in

the class W 1,1
loc with Kf ∈ Lqloc, q > n− 1. If the condition (5.1) holds, then

f has a homeomorphic extension f : D → D′.

The continuous extension to the boundary of the inverse mappings has
a simpler criterion. Namely, in view of Theorem 4.1, we have by Theorem
9.1 in [17] or Theorem 9.6 in [23] the next statement.

Theorem 5.2. Let D and D′ be domains in Rn, n > 3, D be locally con-
nected on ∂D and ∂D′ be weakly flat. If f is a homeomorphism of finite
distortion of D onto D′ in the class W 1,ϕ

loc where ϕ : [0,∞) → [0,∞) is
increasing with the condition (2.4) and Kf ∈ Ln−1(D), then f−1 has an
extension to D′ by continuity in Rn.

However, as it follows from the example in Proposition 6.3 from [23],
any degree of integrability Kf ∈ Lq(D), q ∈ [1,∞), cannot guarantee the
extension by continuity to the boundary of the direct mappings.

Finally, in view of Theorem 4.1, by Theorem 5.1 above and Theorem 2.1
in [30] under p = n− 1, we obtain the following result.
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Theorem 5.3. Let D and D′ be bounded domains in Rn, n > 3, D be locally
connected on ∂D and D′ have (strongly accessible) weakly flat boundary.
Suppose f : D → D′ is a homeomorphism of finite distortion in D in the
class W 1,ϕ

loc with the condition (2.4) such that∫
D

Φ(Kn−1
f (x)) dm(x) <∞ (5.2)

for a convex increasing function Φ : [0,∞]→ [0,∞]. If, for some δ > Φ(0),

∞∫
δ

dτ

τ [Φ−1(τ)]
1

n−1

=∞, (5.3)

then f has a (continuous) homeomorphic extension f to D mapping D (into)
onto D′.

Remark 5.1. Note that the condition (5.3) is not only sufficient but also
necessary for continuous extension to the boundary of f with the integral
constraints (5.2), see, e.g., [19].

Note also that by Theorem 2.1 in [30] under p = n − 1 the condition
(5.3) is equivalent to the following condition

∞∫
δ

log Φ(t)
dt

tn′
= +∞ (5.4)

for some δ > 0 where 1
n′ + 1

n = 1, i.e., n′ = 2 for n = 2, n′ is strictly
decreasing in n and n′ = n/(n− 1)→ 1 as n→∞.
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[33] J. Väisälä, On quasiconformal mappings in space, Ann. Acad. Sci. Fenn. Ser. A I,
298 (1961), 1-36 .

[34] S Vodop’yanov, Mappings with bounded distortion and with finite distortion on
Carnot groups, Sibirsk. Mat. Zh., 40 (1999), 764-804; translation in Siberian Math.
J., 40 (1999), 644-677.

[35] S. Vuorinen, Conformal Geometry and Quasiregular mappings, Lecture Notes in
Math, vol. 1319, Springer-Verlag, Berlin, 1988.

Denis Kovtonyuk, Vladimir Ryazanov, Ruslan Salimov and Evgeny Sevost’yanov

Institute of Applied Mathematics and Mechanics,

National Academy of Sciences of Ukraine

74 Roze Luxemburg str., 83114 Donetsk, Ukraine

E-mail: denis kovtonyuk@bk.ru, vlryazanov1@rambler.ru,

salimov@rambler.ru, e sevostyanov@rambler.ru


