Ю.О. Тітов, Н.М. Бєлявіна, В.Я. Марків, член-кореспондент НАН України М.С. Слободяник, В.В. Чумак, В.П. Ящук

Особливості розподілу катіонів у п'ятишаровій перовскітоподібній структурі сполук та фаз типу $A_n B_n O_{3n+2}$

The crystal layer perovskite-like structures (LPS) of five-slab phases $Ca_{5-x}Sr_xTiNb_4O_{17}$ (x = 1, 2, 3, 4) have been determined by X-ray powder diffraction. The peculiarities of LPS of synthesized phases and the known five-slab compounds of the $A_5B^IB_4^{II}O_{17}$ type have been analyzed and the regularities of the distribution of B-type cations in the five-slab perovskite-like structure of compounds and phases of the $A_5B^IB_4^{II}O_{17}$ type have been determined.

Оксидним сполукам $A_n B_n O_{3n+2}$ (A=Ca, Sr, La–Sm, Na, Cd, Pb, B=Ti, Nb, Ta, Al, Cr, Ga, Fe, Sc; n — число шарів октаєдрів BO₆ у перовскітоподібному блоці і дорівнює 2–6) із шаруватою перовскітоподібною структурою (ШПС) притаманні унікальні сегнето-, п'єзо-електричні, електро- та нелінійно-оптичні властивості [1].

Одним з основних чинників, які визначають властивості сполук $A_n B_n O_{3n+2}$, є спосіб розподілу різнотипних катіонів по А- та В-позиціях їх ШПС. На відміну від катіонів у А-позиціях, особливості розподілу яких в сполуках $A_{n-4}^I A_4^{II} B_n O_{3n+2}$ з ШПС ($n \ge 5$) детально досліджено в роботі [2], закономірності локалізації катіонів у В-позиціях багатошарових перовскітоподібних блоків сполук типу $A_n B_n O_{3n+2}$ до останнього часу залишалися невизначеними.

Мета даної роботи — встановлення області існування п'ятишарових фаз у системі $Ca_5TiNb_4O_{17}-Sr_5TiNb_4O_{17}$, визначення їх кристалічної структури та аналіз особливостей розподілу катіонів кальцію, стронцію, титану та ніобію в п'ятишаровій ШПС фаз $Ca_{5-x}Sr_xTiNb_4O_{17}$, а також визначення закономірностей розподілу різнотипних катіонів у B-позиціях перовскітоподібних блоків ШПС індивідуальних п'ятишарових сполук $A_5B^IB_4^{II}O_{17}$ (A=Ca, Sr, La, Pr, Nd; B^I =Ti, Fe, Ga; B^{II} =Nb, Ti).

Синтез полікристалічних зразків $Ca_{5-x}Sr_xTiNb_4O_{17}$ (x = 1, 2, 3, 4) проводили термообробкою (1670 K, $\tau = 2$ год) шихти сумісноосаджених гідроксикарбонатів. За вихідні речовини використовували $Ca(NO_3)_2$, $Sr(NO_3)_2$ марки "хч", $TiCl_4$ марки "ч", $NbCl_5$ марки "осч", а як осаджувач — амонійно-карбонатний буферний розчин з pH ≈ 9 . Кристалічна структура фаз $Ca_{5-x}Sr_xTiNb_4O_{17}$ (x = 1, 2, 3, 4) досліджена методом порошку. Дифракційні спектри записано на дифрактометрі ДРОН-3 в дискретному режимі (крок сканування $0,03^\circ$, експозиція в точці 5 с) на мідному фільтрованому випромінюванні. Управління процесом зйомки, збирання інформації, первинна обробка дифракційних спектрів, а також структурні розрахунки виконано з використанням апаратно-програмного комплексу [3]. Вимірювання інтенсивності сигналу генерації другої оптичної гармоніки $I_{2\omega}$ IAF — Nd лазерного випромінювання ($\lambda_{\omega} = 1,064$ нм і $\lambda_{2\omega} = 0,532$ нм) полікристалічними зразками проведено за методикою роботи [4] (за еталони використано чотиришарові сегнетоелектрики $Ca_2Nb_2O_7$).

Рентгенофазовий аналіз термооброблених (1670 К, $\tau = 2$ год) зразків показав існування в системі Ca₅TiNb₄O₁₇-Sr₅TiNb₄O₁₇ безперервної області п'ятишарових фаз типу

ISSN 1025-6415 Доповіді Національної академії наук України, 2008, №1

137

 $Ca_{5-x}Sr_xTiNb_4O_{17}$ (1 < x < 4). Лінійний характер зміни періодів та об'ємів елементарних комірок фаз $Ca_{5-x}Sr_xTiNb_4O_{17}$ від складу дає підстави розглядати їх як неперервний ряд п'ятишарових твердих розчинів.

Дифрактограми фаз $Ca_{5-x}Sr_xTiNb_4O_{17}$ (x = 1, 2, 3, 4) подібні до дифрактограм п'ятишарових сполук $A_5^{II}TiNb_4O_{17}$ (A^{II} =Ca, Sr) і за аналогією з ними [5, 6] були проіндексовані в ромбічній сингонії. Систематика загасань та незначне значення інтенсивностей сигналу генерації другої гармоніки лазерного випромінювання зразками цих фаз ($I_{2\omega}$ для $Ca_{5-x}Sr_xTiNb_4O_{17}$ з x = 1, 2, 3, 4 становлять ~ 0,001 величини $I_{2\omega}$ для $Ca_2Nb_2O_7$ та $Sr_2Nb_2O_7$) дозволяють однозначно віднести ШПС $Ca_{5-x}Sr_xTiNb_4O_{17}$ до центросиметричної просторової групи Ртпп.

Початкову оцінку координатних параметрів атомів для вихідних моделей структур фаз $Ca_{5-x}Sr_xTiNb_4O_{17}$ проведено за відомими структурними даними для п'ятишарових сполук $A_5^{II}TiNb_4O_{17}$ (A^{II} =Ca, Sr) [5, 6]. Результати уточнення структури фаз $Ca_{5-x}Sr_xTiNb_4O_{17}$ (x = 1, 2, 3, 4) наведені у табл. 1, 2.

Структура досліджуваних фаз шарова, типова для представників сімейства $A_n B_n O_{3n+2}$ і подібна до ШПС вихідних сполук $Ca_5 TiNb_4O_{17}$ та $Sr_5 TiNb_4O_{17}$. Основними структурними одиницями фаз $Ca_{5-x}Sr_xTiNb_4O_{17}$ є двовимірні (безмежні в напрямах осей X і Z) перовскітоподібні блоки товщиною в 5 шарів з'єднаних вершинами деформованих октаедрів (Ti, Nb)O₆, які зсунуті один відносно одного на половину періоду *a* в напрямку осі X і чергуються вздовж осі Y. Зазначені перовскітоподібні блоки розділені шарами деформованих, об'єднаних спільними ребрами багатовершинників (A^{II})O_n таким чином, що безпосередній зв'язок між октаедрами BO₆ прилеглих перовскітоподібних блоків відсутній, а з'єднання блоків між собою досягається за допомогою міжблочних зв'язків — O-(A^{II})(3)-O-. Утворення зв'язків такого роду зумовлює зсув атомів (A^{II})(3) із кубооктаедричних пустот майже до границі перовскітоподібного блока, результатом чого є зменшення їх координаційного числа (до 9–10). Координаційний поліедр внутрішньоблочних атомів типу $A^{II}(1)$ і $A^{II}(2)$ є деформованим кубооктаедром.

Аналіз заповнення катіонних позицій у ШПС фаз $Ca_{5-x}Sr_xTiNb_4O_{17}$ показав, що числове співвідношення (або частка (ω)) катіонів кальцію і стронцію в позиціях типу А на краю та в проміжку перовскітоподібних блоків є майже таким, як співвідношення цих елементів у формулі фази (рис. 1). Позиції типу А в центрі перовскітоподібних блоків ШПС $Ca_{5-x}Sr_xTiNb_4O_{17}$ дещо збіднені катіонами кальцію і, відповідно, збагачені катіонами стронцію.

Незважаючи на стале (на відміну від катіонів типу A) співвідношення титану та ніобію в усіх фазах типу $\operatorname{Ca}_{5-x}\operatorname{Sr}_x\operatorname{TiNb}_4\operatorname{O}_{17}$, залежності $\omega(\operatorname{Ti},\operatorname{Nb}) = f(x)$ для B-позицій їх перовскітоподібних блоків є різнотипними (див. рис. 1), а розподіл катіонів титану та ніобію по позиціях блока носить частково впорядкований характер. Так, із збільшенням вмісту катіонів стронцію у твердому розчині $\operatorname{Ca}_{5-x}\operatorname{Sr}_x\operatorname{TiNb}_4\operatorname{O}_{17}$ відбувається зменшення числа катіонів титану на краю та в проміжку перовскітоподібного блока і значне (у два рази) збільшення числа катіонів титану в позиціях типу B у центрі блока. Зважаючи на лінійний характер залежностей $\omega(B) = f(x)$, найбільш вірогідною причиною такого перерозподілу катіонів титану і ніобію в ШПС фаз $\operatorname{Ca}_{5-x}\operatorname{Sr}_x\operatorname{TiNb}_4\operatorname{O}_{17}$ є вплив катіонів A-позиції.

Залежність характеру розподілу катіонів титану і ніобію в перовскітоподібних блоках п'ятишарових фаз $Ca_{5-x}Sr_xTiNb_4O_{17}$ від якісного складу та кількісного співвідношення атомів А-позиції ускладнює використання одержаних результатів для коректного виявлення факторів, які визначають розподіл катіонів типу В у ШПС сполук типу $A_nB_nO_{3n+2}$.

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2008, № 1

Tаблиця 1. Кристалографічні характеристики сполук A_5^{II} TiNb₄O₁₇ ($A^{II} = Ca, Sr$) та фаз $Ca_{5-x}Sr_xTiNb_4O_{17}$ з x = 1, 2, 3, 4

Склад	$Ca_5 TiNb_4 O_{17}$ [5]	$Ca_4 SrTiNb_4O_{17} \\$	$Ca_3Sr_2TiNb_4O_{17} \\$	$Ca_2Sr_3TiNb_4O_{17}$	$CaSr_4TiNb_4O_{17}$	$\mathrm{Sr}_5\mathrm{TiNb}_4\mathrm{O}_{17}$ [6]
Просторова група	Pmnn (no 58)	Pmnn (no 58)	Pmnn (no 58)	Pmnn (no 58)	Pmnn (no 58)	Pmnn (no 58)
Періоди елементарної	a = 0,38447(5)	a = 0,3871(1)	a = 0,38899(5)	a = 0,3910(3)	a = 0,3929(1)	a = 0,39525(3)
комірки, нм	b = 3,2051(5)	b = 3,215(2)	b = 3,22124(7)	b = 3,233(3)	b = 3,245(1)	b = 3,2515(7)
	c = 0,54875(7)	c = 0,5533(3)	c = 0,5571(4)	c = 0,5608(5)	c = 0,5636(2)	c = 0,56614(4)
Незалежні відбиття	277	172	252	171	173	—
Загальний ізотропний	$0,31(5) \cdot 10^{-2}$	$3,07(5) \cdot 10^{-2}$	$3,51(4) \cdot 10^{-2}$	$3,82(8) \cdot 10^{-2}$	$3,88(9) \cdot 10^{-2}$	—
B -фактор, $нм^2$						
Параметр текстури	—	—	—	$\tau = 1,29(2),$	$\tau = 1,22(3),$	—
				вісь текстури [010]	вісь текстури [010]	
Фактор недостовірності	$R_W = 0,077$	$R_W = 0,069$	$R_W = 0,075$	$R_W = 0,080$	$R_W = 0.087$	$R_W = 0,068$

Таблиця 2. Характер заповнення A- і B-позицій у ШПС сполук A_5^{II} TiNb₄O₁₇ (A^{II} = Ca, Sr) та фаз Ca_{5-x}Sr_xTiNb₄O₁₇ з x = 1, 2, 3, 4

Місцезна- ходження позиції в блоці	Склад	Позиція А	Заповнення позиції типу А в даному місці блока (xCa + ySr)	Позиція В	Заповнення позиції типу В в даному місці блока (xTi + yNb)	Склад	Позиція А	Заповнення позиції типу А в даному місці блока (xCa + ySr)	Позиція В	Заповнення позиції типу В в даному місці блока (x Ti + y Nb)
Край	$Ca_5TiNb_4O_{17}$ [5]	A3	1Ca	B2	$0{,}15\mathrm{Ti}+0{,}85\mathrm{Nb}$	$Ca_2Sr_3TiNb_4O_{17} \\$	A3	$0{,}44\mathrm{Ca}+0{,}56\mathrm{Sr}$	B2	$0,10\mathrm{Ti}+0,90\mathrm{Nb}$
Проміжок		A1	1Ca	B1	$0,28\mathrm{Ti}+0,72\mathrm{Nb}$		A1	$0{,}38\mathrm{Ca}+0{,}62\mathrm{Sr}$	B1	$0,24\mathrm{Ti}+0,76\mathrm{Nb}$
Центр		A2	1Ca	B3	$0,\!19\mathrm{Ti}+0,\!81\mathrm{Nb}$		A2	0,36 Ca $+$ 0,64Sr	B3	$0,32\mathrm{Ti}+0,68\mathrm{Nb}$
Край	$Ca_4SrTiNb_4O_{17}$	A3	0,85Ca + 0,15Sr	B2	0,12Ti + 0,88Nb	$CaSr_4TiNb_4O_{17}$	A3	$0,26\mathrm{Ca}+0,74\mathrm{Sr}$	B2	$0,09{ m Ti} + 0,91{ m Nb}$
Проміжок		A1	$0,80\mathrm{Ca}+0,20\mathrm{Sr}$	B1	0,27 Ti + 0,73 Nb		A1	$0,20\mathrm{Ca}+0,80\mathrm{Sr}$	B1	0,23 Ti + 0,77 Nb
Центр		A2	$0{,}70\mathrm{Ca}+0{,}30\mathrm{Sr}$	B3	$0{,}22\mathrm{Ti}+0{,}78\mathrm{Nb}$		A2	$0{,}08\mathrm{Ca}+0{,}92\mathrm{Sr}$	B3	$0{,}36\mathrm{Ti}+0{,}64\mathrm{Nb}$
Край	$Ca_3Sr_2TiNb_4O_{17}$	A3	0,62Ca + 0,38Sr	B2	$0,13{ m Ti} + 0,87{ m Nb}$	$Sr_5TiNb_4O_{17}$ [6]	A3	$1\mathrm{Sr}$	B2	$0,10{ m Ti} + 0,90{ m Nb}$
Проміжок		A1	$0,\!62\mathrm{Ca}+0,\!38\mathrm{Sr}$	B1	$0,25\mathrm{Ti}+0,75\mathrm{Nb}$		A1	$1\mathrm{Sr}$	B1	$0,18\mathrm{Ti}+0,82\mathrm{Nb}$
Центр		A2	$0{,}51\mathrm{Ca}+0{,}49\mathrm{Sr}$	B3	$0{,}26\mathrm{Ti}+0{,}74\mathrm{Nb}$		A2	$1\mathrm{Sr}$	B3	$0{,}44\mathrm{Ti}+0{,}56\mathrm{Nb}$

Примітка. Похибка визначення ступеня заповнення різнотипними катіонами А- і В-позицій ШПС не перевищує 0,02.

Рис. 1. Залежності частки заповнення (ω) катіонами кальцію та титану позицій на краю, в проміжку та в центрі перовскітоподібних блоків сполук $A_5^{II} TiNb_4O_{17}$ ($A^{II} = Ca, Sr$) та твердих розчинів $Ca_{5-x}Sr_xTiNb_4O_{17}$ від ступеня заміщення атомів А-позиції ШПС (значення x). Пунктиром (a) позначено вигляд залежності $\omega(Ca_2) = f(x)$ у випадку статистичного розподілу катіонів

кальцію та стронцію в центрі перовскітоподібного блока

У зв'язку з цим, для встановлення закономірностей розподілу різнотипних катіонів у кисневооктаедричних позиціях п'ятишарових перовскітоподібних блоків представників родини сполук та фаз типу $A_n B_n O_{3n+2}$ було використано одержані нами раніше дані про будову 7 п'ятишарових індивідуальних сполук загального складу $A_5 B^I B_4^{II} O_{17}$ ($Ln_5 B^I Ti_4 O_{17}$ ($Ln = La, Pr, Nd, B^I = Fe, Ga$), $Ca_5 TiNb_4 O_{17}$) [5, 7–9] та дані про будову $Sr_5 TiNb_4 O_{17}$ [6]. У ШПС зазначених сполук всі позиції типу А заповнені лише однаковими атомами.

Зіставлення особливостей розподілу катіонів типів B^{I} і B^{II} у ШПС сполук $A_5B^{I}B_4^{II}O_{17}$, їх кристалохімічних характеристик та характеру (ступеня іонності) зв'язків A–O, B^{I} –O, B^{II} –O показало, що одним із основних чинників, які визначають характер заповнення позицій типу B у їх ШПС, є заряд катіона типу B.

Для низькозарядних катіонів типу B^{I} характерна локалізація в центрі перовскітоподібного блока, високозарядні ж катіони типу B^{II} займають позиції на границях перовскітоподібних блоків (табл. 3). Так, у ШПС усіх 8 відомих індивідуальних п'ятишарових сполук загального складу $A_5 B^{I} B_4^{II} O_{17}$ кисневооктаедричні позиції на краю блока повністю заповнені

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2008, № 1

140

Позиція	Місцезнаходження позиції в блоці	Склад	$I_{\rm B^{I}O}$	Заповнення позиції типу В у даному місці блока $(xB + yB^{I})$	Склад	$I_{\rm B^{I}O}$	Заповнення позиції типу В у даному місці блока (xB + yB ^I)
B2	Край	La ₅ FeTi ₄ O ₁₇ [7]	0,28	$0\mathrm{Fe} + 1\mathrm{Ti}$	La ₅ GaTi ₄ O ₁₇ [8]	0,30	0Ga + 1Ti
B1	Проміжок			0 Fe + 1 Ti			$0.25\mathrm{Ga}+0.75\mathrm{Ti}$
B3	Центр			1 Fe + 0 Ti			$0,5\mathrm{Ga}+0,5\mathrm{Ti}$
B1	Край	$Pr_5FeTi_4O_{17}$ [7]	0,28	$0\mathrm{Fe}$ $+1\mathrm{Ti}$	Pr ₅ GaTi ₄ O ₁₇ [9]	$0,\!30$	0Ga + 1Ti
B2				0 Fe + 1 Ti			0Ga + 1Ti
B3	Проміжок			$0\mathrm{Fe}$ $+1\mathrm{Ti}$			$0,5\mathrm{Ga}+0,5\mathrm{Ti}$
B4				0 Fe + 1 Ti			0Ga + 1Ti
B5	Центр			1 Fe + 0 Ti			0Ga + 1Ti
B6				1 Fe + 0 Ti			1Ga + 0Ti
B1	Край	$Nd_5FeTi_4O_{17}$ [7]	0,28	0 Fe + 1 Ti	$Nd_5GaTi_4O_{17}$ [9]	$0,\!30$	0Ga + 1Ti
B2				0 Fe + 1 Ti			0Ga + 1Ti
B3	Проміжок			$0\mathrm{Fe}$ $+1\mathrm{Ti}$			$0.5 \mathrm{Ga} + 0.5 \mathrm{Ti}$
B4				0 Fe + 1 Ti			0Ga + 1Ti
B5	Центр			1 Fe + 0 Ti			0Ga + 1Ti
B6				1 Fe + 0 Ti			1Ga + 0Ti
B2	Край	$Ca_5 TiNb_4 O_{17}$ [5]	0,31	$0,15\mathrm{Ti}+0,85\mathrm{Nb}$	$Sr_5TiNb_4O_{17}$ [6]	0,30	$0,10\mathrm{Ti}+0,90\mathrm{Nb}$
B1	Проміжок			$0,\!28\mathrm{Ti}+0,\!72\mathrm{Nb}$			$0,\!18\mathrm{Ti}+0,\!82\mathrm{Nb}$
B3	Центр			$0,\!19\mathrm{Ti}+0,\!81\mathrm{Nb}$			$0{,}44\mathrm{Ti}+0{,}56\mathrm{Nb}$

Таблиця 3. Характер заповнення В-позицій у ШПС сполук $A_5 B^I B_4^{II} O_{17}$ та величини відносної іонності зв'язку $B^I - O(I_{B^IO})^*$

* Величина відносної іонності зв'язку $B^{I}-O(I_{B^{I}O})$ є відношенням іонності ізольованого зв'язку $B^{I}-O(i_{B^{I}O})$ до суми іонностей ізольованих зв'язків A-O, $B^{I}-O$ та $B^{II}-O$: $I_{B^{I}O} = i_{B^{I}O}/\Sigma(i_{AO}+i_{B^{I}O}+i_{B^{II}O})$. Величини іонності ізольованих зв'язків i_{AO} , $i_{B^{I}O}$ та $i_{B^{II}O}$ у сполуках $A_5B^{I}B_4^{II}O_{17}$ визначали із використанням шкали кристалічних електронегативностей [10]. більш високозарядними катіонами B^{I} (сполуки $Ln_5B^{I}Ti_4O_{17}$ ($Ln = La, Pr, Nd, B^{I} = Fe, Ga$)), або частка цих катіонів на краю блока перевищує статистичну (сполуки $A_5^{II}TiNb_4O_{17}$ ($A^{II} = Sr, Ca$)).

Найбільш цікавим виявився характер заповнення позицій в центрі перовскітоподібного блока. Так, якщо в ШПС $Ln_5FeTi_4O_{17}$ (Ln = La, Pr, Nd) позиції у центрі блока заселені виключно більш низькозарядними катіонами заліза, то в ШПС $Ln_5GaTi_4O_{17}$ (Ln = La, Pr, Nd) та $Sr_5TiNb_4O_{17}$ має місце переважна локалізація низькозарядних катіонів типу В в центрі та в проміжку блока. Лише в ШПС $Ca_5TiNb_4O_{17}$ частка катіонів титану в центрі блока майже відповідає статистичному розподілу катіонів титану і ніобію (див. табл. 3), але слід зазначити, що в цьому випадку переважна локалізація катіонів титану має місце в проміжку перовскітоподібного блока ШПС.

Аналіз особливостей розподілу катіонів В^I і В^{II} по позиціях перовскітоподібних блоків індивідуальних п'ятишарових сполук типу $A_5B^IB_4^{II}O_{17}$ показав, що ступінь впорядкованості і характер розміщення катіонів типу В виявляють також залежність і від величини відносної іонності зв'язку В^I–О (I_{BIO}) (див. табл. 3). При низьких (0,28) значеннях I_{BIO} має місце повне впорядкування катіонів типу В^I і В^{II} по позиціях перовскітоподібних блоків із розміщенням катіонів В^I лише в центрі блоків (сполуки Ln₅FeTi₄O₁₇), збільшення величини I_{BIO} до 0,30 призводить до частково впорядкованого розміщення катіонів типу В^I у блоках з їх переважною локалізацією в центрі та в проміжку блока (сполуки Ln₅GaTi₄O₁₇) та Sr₅TiNb₄O₁₇). У випадку $I_{BIO} = 0,31$ (сполука Ca₅TiNb₄O₁₇) переважна локалізація катіонів типу В^I (Ti⁴⁺) має місце в позиціях проміжку перовскітоподібного блока.

Слід зазначити, що встановлені закономірності заповнення кисневооктаедричних позицій у ШПС сполук типу $A_5B^IB_4^{II}O_{17}$ повністю виконуються для більшості п'ятишарових фаз $Ca_{5-x}Sr_xTiNb_4O_{17}$, за винятком лише розподілу катіонів титану в перовскітоподібних блоках фази $Ca_4SrTiNb_4O_{17}$, який близький до такого в ШПС сполуки $Ca_5TiNb_4O_{17}$.

- Lichtenberg F., Herrnberger A., Wiedenmann K., Mannhart J. Synthesis of perovskite-related layered A_nB_nO_{3n+2} = ABO_x type niobates and titanates and study of their structural, electric and magnetic properties // Progress in Solid State Chem. - 2001. - 29, No 1. - P. 1-70.
- 2. *Тітов Ю. О., Слободяник М. С., Белявіна Н. М. та ін.* Кристалічна структура SrPr₄Ti₅O₁₇ і CaLn₄Ti₅O₁₇ (Ln=Pr, Nd) // Доп. НАН України. 2005. № 4. С. 136–142.
- Марків В. Я., Белявіна Н. М. Апаратно-програмний комплекс для дослідження полікристалічних речовин за їх дифракційними спектрами // Тез. доп. II Міжнар. конф. "КФМ 97". – Львів, 1997. – С. 260–261.
- Леонов А. П., Стефанович С. Ю. Получение и применение сегнетоматериалов в народном хозяйстве. Москва: МДНТП, 1984. – С. 21–36.
- Titov Y. A., Belyavina N. M., Markiv V. Ya. et al. Crystal structure of Ca₅TiNb₄O₁₇ // J. of Alloys and Compounds. - 2005. - 387, No 1. - /2. - P. 82-85.
- Drews A. R., Wong-Ng W., Roth R. S., Vanderah T. A. Preparation and crystal structure of Sr₅TiNb₄O₁₇ // Mat. Res. Bulletin. – 1996. – **31**, No 2. – P. 153–162.
- 7. *Тітов Ю. О., Белявіна Н. М., Марків В. Я. та ін.* Кристалічна структура Ln₅Ti₄FeO₁₇ (Ln=La, Pr, Nd) // Доп. НАН України. 2005. № 12. С. 149–154.
- Titov Y. A., Belyavina N. M., Markiv V. Ya. et al. Crystal structure of La₅Ti₄GaO₁₇ // J. Alloys and Compounds. - 2007. - 430, No 1./2. - P. 81-84.
- 9. *Тітов Ю. О., Белявіна Н. М., Марків В. Я. та ін.* Кристалічна структура Ln₅Ti₄GaO₁₇ (Ln=Pr,Nd) // Доп. НАН України. 2006. № 8. С. 181–186.
- 10. Бацанов С. С. Система электроотрицательностей и эффективные заряды атомов для кристаллических соединений // Журн. неорган. химии. – 1975. – **20**, № 10. – С. 2595–2600.

Київський національний університет ім. Тараса Шевченка Надійшло до редакції 10.04.2007

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2008, № 1

142