О ЛОКАЛЬНОМ ПОВЕДЕНИИ ОТОБРАЖЕНИЙ С НЕОГРАНИЧЕННОЙ ХАРАКТЕРИСТИКОЙ КВАЗИКОНФОРМНОСТИ

Е. А. Севостьянов

Аннотация. Изучаются пространственные отображения, более общие, чем отображения с ограниченным искажением по Решетняку. Исследованы вопросы, связанные с локальным поведением дифференцируемых почти всюду отображений, обладающих свойствами $N,\,N^{-1},\,ACP$ и $ACP^{-1},\,$ характеристика квазиконформности которых удовлетворяет некоторым условиям, ограничивающим ее рост. Показано, что в любой окрестности существенно особой точки модуль значения отображения, удовлетворяющего указанным выше требованиям, может быть больше значения логарифма обратной величины радиуса шара, возведенного в произвольную положительную степень.

Ключевые слова: отображение с ограниченным и конечным искажением, модуль семейства кривых.

1. Введение

Всюду далее D — область в \mathbb{R}^n , $n \geq 2$, m — мера Лебега \mathbb{R}^n , $\operatorname{dist}(A, B)$ — евклидово расстояние между множествами $A,B\subset\mathbb{R}^n,$ $\mathrm{dist}(A,B)=\inf_{x\in A,y\in B}|x-y|,$ (x,y) обозначает (стандартное) скалярное произведение векторов $x,y\in\mathbb{R}^n,$ $\operatorname{diam} A$ — евклидов диаметр множества $A \subset \mathbb{R}^n, \ B(x_0,r) = \{x \in \mathbb{R}^n : |x-x_0| < 0\}$ r}, $\mathbb{B}^n:=B(0,1),\ S(x_0,r)=\{x\in\mathbb{R}^n:|x-x_0|=r\},\ \mathbb{S}^{n-1}:=S(0,1),\ \omega_{n-1}$ означает площадь сферы \mathbb{S}^{n-1} в $\mathbb{R}^n,\ \Omega_n$ — объем единичного шара \mathbb{B}^n в $\mathbb{R}^n,$ запись $f:D\to\mathbb{R}^n$ предполагает, что отображение f, заданное в области D, непрерывно. Как обычно, пишем $f \in W^{1,n}_{\mathrm{loc}}(D)$, если все координатные функции $f = (f_1, \ldots, f_n)$ обладают обобщенными частными производными первого порядка, локально интегрируемыми в D в степени n. Отображение $f:D\to\mathbb{R}^n$ называется $\partial ucкретным$, если прообраз $f^{-1}(y)$ каждой точки $y \in \mathbb{R}^n$ состоит из изолированных точек, и открытым, если образ любого открытого множества $U\subset D$ является открытым множеством в \mathbb{R}^n . Будем говорить, что отображение $f:D\to\mathbb{R}^n$ обладает N-свойством Лузина или просто N-свойством, если из условия m(E) = 0, $E \subset D$, следует, что m(f(E)) = 0. Аналогично говорят, что отображение $f: D \to \mathbb{R}^n$ обладает N^{-1} -свойством, если из условия m(E) = 0, $E\subset\mathbb{R}^n$, вытекает, что $m(f^{-1}(E))=0$, где, как обычно, запись $f^{-1}(E)$ обозначает полный прообраз множества E при отображении f.

Напомним, что отображение $f:D\to \mathbb{R}^n$ называется *отображением с ограниченным искажением*, если выполнены следующие условия:

- 1) $f \in W_{\text{loc}}^{1,n}$
- 2) якобиан $J(x,f):=\det f'(x)$ отображения f в точке $x\in D$ сохраняет знак п. в. в D,

 $3) \|f'(x)\|^n \le K|J(x,f)|$ при п. в. $x \in D$ и некоторой постоянной $K < \infty$, где, как обычно, $\|f'(x)\| := \sup_{h \in \mathbb{R}^n: |h|=1} |f'(x)h|$ (см., например, $[1, \, \text{гл. I}, \, \S\, 3]$ либо определение 2.1 в $[2, \, \text{гл. I}, \, \text{разд. 2}]$).

Начало интенсивных исследований пространственных отображений с ограниченным искажением положено Ю. Г. Решетняком. В его работах, в частности, показано, что отображения с ограниченным искажением дискретны и открыты (см. соответственно теоремы 6.3 и 6.4 в [1, гл. II]), дифференцируемы почти всюду (см. теорему 4 в [3]) и обладают N-свойством Лузина (см. [1, гл. II, теорема 6.2]). С другой стороны, Боярским и Иванцом было установлено, что отображения с ограниченным искажением обладают N^{-1} -свойством (см. теорему 8.1 в [4]). Напомним, что изолированная точка x_0 границы ∂D области D называется устранимой для отображения f, если существует конечный предел $\lim_{x\to x_0} f(x)$. Если $f(x)\to\infty$ при $x\to x_0$, точку x_0 будем называть полюсом. Изолированная точка x_0 границы ∂D называется существенно особой точкой отображения $f:D\to\mathbb{R}^n$, если при $x\to x_0$ нет ни конечного, ни бесконечного предела. В 1972 г. в работе Вяйсяля доказано следующее утверждение (см. теорему 4.2 в [5]).

Утверждение 1. Пусть $b \in D$ и $f: D \setminus \{b\} \to \mathbb{R}^n$ — отображение c ограниченным искажением. Предположим, что существует некоторое число $\delta > 0$ такое, что при всех $x \in B(b, \delta) \setminus \{b\}$ имеет место неравенство

$$|f(x)| \le C|x-b|^{-p},\tag{1}$$

где p>0 и C>0 — некоторые постоянные. Тогда точка b является для отображения f либо полюсом, либо устранимой особой точкой.

Целью настоящей работы является доказательство утверждения 1 для более общих классов отображений, включающих в себя класс отображений с ограниченным искажением. Дифференцируемые п. в. отображения класса $ACP \cap ACP^{-1}$, обладающие N- и N^{-1} -свойствами Лузина, называемые *отображениями с конечным искажением длины*, введены О. Мартио, В. Рязановым, У. Сребро и Э. Якубовым в 2002 г. (см., например, [6] или [7, разд. 8]) и в дальнейшем изучались при рассмотрении различных проблем. Исследование этих отображений актуально в первую очередь в связи с активным изучением общей теории отображений с конечным искажением (см., например, [8, гл. 20; 9, гл. 6; 10–14]). В частности, их изучение имеет некоторые полезные приложения, относящиеся, например, к классам Соболева (см. последний раздел настоящей работы).

 $Kривой \gamma$ называем непрерывное отображение отрезка [a,b] (открытого интервала (a,b) либо полуоткрытого интервала вида [a,b) или (a,b]) в \mathbb{R}^n , γ : $[a,b] \to \mathbb{R}^n$. Под семейством кривых Γ подразумевается некоторый фиксированный набор кривых γ , а $f(\Gamma) = \{f \circ \gamma \mid \gamma \in \Gamma\}$. Следующие определения могут быть найдены, например, в [15, гл. [1,] разд. [1-6]. Борелевская функция ρ : [1,] [1-6] ворелевская функция [1,] [1,] [1-6] ворелевская функция [1,] [1,] [1,] [1,] называется [1,] [1,] для семейства [1,] кривых [1,] если криволинейный интеграл первого рода от функции [1,] по каждой (локально спрямляемой) кривой [1,] [1,] удовлетворяет условию [1,] [1,

случае будем писать $\rho \in \operatorname{adm} \Gamma$. $\operatorname{Modynem}$ семейства кривых Γ называется величина $M(\Gamma) = \inf_{\rho \in \operatorname{adm} \Gamma} \int_D \rho^n(x) \, dm(x)$. Свойства модуля в некоторой мере аналогичны свойствам меры Лебега m в \mathbb{R}^n . Именно, модуль пустого семейства

кривых равен нулю, $M(\varnothing)=0$, он обладает свойством монотонности относительно семейств кривых Γ_1 и $\Gamma_2:\Gamma_1\subset\Gamma_2\Rightarrow M(\Gamma_1)\leq M(\Gamma_2)$, а также свойством полуаддитивности: $M\left(\bigcup_{i=1}^{\infty}\Gamma_i\right)\leq\sum_{i=1}^{\infty}M(\Gamma_i)$ (см. теорему 6.2 в [15]). Говорят, что некоторое свойство выполнено для n. e. $\kappa pue ux$ области D, если оно имеет место для всех кривых, лежащих в D, кроме некоторого их семейства, модуль которого равен нулю.

Пусть $\Delta \subset \mathbb{R}$ — открытый интервал числовой прямой, $\gamma: \Delta \to \mathbb{R}^n$ — локально спрямляемая кривая. В таком случае, очевидно, существует единственная неубывающая функция длины $l_\gamma: \Delta \to \Delta_\gamma \subset \mathbb{R}$ с условием $l_\gamma(t_0) = 0, \ t_0 \in \Delta$, такая, что значение $l_\gamma(t)$ равно длине подкривой $\gamma|_{[t_0,t]}$ кривой γ , если $t > t_0$, и $-l(\gamma\mid_{[t,t_0]})$, если $t < t_0, \ t \in \Delta$. Пусть $g: |\gamma| \to \mathbb{R}^n$ — непрерывное отображение, где $|\gamma| = \gamma(\Delta) \subset \mathbb{R}^n$. Предположим, что кривая $\tilde{\gamma} = g \circ \gamma$ также локально спрямляема. Тогда, очевидно, существует единственная неубывающая функция $L_{\gamma,g}: \Delta_\gamma \to \Delta_{\tilde{\gamma}}$ такая, что $L_{\gamma,g}(l_\gamma(t)) = l_{\tilde{\gamma}}(t)$ при всех $t \in \Delta$. Кривая $\gamma \in D$ называется (полным) поднятием кривой $\tilde{\gamma} \in \mathbb{R}^n$ при отображении $f: D \to \mathbb{R}^n$, если $\tilde{\gamma} = f \circ \gamma$.

Будем говорить, что отображение $f:D\to\mathbb{R}^n$ принадлежение классу ACP в области D, и писать $f\in ACP$, если для п. в. кривых γ в области D кривая $\tilde{\gamma}=f\circ\gamma$ локально спрямляема и функция длины $L_{\gamma,f}$, введенная выше, абсолютно непрерывна на всех замкнутых интервалах, лежащих в Δ_{γ} , для п. в. кривых γ в D. Предположим, что $f:D\to\mathbb{R}^n$ — дискретное отображение, тогда может быть определена функция $L_{\gamma,f}^{-1}$. В таком случае будем говорить, что f обладает свойством ACP^{-1} в области D, и писать $f\in ACP^{-1}$, если для п. в. кривых $\tilde{\gamma}\in f(D)$ каждое поднятие γ при отображении $f,\ f\circ\gamma=\tilde{\gamma},\$ является локально спрямляемой кривой и, кроме того, обратная функция $L_{\gamma,f}^{-1}$ абсолютно непрерывна на всех замкнутых интервалах, лежащих в $\Delta_{\tilde{\gamma}}$, для п. в. кривых $\tilde{\gamma}$ в f(D) и каждого поднятия γ кривой $\tilde{\gamma}=f\circ\gamma$.

Пусть $f:D\to\mathbb{R}^n$ — дискретное отображение, тогда f будем называть отображением c конечным искажением длины и писать $f\in FLD$, если f дифференцируемо п. в. в D, обладает N- и N^{-1} -свойствами и, кроме того, $f\in ACP\cap ACP^{-1}$.

Замечание 1. Понятие отображений с конечным искажением длины может быть также приведено и в более общем случае для отображений, априори не предполагающихся дискретными, как это сделано, например, в работе [6] (см. также разд. 8.1 в [7]). Приведенное в настоящей статье определение, данное для дискретных отображений, эквивалентно тому, которое может быть дано в указанной общей ситуации (см., например, разд. 8.1 и следствие 8.1 в [7], а также следствие 3.14 в [6]). В связи с этим далее мы упоминаем о требовании дискретности отображения, когда это необходимо.

Свойство ACP для класса $W_{\rm loc}^{1,n}$, включающего в себя, в частности, класс отображений с ограниченным искажением, известно как лемма Фугледе (см., например, теорему 28.2 в [15]). Кроме того, свойство ACP^{-1} для этих же отображений установлено Е. А. Полецким [16, лемма 6]. Исходя из приведенных определений и комментарий, заключаем, что произвольное отображение f с ограниченным искажением является также и отображением с конечным искажением длины, $f \in FLD$ (см. также теорему 4.7 в [6] либо теорему 8.2 в [7]).

в точке $x_0 \in D$ и писать $\varphi \in FMO(x_0)$, если

$$\limsup_{\varepsilon \to 0} \frac{1}{\Omega_n \varepsilon^n} \int_{B(x_0, \varepsilon)} |\varphi(x) - \overline{\varphi}_{\varepsilon}| \, dm(x) < \infty,$$

где $\overline{\varphi}_{\varepsilon}=\frac{1}{\Omega_n \varepsilon^n}\int\limits_{B(x_0,\varepsilon)}\varphi(x)\ dm(x)$. Функции с конечным средним колебанием

введены А. Игнатьевым и В. Рязановым в работе [17] (см. также разд. 11.2 в [7]) и представляют собой обобщение функций класса BMO, т. е. с ограниченным средним колебанием по Джону — Ниренбергу [18].

Полагаем $l(f'(x)):=\inf_{h\in\mathbb{R}^n:|h|=1}|f'(x)h|$. Напомним, что *внутренняя дила-*

тация отображения f в точке x определяется как $K_I(x,f) = \frac{|J(x,f)|}{l(f'(x))^n}$, если $J(x,f) \neq 0$, $K_I(x,f) = 1$, если f'(x) = 0, и $K_I(x,f) = \infty$ в остальных случаях. Внешняя дилатация отображения f в точке x есть величина $K_O(x,f) = \frac{\|f'(x)\|^n}{|J(x,f)|}$, если $J(x,f) \neq 0$, $K_O(x,f) = 1$, если f'(x) = 0, и $K_O(x,f) = \infty$ в остальных точках. Хорошо известно, что $K_I(x,f) \leq K_O^{n-1}(x,f)$ всюду, где эти величины определены корректно (см. соотношения (2.7) и (2.8) в [1, гл. [1, разд. [2.1]. Из сказанного выше, а также определения отображений с ограниченным искажением, суть которого, в частности, сводится к выполнению [1,]0. В. неравенства вида [1,]1 жазанных выше, при [1,]2 ж выполняется неравенство [1,]3 указанных выше, при [1,]4 выполняется неравенство [1,]5 соображений [1,]6, указанных выше, при [1,]7 выполняется неравенство [1,]8. Основной результат настоящей статьи заключает в себе следующее

Утверждение 1'. Пусть $b \in D$ и $f: D \setminus \{b\} \to \mathbb{R}^n$ — открытое дискретное дифференцируемое п. в. отображение, $f \in ACP \cap ACP^{-1}$, обладающее N- и N^{-1} -свойствами Лузина. Предположим, что существует некоторое число $\delta > 0$ такое, что при всех $x \in B(b, \delta) \setminus \{b\}$ имеет место неравенство

$$|f(x)| \le C(\log(1/|x-b|))^p,$$
 (2)

где p>0 и C>0 — некоторые постоянные. Пусть, кроме того, существует измеримая по Лебегу функция $Q:D\to [1,\infty]$ такая, что $K_I(x,f)\leq Q(x)$ при п. в. $x\in D$ и $Q(x)\in FMO(b)$. Тогда точка b является для отображения f либо полюсом, либо устранимой особой точкой.

Замечание 2. Условие (2) является более сильным, чем условие (1), и из утверждения 1' следует утверждение 1.

2. Предварительные сведения. Основная лемма

Всюду далее для произвольной области $G\subset D$ такой, что $\overline{G}\subset D$, и произвольного $y\in f(G)\setminus f(\partial G)$ символ $\mu(y,f,G)$ обозначает топологический индекс отображения f в точке y относительно области G (см., например, $[1, \, \text{гл. II}, \, \S \, 2])$. Везде ниже подразумеваем, что отображение f сохраняет ориентацию, т. е. $\mu(y,f,G)>0$ для всех указанных выше y и G, если не оговорено противное. Пусть $f:D\to \mathbb{R}^n$ — произвольное отображение, и пусть существует область $G\subset D, \, \overline{G}\subset D, \, \text{такая}, \, \text{что } \, \overline{G}\cap f^{-1}(f(x))=\{x\}$. Тогда величина $\mu(f(x),f,G),$ называемая локальным топологическим индексом, не зависит от выбора области G и обозначается символом i(x,f). Следующие определения см., например, в $[2, \, \text{гл. II}, \, \text{п. 3}], \, \text{а также в } [5, \, \text{разд. 3.11}]. \, \text{Пусть } f:D\to \mathbb{R}^n$ — произвольное отображение, $\beta:[a,b)\to \mathbb{R}^n$ — некоторая кривая и $x\in f^{-1}(\beta(a))$. Кривая

 $\alpha:[a,c)\to D$ называется максимальным поднятием кривой β при отображении f с началом в точке x, если (1) $\alpha(a)=x;$ (2) $f\circ\alpha=\beta|_{[a,c)};$ (3) для $c< c'\leq b$ не существует кривой $\alpha':[a,c')\to D$ такой, что $\alpha=\alpha'|_{[a,c)}$ и $f\circ\alpha=\beta|_{[a,c')}$.

Пусть x_1, \ldots, x_k — различные точки множества $f^{-1}(\beta(a))$ и $m = \sum_{i=1}^k i(x_i, f)$. Говорят, что последовательность кривых $\alpha_1, \ldots, \alpha_m$ есть максимальная последовательность поднятий кривой β при отображении f c началом ϵ точках x_1, \ldots, x_k , если

- (а) каждая кривая α_j есть максимальное поднятие кривой β при отображении f,
 - (b) $\operatorname{card}\{j : a_j(a) = x_i\} = i(x_i, f), 1 \le i \le k,$
 - (c) $\operatorname{card}\{j: a_j(t) = x\} \leq i(x, f)$ для всех $x \in D$ и при всех t.

Пусть f — открытое дискретное отображение и $x_1, \ldots, x_k \in f^{-1}(\beta(a))$. Тогда кривая β имеет максимальную последовательность поднятий при отображении f с началом в точках x_1, \ldots, x_k (см. [2, гл. II, теорема 3.2]). Следующее утверждение доказано автором (см., например, [19, теорема 3.1]).

Предложение 1. Пусть $f: D \to \mathbb{R}^n$ — открытое дискретное дифференцируемое п. в. отображение, $f \in ACP \cap ACP^{-1}$, обладающее N- и N^{-1} -свойствами Лузина, Γ — семейство кривых в D, Γ' — семейство кривых в \mathbb{R}^n и m — натуральное число такое, что выполнено следующее условие. Для каждой кривой $\beta \in \Gamma'$ найдутся кривые $\alpha_1, \ldots, \alpha_m$ семейства Γ такие, что $f \circ \alpha_j \subset \beta$ для всех j и равенство $\alpha_j(t) = x$ имеет место при всех $x \in G$, всех t и не более чем i(x, f) индексах j. Тогда

$$M(\Gamma') \le \frac{1}{m} \int_{D} K_{I}(x, f) \rho^{n}(x) dm(x)$$
(3)

для каждой функции $\rho \in \operatorname{adm} \Gamma$.

В частности, предложение 1 уточняет результат О. Мартио, В. И. Рязанова, У. Сребро и Э. Якубова, показавших справедливость его заключения при m=1(см., например, теорему 6.10 в [6] либо теорему 8.6 в [7]). Для отображения f: $D \to \mathbb{R}^n$, множества $E \subset D$ и $y \in \mathbb{R}^n$ определим функцию кратности N(y, f, E)как число прообразов точки y в множестве E, т. е. $N(y, f, E) = \operatorname{card}\{x \in E:$ f(x)=y}. Далее символ $\Gamma(E,F,D)$ означает семейство всех кривых $\gamma:[a,b] \to$ \mathbb{R}^n , которые соединяют E и F в D, т. е. $\gamma(a) \in E$, $\gamma(b) \in F$ и $\gamma(t) \in D$ при $t \in (a,b)$. Компактное множество $G \subset \mathbb{R}^n$ условимся называть *множеством* нулевой емкости и будем писать сар G=0, если существует континуум $T\subset$ \mathbb{R}^n такой, что $M(\Gamma(T,G,\mathbb{R}^n))=0$ (см., например, [2, гл. III, разд. 2; гл. II, предложение 10.2]). Будем говорить, что произвольное множество G_0 имеет emkocmb нуль, если любое его компактное подмножество G имеет емкость нуль. Множества емкости нуль, как известно, всюду разрывны (любая компонента их связности вырождается в точку), т. е. условие $\operatorname{cap} G = 0$ влечет, что $\operatorname{Int} G = \varnothing$ (см., например, следствие 2.5 в [2, гл. III]). Открытое множество $U \subset D$, $\overline{U} \subset D$, называется нормальной окрестностью точки $x \in D$ при отображении $f: D \to$ \mathbb{R}^n , если $U \cap f^{-1}(f(x)) = \{x\}$ и $\partial f(U) = f(\partial U)$ (см., например, [2, гл. I, разд. 4]).

Предложение 2. Пусть $f: D \to \mathbb{R}^n$ — открытое дискретное отображение. Тогда для каждого $x \in D$ существует s_x такое, что при всех $s \in (0, s_x)$ компонента связности множества $f^{-1}(B(f(x), s))$, содержащая точку x и обозначаемая символом U(x, f, s), является нормальной окрестностью точки x при

отображении f, при этом f(U(x,f,s)) = B(f(x),s) и $\operatorname{diam} U(x,f,s) \to 0$ при $s \to 0$ (см., например, лемму 4.9 в [2, гл. I]).

Важную роль при доказательстве основных результатов работы играют следующие два утверждения (см. следствие 8.1, предложение 8.5 и теорему 8.6 в [7], а также соответственно лемму 5.2 в [20]).

Предложение 3. Каждое открытое дискретное дифференцируемое п. в. отображение $f: D \to \mathbb{R}^n$, обладающее N- и N^{-1} -свойствами Лузина и такое, что $f \in ACP \cap ACP^{-1}$, удовлетворяет неравенству вида

$$M(f(\Gamma)) \le \int_{D} Q(x)\rho^{n}(x) dm(x)$$
(4)

для любого семейства кривых Γ в области D и $\rho \in \operatorname{adm} \Gamma$ при $Q(x) = K_I(x,f)$.

Предложение 4. Пусть $Q: \mathbb{B}^n \to [1,\infty]$ — измеримая по Лебегу функция, $f: \mathbb{B}^n \setminus \{0\} \to \overline{\mathbb{R}^n}, \, n \geq 2$, — открытое дискретное отображение, удовлетворяющее неравенству (4) при $D:=\mathbb{B}^n \setminus \{0\}$ для любого семейства кривых Γ в $\mathbb{B}^n \setminus \{0\}$ и $\rho \in \operatorname{adm} \Gamma$. Пусть, кроме того,

$$\operatorname{cap}(\overline{\mathbb{R}^n} \setminus f(\mathbb{B}^n \setminus \{0\})) > 0.$$

Предположим, что существует $\varepsilon_0 \in (0,1)$ такое, что при $\varepsilon \to 0$

$$\int\limits_{\varepsilon<|x|<\varepsilon_0}Q(x)\psi^n(|x|)\,dm(x)=o(I^n(\varepsilon,\varepsilon_0)),$$

где $\psi(t)$ — неотрицательная на $(0,\infty)$ функция такая, что $\psi(t)>0$ п. в. и

$$0 < I(\varepsilon, \varepsilon_0) = \int_{-\infty}^{\varepsilon_0} \psi(t) \, dt < \infty$$

для всех $\varepsilon \in (0, \varepsilon_0)$. Тогда f имеет непрерывное продолжение $f: \mathbb{B}^n \to \overline{\mathbb{R}^n}$ в \mathbb{B}^n .

Основную смысловую нагрузку в настоящей статье несет в себе следующая

Лемма 1. Пусть $b \in D$ и $f: D \setminus \{b\} \to \mathbb{R}^n$ — открытое дискретное дифференцируемое п. в. отображение, $f \in ACP \cap ACP^{-1}$, обладающее N- и N^{-1} -свойствами Лузина. Предположим, что существует некоторое число $\delta > 0$ такое, что при всех $x \in B(b, \delta)$ имеет место неравенство

$$|f(x)| \le C(\log(1/|x-b|))^p,$$
 (5)

где p>0 и C>0 — некоторые постоянные. Пусть, кроме того, существуют измеримая по Лебегу функция $Q:D\to [1,\infty]$, числа $\varepsilon_0>0$, $\varepsilon_0<\mathrm{dist}(b,\partial D)$, A>0 и борелевская функция $\psi(t):[0,\varepsilon_0]\to (0,\infty)$ такие, что $K_I(x,f)\leq Q(x)$ п. в. и

$$\int_{\varepsilon < |x-b| < \varepsilon_0} Q(x) \psi^n(|x-b|) \ dm(x) \le \frac{AI^n(\varepsilon, \varepsilon_0)}{\left(\log \log \frac{1}{\varepsilon}\right)^{n-1}} \quad \forall \varepsilon \in (0, \varepsilon_0/2), \tag{6}$$

где

$$0 < I(\varepsilon, \varepsilon_0) = \int_{\varepsilon}^{\varepsilon_0} \psi(t) \, dt < \infty \quad \forall \varepsilon \in (0, \varepsilon_0).$$
 (7)

Тогда точка b является для отображения f либо полюсом, либо устранимой особой точкой.

Доказательство. Предположим противное, а именно что точка b является существенно особой точкой отображения f. Не ограничивая общности рассуждений, можно считать, что b=0 и C=1. В таком случае сфера $S(0,\delta)$ является компактным множеством в $D\setminus\{0\}$, поэтому найдется R>0 такое, что

$$f(S(0,\delta)) \subset B(0,R). \tag{8}$$

Поскольку b=0 — существенно особая точка отображения f, ввиду условий (3) и (6), а также предложений 3 и 4 отображение f в $B(0,\delta)\setminus\{0\}$ принимает все значения в \mathbb{R}^n , за исключением, может быть, некоторого множества емкости нуль, т. е. $N(y,f,B(0,\delta)\setminus\{0\})=\infty$ при всех $y\in\mathbb{R}^n\setminus E$, где сар E=0. Так как E имеет емкость нуль, множество $\mathbb{R}^n\setminus E$ не может быть ограниченным. В таком случае найдется $y_0\in\mathbb{R}^n\setminus (E\cup B(0,R))$.

Пусть $k_0 > \frac{4Ap^{n-1}}{\omega_{n-1}}$, $k_0 \in \mathbb{N}$. Поскольку $N(y_0, f, B(0, \delta) \setminus \{0\}) = \infty$, найдутся точки $x_1, \ldots, x_{k_0} \in f^{-1}(y_0), \ x_1, \ldots, x_{k_0} \in B(0, \delta) \setminus \{0\}$. По предложению 2 при некотором фиксированном r > 0 каждая точка $x_j, \ j = 1, \ldots, k_0$, имеет нормальную окрестность $U_j := U(x_j, f, r)$ такую, что $\overline{U}_l \cap \overline{U}_m = \emptyset$ при всех $l \neq m, l, m \in \mathbb{N}, 1 \leq l \leq k_0$ и $1 \leq m \leq k_0$.

Полагаем $d := \min\{\varepsilon_0, \operatorname{dist}(0, \overline{U}_1 \cup \ldots \cup \overline{U}_{k_0})\}$. Пусть $a \in (0, d)$ и $V := B(0, \delta) \setminus \overline{B(0, a)}$. В силу неравенства (5), соотношения $\partial f(V) \subset f(\partial V)$, справедливого для произвольного открытого отображения f, а также предположения о том, что C = 1, имеем

$$f(V) \subset B(0, (\log(1/a))^p). \tag{9}$$

Поскольку $z_0:=y_0+re\in\overline{B(y_0,r)}=f(\overline{U(x_j,f,r)}),\,j=1,\ldots,k_0$, где e— единичный вектор, будем иметь $z_0\in f(V)$. Следовательно, найдется последовательность точек $\tilde{x}_1,\ldots,\tilde{x}_{k_0},\,\tilde{x}_j\in\overline{U}_j,\,1\leq j\leq k_0$, такая, что $f(\tilde{x}_j)=z_0$. Заметим, что

$$k_0 \leq \sum_{j=1}^{k_0} i(\tilde{x}_j, f) = m'$$
. Обозначим через H полусферу $H = \{e \in \mathbb{S}^{n-1} : (e, y_0) > 0\}$

0}, через Γ' — семейство всех кривых $\beta: \left[r, \left(\log\frac{1}{a}\right)^p\right) \to \mathbb{R}^n$ вида $\beta(t) = y_0 + te$, $e \in H$, а через Γ — максимальную последовательность поднятий кривой β при отображении f относительно области V с началом в точках $\tilde{x}_1, \ldots, \tilde{x}_{k_0}, \tilde{x}_j \in \overline{U}_j$,

 $1 \leq j \leq k_0$, состоящую из m' кривых, $m' = \sum_{j=1}^{k_0} i(\tilde{x}_j, f)$, которая существует в силу теоремы 3.2 в [2, гл. II]. По предложению 1

$$M(\Gamma') \le \frac{1}{m'} \int_{D} K_I(x, f) \rho^n(x) \, dm(x) \le \frac{1}{k_0} \int_{D} K_I(x, f) \rho^n(x) \, dm(x)$$
 (10)

для каждой функции $\rho \in \operatorname{adm} \Gamma$.

При любом фиксированном $e \in H$ покажем, что для каждой кривой $\beta = y_0 + te$ и каждого максимального ее поднятия $\alpha(t): [r,c) \to V$ с началом в точке $\tilde{x}_{j_0}, \ \alpha \in \Gamma, \ 1 \leq j_0 \leq k_0$, существует последовательность $r_k \in [r,c)$ такая, что $r_k \to c-0$ при $k \to \infty$ и $\mathrm{dist}(\alpha(r_k),\partial V) \to 0$ при $k \to \infty$. Предположим противное. Тогда найдется $e_0 \in H$ такое, что кривая $\alpha(t), \ t \in [r,c)$, являющаяся максимальным поднятием кривой $\beta = y_0 + te_0$, лежит внутри V вместе со своим замыканием. Пусть $C(c,\alpha(t))$ обозначает предельное множество кривой α при $t \to c-0$, тогда для каждого $x \in C(c,\alpha(t))$ найдется последовательность $t_k \to \infty$,

такая, что $x=\lim_{k\to\infty}\alpha(t_k)$. В силу непрерывности f с учетом предположения, что $C(c,\alpha(t))\subset V$, будем иметь

$$f(x) = f(\lim_{k \to \infty} \alpha(t_k)) = \lim_{k \to \infty} \beta(t_k) = \beta(c),$$

откуда следует, что отображение f постоянно на множестве $C(c,\alpha(t))$. Так как по условию f дискретно, а множество $C(c,\alpha(t))$, очевидно, связно, имеем $C(c,\alpha(t))=p_1\in V$.

Полагаем $b_0 := (\log \frac{1}{a})^p$. Пусть $c \neq b_0$. Тогда можно построить новое максимальное поднятие α' кривой β с началом в точке p_1 . Объединяя поднятия α и α' , получаем еще одно поднятие α'' кривой β с началом в точке \tilde{x}_{j_0} , что противоречит свойству максимальности исходного поднятия α . Значит, $c = b_0$.

В таком случае $C(b_0,\alpha(t))$ — континуум внутри V, при этом согласно доказанному $C(b_0,\alpha(t))=p_1'\in V$ и, значит, α продолжается до замкнутой кривой, определенной на отрезке $\left[r,\left(\log\frac{1}{a}\right)^p\right]$. Обозначим эту кривую через α (обозначения не меняем). Тогда при всех $t\in \left[r,\left(\log\frac{1}{a}\right)^p\right]$ имеем $\beta(t)=f(\alpha(t))\subset f(V)$, в частности, полагая (в явном выражении $\beta=y_0+te_0$ для кривой β) $t:=\left(\log\frac{1}{a}\right)^p$, рассмотрим элемент z_1 , определяемый по правилу $z_1:=y_0+\left(\log\frac{1}{a}\right)^pe_0$. Ввиду включения (9) имеем

$$z_1 = y_0 + (\log(1/a))^p e_0 \in f(V) \subset B(0, (\log(1/a))^p). \tag{11}$$

Однако, поскольку $e_0 \in H$,

$$|z_1| = |y_0 + (\log(1/a))^p e_0| = \sqrt{|y_0|^2 + 2(y_0, (\log(1/a))^p e_0) + (\log(1/a))^{2p}}$$

$$\geq \sqrt{|y_0|^2 + (\log(1/a))^{2p}} \geq (\log(1/a))^p. \quad (12)$$

Соотношение (12) противоречит (11), что, в свою очередь, опровергает предположение о включении замыкания кривой $\alpha(t)$ в множество V.

Следовательно, $\operatorname{dist}(\alpha(r_k),\partial V)\to 0$ при $k\to c-0$ и некоторой последовательности $r_k\in [r,c)$ такой, что $r_k\to c-0$ при $k\to \infty$, что и требовалось установить.

Заметим, что ситуация, когда $\operatorname{dist}(\alpha(r_k),S(0,\delta))\to 0$ при $k\to c-0$, исключена. Действительно, пусть возможность, указанная выше, имеет место. Тогда найдутся $p_2\in S(0,\delta)$ и подпоследовательность номеров $k_l,\ l\in\mathbb{N}$, такие, что $\alpha(r_{k_l})\to p_2$ при $l\to\infty$. Отсюда по непрерывности f получаем, что $\beta(r_{k_l})\to f(p_2)$ при $l\to\infty$, а это невозможно ввиду соотношения (8), поскольку при каждом фиксированном $e\in H$ и $t\in \left[r,\left(\log\frac{1}{a}\right)^p\right)$ имеем $|\beta(t)|=|y_0+te|=\sqrt{|y_0|^2+2t(y_0,e)+t^2}\geq |y_0|>R$ по выбору y_0 .

Из сказанного выше следует, что найдется последовательность $r_k \in [r,c)$ такая, что $r_k \to c-0$ при $k \to \infty$ и $\alpha(r_k) \to p_3 \in S(0,a)$. Кроме того, каждая такая кривая $\alpha \in \Gamma$ пересекает сферу S(0,d), поскольку согласно построению α имеет начало вне шара B(0,d). Рассмотрим функцию

$$ho_a(x) = \left\{ egin{aligned} \psi(|x|)/I(a,d), & x \in B(0,d) \setminus B(0,a), \ 0, & x \in \mathbb{R}^n \setminus (B(0,d) \setminus B(0,a)), \end{aligned}
ight.$$

где величина I(a,d) определена так же, как в (7), а ψ — функция из условия леммы. Поскольку по условию леммы $\psi(t)>0$, имеем I(a,d)>0 при всех 0< a< d, поэтому функция $\rho_a(x)$, заданная выше, определена корректно. Заметим, что функция $\rho_a(x)$ борелевская и, кроме того, поскольку $\rho_a(x)$ радиальна, в

силу установленных выше свойств кривых из семейства Γ , а также теоремы 5.7 в [15] для любой (локально спрямляемой) кривой $\alpha \in \Gamma$ имеем

$$\int\limits_{\Omega}
ho_a(x)|dx|\geq rac{1}{I(a,d)}\int\limits_a^d\psi(t)\,dt=1,$$

т. е. $\rho_a(x) \in \text{adm } \Gamma$. В таком случае из соотношения (10) получаем

$$M(\Gamma') \leq \frac{1}{k_0 I^n(a,d)} \int_{a<|x|

$$\leq \frac{I^n(a,\varepsilon_0)}{k_0 I^n(a,d) I^n(a,\varepsilon_0)} \int_{a<|x|<\varepsilon_0} Q(x) \psi^n(|x|) dm(x)$$

$$= \left(1 + \frac{I(d,\varepsilon_0)}{I(a,d)}\right)^n \frac{1}{k_0 I^n(a,\varepsilon_0)} \int_{a<|x|<\varepsilon_0} Q(x) \psi^n(|x|) dm(x)$$

$$\leq \frac{2}{k_0 I^n(a,\varepsilon_0)} \int_{a<|x|<\varepsilon_0} Q(x) \psi^n(|x|) dm(x) \quad (13)$$$$

при всех $a \in (0, d_1)$ и некотором $d_1, d_1 \leq d$, поскольку в силу соотношения (6) $I^n(a,d) \to \infty$ при $a \to \infty$. Снова из (6) и (13) получаем, что при $a \in (0,d_1)$

$$M(\Gamma') \le \frac{2A}{k_0 \left(\log\log\frac{1}{a}\right)^{n-1}}.$$
(14)

С другой стороны, в силу [15, разд. 7.7]

$$M(\Gamma') = \frac{1}{2} \frac{\omega_{n-1}}{\left(\log \frac{(\log \frac{1}{a})^p}{r}\right)^{n-1}}.$$
 (15)

Тогда из неравенств (14) и (15) следует, что

$$\frac{1}{2} \frac{\omega_{n-1}}{\left(\log \frac{(\log \frac{1}{a})^p}{r}\right)^{n-1}} \le \frac{2A}{k_0 \left(\log \log \frac{1}{a}\right)^{n-1}},$$

откуда

$$\left(\log\left(\frac{(\log\frac{1}{a})^{p}}{r}\right)^{(\frac{2}{\omega_{n-1}})^{\frac{1}{n-1}}}\right)^{n-1} \ge \left(\log\left(\log\frac{1}{a}\right)^{(\frac{k_{0}}{2A})^{\frac{1}{n-1}}}\right)^{n-1}, \\
\left(\frac{(\log\frac{1}{a})^{p}}{r}\right)^{(\frac{2}{\omega_{n-1}})^{\frac{1}{n-1}}} \ge \left(\log\frac{1}{a}\right)^{(\frac{k_{0}}{2A})^{\frac{1}{n-1}}}, \\
\frac{1}{r^{(\frac{2}{\omega_{n-1}})^{\frac{1}{n-1}}}} \ge \left(\log\frac{1}{a}\right)^{(\frac{k_{0}}{2A})^{\frac{1}{n-1}} - p(\frac{2}{\omega_{n-1}})^{\frac{1}{n-1}}}.$$

Поскольку по выбору $k_0>\frac{4Ap^{n-1}}{\omega_{n-1}},$ в правой части последнего соотношения логарифм берется в некоторой положительной степени. Переходя здесь к пределу при $a\to 0,$ получаем

$$\frac{1}{r^{\left(\frac{2}{\omega_{n-1}}\right)^{\frac{1}{n-1}}}} \ge \infty,$$

что невозможно. Возникшее противоречие означает, что b=0 не может быть существенно особой точкой для отображения f. \square

Следующее утверждение вытекает непосредственно из леммы 5 в [21] при $\psi(t)=\frac{1}{t\log\frac{1}{t}}$ и оценки (3) при m=1.

Предложение 5. Предположим, что $b \in D$, $f: D \to B(0,R)$ — открытое дискретное дифференцируемое п. в. отображение, $f \in ACP \cap ACP^{-1}$, обладающее N- и N^{-1} -свойствами Лузина, и существуют измеримая по Лебегу функция $Q: D \to [1, \infty]$, числа $\varepsilon_0 > 0$, $\varepsilon_0 < \operatorname{dist}(b, \partial D)$, и A > 0 такие, что $K_I(x, f) \leq Q(x)$ п. в., при этом имеют место соотношения (6) и (7) с $\psi(t) = \frac{1}{t \log \frac{1}{x}}$, т. е.

$$\int_{\varepsilon < |x-b| < \varepsilon_0} \frac{Q(x)}{|x-b|^n \log^n \frac{1}{|x-b|}} dm(x) \le A \log \frac{\log \frac{1}{\varepsilon}}{\log \frac{1}{\varepsilon_0}} \quad \forall \varepsilon \in (0, \varepsilon_0).$$
 (16)

Тогда при всех $x \in B(b, \varepsilon_0)$ имеет место оценка

$$|f(x) - f(b)| \le \frac{\alpha_n (1 + R^2)}{\delta} \left\{ \frac{\log \frac{1}{\varepsilon_0}}{\log \frac{1}{|x - b|}} \right\}^{\beta_n}, \tag{17}$$

где постоянные α_n и $\beta_n = \left(\frac{\omega_{n-1}}{A}\right)^{1/(n-1)}$ зависят только от n, а $\delta-$ от R.

Следствие 1. Предположим, что в условиях леммы 1 вместо соотношений (6) и (7) имеет место условие (16), а вместо условия (5) — более сильное предположение

$$\lim_{x \to b} \frac{|f(x)|}{\left(\log \frac{1}{|x-b|}\right)^{\beta_n}} = 0,\tag{18}$$

где $\beta_n = \left(\frac{\omega_{n-1}}{A}\right)^{1/(n-1)}$. Тогда точка x=b является устранимой для отображения f.

ДОКАЗАТЕЛЬСТВО. Не ограничивая общности рассуждений, можно считать, что b=0. По лемме 1 точка b не может быть существенно особой для f. Предположим, что b=0 является для отображения f полюсом. Рассмотрим композицию отображений $h=g\circ f$, где $g(x)=\frac{x}{|x|^2}$ — инверсия относительно единичной сферы \mathbb{S}^{n-1} . Заметим, что отображение h снова является отображением с конечным искажением длины (т. е. дифференцируемым п. в. отображением, $f\in ACP\cap ACP^{-1}$, обладающим N- и N^{-1} -свойствами Лузина), при этом $K_I(x,f)=K_I(x,h)$ и h(0)=0. Кроме того, в некоторой окрестности нуля отображение h по построению ограниченное. В таком случае найдутся $\varepsilon_1>0$ и R>0 такие, что $|h(x)|\leq R$ при $|x|<\varepsilon_1$. Следовательно, возможно применение предложения 5. По неравенству (17)

$$|h(x)| = rac{1}{|f(x)|} \leq rac{lpha_n(1+R^2)}{\delta} \left\{ rac{\log rac{1}{arepsilon_0}}{\log rac{1}{|x|}}
ight\}^{eta_n}.$$

Отсюда следует, что

$$\frac{|f(x)|}{\left\{\log\frac{1}{|x|}\right\}^{\beta_n}} \ge \frac{\delta}{\alpha_n(1+R^2)\left\{\log\frac{1}{\varepsilon_0}\right\}^{\beta_n}}.$$

Однако последнее соотношение противоречит (18). Полученное противоречие доказывает, что точка b=0 является устранимой для отображения f. \square

3. Доказательство основных результатов

Доказательство утверждения 1' вытекает из оценки (16), справедливой для произвольной функции $Q \in FMO(b)$ (см., например, следствие 2.3 в [17] либо лемму 6.1 в [7, гл. VI]), а также леммы 1. \square

Следствие 2. Пусть $b \in D$ и $f: D \setminus \{b\} \to \mathbb{R}^n$ — открытое дискретное дифференцируемое п. в. отображение, $f \in ACP \cap ACP^{-1}$, обладающее N- и N^{-1} -свойствами Лузина. Пусть, кроме того, существует измеримая по Лебегу функция $Q: D \to [1, \infty]$ такая, что $K_I(x, f) \leq Q(x)$ при почти всех $x \in D$ и $Q(x) \in FMO(b)$.

Тогда существует $p_0 > 0$, при котором оценка вида

$$\lim_{x \to b} \frac{|f(x)|}{\left(\log \frac{1}{|x-b|}\right)^{p_0}} = 0 \tag{19}$$

влечет, что b=0 является устранимой особой точкой для отображения f.

Доказательство вытекает из утверждения 1' и следствия 1. \square

Всюду далее $q_{x_0}(r)$ означает среднее интегральное значение Q(x) над сферой $|x-x_0|=r,$

$$q_{x_0}(r) := \frac{1}{\omega_{n-1}r^{n-1}} \int_{|x-x_0|=r} Q(x) \, dS, \tag{20}$$

где dS — элемент площади поверхности S.

Теорема 1. Пусть $b \in D$ и $f: D \setminus \{b\} \to \mathbb{R}^n$ — открытое дискретное дифференцируемое п. в. отображение, $f \in ACP \cap ACP^{-1}$, обладающее N- и N^{-1} -свойствами Лузина. Предположим, что существует некоторое число $\delta > 0$ такое, что при всех $x \in B(b,\delta)$ имеет место неравенство (2), где p > 0 и C > 0 — некоторые постоянные. Пусть, кроме того, существует измеримая по Лебегу функция $Q: D \to [1,\infty]$ такая, что $K_I(x,f) \leq Q(x)$ при п. в. $x \in D$ и $q_b(r) \leq C \left(\log \frac{1}{r}\right)^{n-1}$ при $r \to 0$. Тогда точка b является для отображения f либо полюсом, либо устранимой особой точкой.

Если, кроме того, при $p_0=\left(\frac{1}{C}\right)^{1/(n-1)}$ имеет место оценка вида (19), то точка b=0 является устранимой для отображения f.

ДОКАЗАТЕЛЬСТВО. Не ограничивая общности рассуждений, можно считать, что b=0. Фиксируем $\varepsilon_0<\min\{\mathrm{dist}(0,\partial D),1\}$. Полагаем $\psi(t)=\frac{1}{t\log\frac{1}{t}}$. Заметим, что

$$\int_{\varepsilon<|x|<\varepsilon_0} \frac{Q(x) dm(x)}{\left(|x|\log\frac{1}{|x|}\right)^n} = \int_{\varepsilon}^{\varepsilon_0} \left(\int_{|x|=r} \frac{Q(x) dm(x)}{\left(|x|\log\frac{1}{|x|}\right)^n} dS\right) dr \le C\omega_{n-1} I(\varepsilon, \varepsilon_0),$$

где, как и прежде, $I(\varepsilon,\varepsilon_0):=\int\limits_{\varepsilon}^{\varepsilon_0}\psi(t)\,dt=\log\frac{\log\frac{1}{\varepsilon}}{\log\frac{1}{\varepsilon_0}}.$ Отсюда заключаем, что при указанной выше функции ψ имеют место условия (6) и (7) леммы 1. Таким образом, первое утверждение теоремы 1 установлено. Второе утверждение этой теоремы вытекает из следствия 1. \square

4. Основные следствия. Точность условий

Напомним, что $y_0 \in D$ — точка ветвления отображения $f: D \to \mathbb{R}^n$, если ни в одной окрестности U точки y_0 сужение отображения $f|_U$ не является гомеоморфизмом. Совокупность всех точек ветвления f принято обозначать через B_f . В более ранней работе автора доказано следующее утверждение (см., например, теорему 1 в [22]). Пусть $f: D \to \mathbb{R}^n$ — открытое дискретное отображение класса $W^{1,n}_{\text{loc}}(D)$, для которого либо $K_O(x,f) \in L^{n-1}_{\text{loc}}$, либо $K_I(x,f) \in L^1_{\text{loc}}$, и $m(B_f) = 0$. Тогда f является отображением с конечным искажением длины, т. е. дифференцируемым п. в. отображением, $f \in ACP \cap ACP^{-1}$, обладающим N- и N^{-1} -свойствами Лузина. Исходя из сказанного выше, на основании утверждения 1' и теоремы 1 получаем следующие утверждения.

Теорема 2. Пусть $b \in D$ и $f: D \setminus \{b\} \to \mathbb{R}^n$ — открытое дискретное отображение класса $W^{1,n}_{\mathrm{loc}}(D)$, для которого либо $K_O(x,f) \in L^{n-1}_{\mathrm{loc}}$, либо $K_I(x,f) \in L^1_{\mathrm{loc}}$, и $m(B_f) = 0$. Предположим, что существует некоторое число $\delta > 0$ такое, что при всех $x \in B(b,\delta)$ имеет место неравенство

$$|f(x)| \le C(\log(1/|x-b|))^p,$$

где p>0 и C>0 — некоторые постоянные. Пусть, кроме того, существует измеримая по Лебегу функция $Q:D\to [1,\infty]$ такая, что $K_I(x,f)\leq Q(x)$ при п. в. $x\in D$ и $Q(x)\in FMO(b)$. Тогда точка b является для отображения f либо полюсом, либо устранимой особой точкой.

Более того, существует $p_0 > 0$, при котором условие вида

$$\lim_{x \to b} \frac{|f(x)|}{\left(\log \frac{1}{|x-b|}\right)^{p_0}} = 0$$

влечет, что точка b является устранимой особой точкой отображения f.

Теорема 3. Каждое из утверждений теоремы 2 имеет место, если в предположениях этой теоремы вместо условия $Q(x) \in FMO(b)$ потребовать, чтобы $q_b(r) \leq C \left(\log \frac{1}{r}\right)^{n-1}$ при $r \to 0$. В этом случае в качестве p_0 можно взять $p_0 = (1/C)^{1/(n-1)}$.

Следующий результат показывает, что условия на Q, приведенные выше в каждом из утверждений, нельзя ослабить, например, требованием $Q \in L^q_{\mathrm{loc}}$, $q \geq 1$, каким бы большим ни было такое число q.

Теорема 4. При каждом p>0 и $q\in[1,\infty)$ найдется гомеоморфизм $f:\mathbb{B}^n\setminus\{0\}\to\mathbb{R}^n$ с конечным искажением длины, более того, $f\in W^{1,n}_{\mathrm{loc}}$ и $f^{-1}\in W^{1,n}_{\mathrm{loc}}$, такой, что $K_I\in L^q_{\mathrm{loc}}(\mathbb{B}^n)$,

$$|f(x)| < 2(\log(1/|x|))^p \tag{21}$$

при всех $x \in B(0,1/e) \setminus \{0\}$, при этом точка b=0 является для отображения f существенно особой точкой.

ДОКАЗАТЕЛЬСТВО. Зададим гомеоморфизм $f: \mathbb{B}^n \setminus \{0\} \to \mathbb{R}^n$ следующим образом:

$$f(x)=rac{1+|x|^{lpha}}{|x|}x,$$

где $\alpha \in (0, n/q(n-1))$. За счет увеличения q можно считать, что $\alpha < 1$. Заметим, что f отображает $\mathbb{B}^n \setminus \{0\}$ на $\{1 < |y| < 2\}$ в \mathbb{R}^n и предельное множество C(f,0)

равно $\{|y|=1\}$. В частности, отсюда следует, что $x_0=0$ является существенно особой точкой для f. Из определения f также видно, что $f\in C^1(\mathbb{B}^n\setminus\{0\})$ и, следовательно, $f\in W^{1,n}_{\mathrm{loc}}$, причем $K_I(x,f)=\left(\frac{1+|x|^\alpha}{\alpha|x|^\alpha}\right)^{n-1}\leq \frac{C}{|x|^{(n-1)\alpha}}$ (см. предложение 6.3 в [7, гл. VI]). Стало быть, $K_I(x,f)\in L^q(\mathbb{B}^n)$, поскольку $\alpha(n-1)q< n$. Кроме того, заметим, что f— локально квазиконформное отображение, поэтому $f^{-1}\in W^{1,n}_{\mathrm{loc}}$ и, значит, оно является отображением с конечным искажением длины (дифференцируемым п. в. отображением, $f\in ACP\cap ACP^{-1}$, обладающим N- и N^{-1} -свойствами Лузина) в $\mathbb{B}^n\setminus\{0\}$ в силу теоремы 4.6 в [6] (см. также теорему 8.1 в [7, гл. VIII]).

По сказанному выше отображение f ограничено в $\mathbb{B}^n \setminus \{0\}$, в частности, удовлетворяет неравенству $|f(x)| \leq 2$ при $x \in \mathbb{B}^n \setminus \{0\}$. С другой стороны, функция $s(x) := \left(\log \frac{1}{|x|}\right)^q$ при $|x| \leq 1/e$ удовлетворяет неравенству $|s(x)| \geq 1$. Отсюда следует соотношение (21).

Таким образом, построено отображение f, имеющее существенно особую точку, которое удовлетворяет, также и всем остальным требованиям теоремы. \square

Следующее утверждение указывает на то, что требование открытости f в результатах, приведенных выше, является существенным.

Теорема 5. Существует дискретное отображение $f: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n$ с конечным искажением длины, такое, что $K_I \equiv 1$, удовлетворяющее условию

$$|f(x)| \le (\log(1/|x|))^p \tag{22}$$

при всех $x \in B(0,1/e) \setminus \{0\}$ и любом p > 0, при этом точка b = 0 является для отображения f существенно особой точкой.

Доказательство. Рассмотрим разбиение пространства \mathbb{R}^n кубами

$$C_{k_1,\dots,k_n} = \prod_{i=1}^n [2k_i - 1, 2k_i + 1], \quad k_i \in \mathbb{Z}.$$

Рассмотрим произвольный куб C_{k_1,\ldots,k_n} с $k_1,\ldots,k_n\geq 0$; случай k_i разных знаков может быть рассмотрен по аналогии. Пусть $x=(x_1,\ldots,x_n)\in C_{k_1,\ldots,k_n}$. Если $k_1=0$, то $g_{m_1}:=$ id. Пусть $k_1>0$. Положим $f_{1,\ldots,1,1}(x)=y_{1,\ldots,1}$, где $y_{1,\ldots,1,1}$ — симметрическое отражение точки x относительно гиперплоскости $x_1=2k_1-1$. Если $2k_1-3=-1$, то процесс завершен. Пусть $2k_1-3>-1$, тогда $f_{1,\ldots,1,2}(x)=y_{1,\ldots,1,2}$, где $y_{1,\ldots,1,2}$ — симметрическое отражение точки $y_{1,\ldots,1}$ относительно гиперплоскости $x_1=2k_1-3$. Если $2k_1-5=-1$, то процесс завершен. Если нет, то продолжаем процесс: $f_{1,\ldots,1,3}(x)=y_{1,\ldots,1,3}$, и т. д. За конечное число шагов m_1 имеем отображение $g_{m_1}=f_{1,\ldots,1,m_1}\circ\cdots\circ f_{1,\ldots,1,1}$ такое, что образ $g_{m_1}(x)$ точки x лежит в кубе C_{0,k_2,k_3,\ldots,k_n} .

Далее, если $k_2=0$, то $g_{m_2}:=g_{m_1}$. При $k_2>0$ для точки $x_{m_1}:=g_{m_1}(x)$ проделываем ту же операцию относительно координаты x_2 . Полагаем $f_{1,\dots,1,2,m_1}(x)=y_{1,\dots,1,2,m_1}$, где $y_{1,\dots,1,2,m_1}$ — симметрическое отражение точки x_{m_1} относительно гиперплоскости $x_2=2k_2-1$. Если $2k_2-3=-1$, то процесс завершен. Если нет, продолжаем до тех пор, пока не получим отображение $g_{m_2}=f_{1,\dots,m_2,m_1}\circ\cdots\circ f_{1,\dots,2,m_1}$ такое, что $g_{m_2}(x_{m_1})\in C_{0,0,k_3,\dots,k_n}$.

Через некоторое число шагов $m_0=m_1+m_2+\cdots+m_n$ приходим к отображению $G_0=g_{m_n}\circ g_{m_{n-1}}\circ\cdots g_{m_2}\circ g_{m_1}$ такому, что образ x_{m_n} точки x при отображении G_0 лежит в кубе $C_{0,0,0,\dots,0}$. Сжатие $G_1(x)=\frac{\sqrt{n}}{n}x$ переводит $C_{0,0,0,\dots,0}$ в некоторый куб A_0 , полностью лежащий в $\overline{\mathbb{B}^n}$. Положим $G_2:=G_1\circ G_0$.

Заметим, что точка $z_0=\infty$ является изолированной существенно особой точкой отображения G_2 , причем $C(G_2,\infty)=A_0\subset\overline{\mathbb{B}^n}$. Тогда отображение

$$g := G_2 \circ G_3, \tag{23}$$

где $G_3(x)=rac{x}{|x|^2},$ имеет изолированную существенно особую точку b=0, причем

$$C(g,0) \subset \overline{\mathbb{B}^n}.$$
 (24)

По построению отображение G_2 , заданное соотношением (23), дискретно, сохраняет длины кривых в \mathbb{R}^n , дифференцируемо всюду вне точек целочисленной решетки и обладает N- и N^{-1} -свойствами, поэтому оно, а следовательно, и отображение g по определению являются отображениями с конечным искажением длины. Кроме того, легко видеть, что $K_I(x,g)=1$. Наконец, $|g(x)|\leq 1$ при всех $x\in\mathbb{R}^n\setminus\{0\}$, и, значит, соотношение (22) выполнено при всех $x\in\{0,1/e\}\setminus\{0\}$.

Таким образом, отображение, удовлетворяющее всем условиям теоремы, построено. $\ \square$

Результаты настоящей статьи опубликованы в виде препринта в [23].

ЛИТЕРАТУРА

- Решетняк Ю. Г. Пространственные отображения с ограниченным искажением. Новосибирск: Наука. 1982.
- Rickman S. Quasiregular mappings. Berlin: Springer-Verl., 1993. (Results in mathematic and related areas; V. 26, N 3).
- Решетняк Ю. Г. Обобщенные производные и дифференцируемость почти всюду // Мат. сб. 1968. Т. 75, № 3. С. 323–334.
- **4.** Bojarski B., Iwaniec T. Analytical foundations of the theory of quasiconformal mappings in \mathbb{R}^n // Ann. Acad. Sci. Fenn. Ser. A 1 Math. 1983. V. 8, N 2. P. 257–324.
- Väisälä J. Modulus and capacity inequalities for quasiregular mappings // Ann. Acad. Sci. Fenn. Ser. A 1 Math. 1972. V. 509. P. 1–14.
- Martio O., Ryazanov V., Srebro U., Yakubov E. Mappings with finite length distortion // J. d'Anal. Math. 2004. V. 93, N 1. P. 215–236.
- Martio O., Ryazanov V., Srebro U., Yakubov E. Moduli in modern mapping theory. New York: Springer Science + Business Media, LLC, 2009.
- 8. Astala K., Iwaniec T., Martin G. Elliptic partial differential equations and quasiconformal mappings in the plane. Princeton: Princeton Univ. Press, 2009.
- Iwaniec T., Martin G. Geometric function theory and nonlinear analysis. Oxford: Oxford Univ. Press, 2001.
- Bishop C. J., Gutlyanskii V. Ya., Martio O., Vuorinen M. On conformal dilatation in space // Int. J. Math. Math. Sci. 2003. V. 22. P. 1397–1420.
- Миклюков В. М. Относительное расстояние М. А. Лаврентьева и простые концы на непараметрических поверхностях // Укр. мат. вестн. 2004. Т. 1, № 3. С. 349–372.
- 12. Салимов Р. Р. Абсолютная непрерывность на линиях и дифференцируемость одного обобщения квазиконформных отображений // Изв. РАН. Сер. мат. 2008. Т. 72, № 5. С. 141–148.
- Troyanov M., Vodop'yanov S. Liouville type theorems for mappings with bounded (co)-distortion // Ann. Inst. Fourier. 2002. V. 52, N 6. P. 1753–1784.
- Ukhlov A. D., Vodop'yanov S. K. Sobolev spaces and mappings with bounded (P; Q)-distortion on Carnot groups // Bull. Sci. Mat. 2009. V. 52, N 4. P. 349–370.
- Väisälä J. Lectures on n-dimensional quasiconformal mappings. Berlin etc.: Springer-Verl., 1971. (Lect. Notes Math.; V. 229).
- **16.** Полецкий Е. А. Метод модулей для неголоморфных квазиконформных отображений // Мат. сб. 1970. Т. 83, N 2. С. 261–272.
- 17. Игнатьев А., Рязанов В. Конечное среднее колебание в теории отображений // Укр. мат. вестн. 2005. Т. 2, № 3. С. 395–417.

- 18. John F., Nirenberg L. On functions of bounded mean oscillation // Comm. Pure Appl. Math. 1961. V. 14. P. 415–426.
- 19. Sevost'yanov E. A. The Väisälä inequality for mappings with finite length distortion // Complex Variables Elliptic Equ. 2010. V. 55, N 1–3. P. 91–101.
- 20. Севостьянов Е. А. К теории устранения особенностей отображений с неограниченной характеристикой квазиконформности // Изв. РАН. Сер. мат. 2010. Т. 74, № 1. С. 159–174.
- 21. Севостьянов Е. А. О нормальности семейств пространственных отображений с ветвлением // Укр. мат. журн. 2008. Т. 60, № 10. С. 1389–1400.
- 22. *Севостьянов Е. А.* Обобщение одной леммы Е. А. Полецкого на классы пространственных отображений // Укр. мат. журн. 2009. Т. 61, № 7. С. 969–975.
- 23. Sevost'yanov E. On the local behavior of the mappings with non-bounded characteristics. arXiv: 1103.2547v1 [math.CV] 13 Mar 2011, see www.arxiv.org. P. 1–14.

Статья поступила 16 апреля 2011 г.

Севостьянов Евгений Александрович Институт прикладной математики и механики НАН Украины, ул. Розы Люксембург, 74, Донецк 83114, Украина brusin2006@rambler.ru, esevostyanov2009@mail.ru