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ON SPATIAL MAPPINGS WITH INTEGRAL RESTRICTIONS ON
THE CHARACTERISTIC

E. A. SEVOST′YANOV

Abstract. For a given domain D ⊂ Rn, some families F of mappings f : D → Rn,

n ≥ 2 are studied; such families are more general than the mappings with bounded
distortion. It is proved that a family is equicontinuous if

∫∞
δ0

dτ

τ [Φ−1(τ)]
1

n−1
= ∞,

where the integral depends on each mapping f ∈ F, Φ is a special function, and
δ0 > 0 is fixed. Under similar restrictions, removability results are obtained for

isolated singularities of f . Also, analogs of the well-known Sokhotsky–Weierstrass

and Liouville theorems are proved.

§1. Introduction

In this paper, we use the following notation: B(x0, r) = {x ∈ Rn : |x − x0| < r},
Bn := B(0, 1), S(x0, r) = {x ∈ Rn : |x − x0| = r}, Sn−1 := S(0, 1); Ωn denotes the
volume of the unit ball Bn of Rn, ωn−1 is the area of the sphere Sn−1 in Rn, D is a
domain in Rn, n ≥ 2, m is Lebesgue measure on Rn, dist(A,B) is the Euclidean distance
between sets A,B ⊂ Rn, |A| denotes the linear measure of a set A ⊂ R whenever there is
no confusion. The notation f : D → Rn assumes that the mapping f is continuous on the
domain D. As usual, we write f ∈W 1,n

loc (D) if the coordinate functions f = (f1, . . . , fn)
have the first order generalized partial derivatives the nth power of which are locally
integrable on D. A mapping f : D → Rn is said to be discrete if, for every point y ∈ Rn,
the preimage f−1(y) consists of isolated points; the mapping is open if the image of any
open set U ⊂ D is an open set in Rn.

Conditions of the following form are important in the theory of spacial mappings:

(1)
∫

D

Φ(Q(x)) dm(x) <∞,

where Φ : [0,∞] → [0,∞] and Q : D → [0,∞] are fixed measurable functions. Note that
properties of the form (1) arise in various problems; see, e.g., [1, 2, 6, 8, 13, 14, 18, 20] and
[24]. In the present paper, we investigate how the restriction (1) can affect the properties
of spacial mappings.

First, we give several definitions. Here and in what follows, a curve γ is a continuous
mapping of a segment [a, b] (or an open interval (a, b)) into Rn, that is, γ : [a, b] → Rn.
We use the symbol Γ to denote a fixed family of curves γ; by definition, f(Γ) = {f ◦γ|γ ∈
Γ}. The following definitions can be found, for example, in [22, Chapter 1, §§1–6]. A
Borel function ρ : Rn → [0,∞] is said to be admissible for a family Γ of curves γ in Rn

if the inequality
∫

γ
ρ(x) |dx| ≥ 1 is true for the curvilinear integral of the first kind and

for all curves γ ∈ Γ. If this is the case, then we write ρ ∈ adm Γ. The modulus of a family
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Γ of curves is defined by

(2) M(Γ) = inf
ρ∈adm Γ

∫
D

ρn(x) dm(x).

In a sense, the properties of the modulus are similar to those of Lebesgue measurem on
Rn. Namely, the modulus of the empty family is equal to zero: M(∅) = 0; the modulus
is monotone with respect to families of curves: Γ1 ⊂ Γ2 ⇒ M(Γ1) ≤ M(Γ2). Also, the
modulus is semiadditive: M

( ⋃∞
i=1 Γi

)
≤

∑∞
i=1M(Γi); see [22, Theorem 6.2]. Recall

that f : D → Rn is called a mapping with bounded distortion if the following conditions
are satisfied: 1) f ∈W 1,n

loc ; 2) the Jacobian J(x, f) of the mapping f at x ∈ D has one and
the same sign almost everywhere in D; 3) ‖f ′(x)‖n ≤ K · |J(x, f)| for almost all x ∈ D
and for some constant K < ∞, where, as usual, ‖f ′(x)‖ := suph∈Rn : |h|=1 |f ′(x)h| (see,
e.g., [16, §3, Chapter I] or [17, Definition 2.1, §2, Chapter I]). For us, it is important that
each mapping with bounded distortion satisfies the inequality of E. A. Poletsky (see [15,
§4, Theorem 1]). Namely, if f : D → Rn is a mapping with bounded distortion, then

(3) M(f(Γ)) ≤ K ′ ·M(Γ)

for an arbitrary family Γ of curves γ in the domain D, where M is the conformal modulus
introduced above for the family of curves (i.e., an outer measure defined on the family
of curves in Rn) and K ′ <∞ is a constant (see also [17, Chapter II, §8, Theorem 8.1]).
A homeomorphism f : D → Rn or, depending on the context, a homeomorphism f :
D → Rn, Rn = Rn ∪ {∞}, is called a K ′-quasiconformal mapping on D if f satisfies
(3) for an arbitrary family Γ of curves γ (see, e.g., [22, Chapter 2, §13; Theorem 34.3,
Chapter IV]).

In the present paper, we investigate mappings f that are more general than those with
bounded distortion. More precisely, given a measurable function Q : D → [0,∞] that
maps a domain D in Rn into the real numbers, instead of (3) we assume that

(4) M
(
f(Γ(S1, S2, A))

)
≤

∫
A

Q(x) · ηn(|x− x0|) dm(x),

where

(5) A = A(r1, r2, x0) = {x ∈ Rn : r1 < |x− x0| < r2}
denotes the spherical annulus with center x0 and with radii r1, r2; Si = S(x0, ri) denotes
the sphere with center x0 and with radius ri, i = 1, 2; Γ(S1, S2, A) denotes the family of
all curves joining S1 and S2 inside the domain A. The real-valued function η : (r1, r2) →
[0,∞] in inequality (4) is assumed to be measurable and to satisfy the condition

(6)
∫ r2

r1

η(r) dr ≥ 1.

See, e.g., [3, 10, 11, 12] and [20] for further details about inequalities of type (4). Note
that, in the case where Q(x) ≤ K a.e., an expression like K · M(Γ(S1, S2, A)) arises
on the right-hand side of inequality (4), see inequalities (4) and (3). It follows that an
arbitrary mapping with bounded distortion satisfies (4) for a constant Q. In general, if
the function Q(x) is merely measurable, then the right-hand side of inequality (4) is, in
a sense, the modulus M of the family Γ(S1, S2, A) of curves with weight Q(x). We are
primarily interested in the case where the function Q in (4) is unbounded. Suppose that
an open discrete mapping f satisfies inequality (4) and condition (1) is fulfilled for the
function Q(x), where Φ is a function such that

(7)
∫ ∞

δ0

dτ

τ
[
Φ−1(τ)

] 1
n−1

= ∞



ON SPATIAL MAPPINGS 3

for some δ0 > 0. In the present paper, we show that the mapping f extends by continuity
to an isolated point of the boundary ofD. Also we prove the equicontinuity of the families
under consideration, assuming that f satisfies (4), where the function Q(x) satisfies (1),
and the function Φ occurring in (1) satisfies condition (7). Also, we shall show that the
restriction on the function Φ mentioned above, that is, property (7), is not only sufficient,
but, in an appropriate sense, also necessary. We assume that f is an open and discrete
mapping, Q is merely a measurable function, and Φ is a monotone nondecreasing and
convex function.

We say that f : D → Rn is an annular Q-mapping at a point x0 ∈ D if f satisfies
(4) for any annulus A = A(r1, r2, x0), 0 < r1 < r2 < r0 = dist(x0, ∂D), and for every
measurable function η : (r1, r2) → [0,∞] with property (6). If f in (4) is assumed to be
a homeomorphism, then f is called an annular Q-homeomorphism at the point x0 ∈ D.
Finally, f is called an annular Q-mapping (an annular Q-homeomorphism, respectively)
if (4) is true at each point x0 ∈ D. Similarly, in the studies of questions related to the
boundary behavior of mappings, one may introduce the notion of an annular Q-mapping
f : D \ {x0} → Rn that is defined a priori in a neighborhood of an isolated point x0 of
the boundary D \ {x0}.

Let E be a compact set in Rn with a positive conformal capacity: capE > 0. Assume
that we are given a function Φ : [0,∞] → [0,∞], a Lebesgue measurable function
Q : D → [0,∞], and a number M > 0. Denote by RΦ,Q

M,E the family of all open discrete
annular Q-mappings f : D → Rn \ E such that

(8)
∫

D

Φ(Q(x))
dm(x)

(1 + |x|2)n
≤M.

To mention explicitly the domain D, we sometimes use the notation RΦ,Q
M,E(D). The

following assertions are among the main results of the present paper.

Theorem 1. Let Φ : [0,∞] → [0,∞] be a monotone nondecreasing convex function. If
(7) is true for some δ0 > τ0 := Φ(0), then the class RΦ,Q

M,E is equicontinuous; hence, it
forms a normal family of mappings for all M ∈ (0,∞).

For a Lebesgue measurable function Q : D → [0,∞] and a compact set E ⊂ Rn with
capE > 0, denote by KΦ,Q

M,E(D \ {x0}) the family of all open and discrete Q-mappings
f : D \ {x0} → Rn \ E annular at the point x0 and satisfying (8).

Theorem 2. Assume that Q(x) ≥ 1 almost everywhere, Φ : [0,∞] → [0,∞] is a
monotone nondecreasing convex function, and x0 ∈ D. If (7) is true for some δ0 > τ0 :=
Φ(0), then an arbitrary mapping f : D \ {x0} → Rn, f ∈ KΦ,Q

M,E(D \ {x0}), extends by
continuity to the point x0 ∈ D up to an open discrete mapping f : D → Rn.

Theorem 3. Let Φ : [0,∞] → [0,∞] be a monotone nondecreasing convex function.
Assume that, for all sets E of positive capacity, all numbers M > 0, and all measurable
functions Q : D → [0,∞], the class RΦ,Q

M,E is equicontinuous (normal). Then, for all
δ∗ ∈ (τ0,∞), τ0 : = Φ(0), we have

(9)
∫ ∞

δ∗

dτ

τ
[
Φ−1(τ)

] 1
n−1

= ∞.

Theorem 4. Let Φ : [0,∞] → [0,∞] be a monotone nondecreasing convex function.
Assume that, for all sets E of positive capacity, all numbers M > 0, and all measurable
functions Q : D → [0,∞], an arbitrary mapping f : D \ {x0} → Rn, x0 ∈ D, f ∈
KΦ,Q

M,E(D \ {x0}), extends by continuity to the point x0. Then condition (9) is fulfilled for
all δ∗ ∈ (τ0,∞), τ0 : = Φ(0).
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Remark 1. Observe that the condition
∫

D
Φ(Q(x)) dm(x) ≤ M implies property (8).

Hence, property (8) is more general, and the corresponding class of the annular Q-
mappings is a subclass of the family RΦ,Q

M,E . On the other hand, if the domain D is
bounded, then (8) implies the condition

∫
D

Φ(Q(x)) dm(x) ≤M∗, where M∗ = M · (1 +
δ2∗)

n, δ∗ = supx∈D |x|.

In the next section, we accurately introduce the main definitions and notation used
above.

§2. Preliminaries

By definition, a condenser in Rn, n ≥ 2, is a pair E = (A, C), where A is an open
set in Rn and C is a compact subset of A. A mapping f : D → Rn is said to be
absolutely continuous on lines, f ∈ ACL, if in any n-dimensional parallelepiped P with
edges parallel to the coordinate axes, P ⊂ D, all coordinate functions f = (f1, . . . , fn)
are absolutely continuous on almost all lines that are parallel to the coordinate axes.
By the conformal capacity (or merely capacity) of a condenser E we mean the following
quantity:

cap E = cap (A, C) = inf
u∈W0(E)

∫
A

|∇u|n dm(x),

where W0(E) = W0(A, C) is the family of all nonnegative continuous functions u :
A → R compactly supported in A and such that u(x) ≥ 1 for x ∈ C and u ∈ ACL.
We say that a compact set C in Rn, n ≥ 2, is of zero capacity and we write cap C = 0
if cap (A,C) = 0 for at least one bounded open set A that contains C. Otherwise,
cap C > 0.

It is known that the sets of capacity zero are discontinuous; see, e.g., Corollary 2.5 in
Chapter 3 of [17]. In particular, the condition cap C = 0 implies that IntC = ∅. We say
that a set A in Rn is of capacity zero if an arbitrary compact subset of A is of capacity
zero. The notions of a condenser and of a set of capacity zero in Rn are defined similarly
(see, e.g., [17]).

Let (X, d) and (X ′, d ′) be metric spaces with distances d and d ′, respectively. We say
that a family F of continuous mappings f : X → X ′ is normal if the following is true:
for any sequence of mappings fm ∈ F, there is a subsequence fmk

that converges locally
uniformly on X to a continuous function f : X → X ′. The above notion is closely
related with the following one: a family F of mappings f : X → X ′ is equicontinuous
at a point x0 ∈ X if for any ε > 0, there exists δ > 0 such that d ′(f(x), f(x0)) < ε for
all x such that d(x, x0) < δ and for all f ∈ F. We say that F is equicontinuous if F is
equicontinuous at each point of X. If (X, d) is a separable metric space and (X ′, d ′) is
a compact metric space, then a family F of mappings f : X → X ′ is normal if and only
if F is equicontinuous. This is a version of the well-known Arzelà–Ascoli theorem (see,
e.g., [22, §20.4]).

Recall that an isolated point x0 of the boundary ∂D of a domain D is said to be
removable for a mapping f if there exists a finite limit limx→x0 f(x). An isolated point
x0 of the boundary ∂D is called an essential singular point of a mapping f : D → Rn if
the mapping has neither finite, nor infinite limit as x→ x0.

Suppose that a mapping f : D → Rn, n ≥ 2, has the first partial derivatives for
almost all x ∈ D. Then the inner dilatation of f at a point x ∈ D is the quantity

KI(x, f) =
|J(x, f)|
l(f ′(x))n

if J(x, f) 6= 0, KI(x, f) = 1 if f ′(x) = 0, and KI(x, f) = ∞ for other points. Here
l(f ′(x)) = infh∈Rn : |h|=1 |f ′(x)h|. We shall need the following proposition.
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Proposition 1. Let f : D → Rn, f ∈ W 1,n
loc , be a homeomorphism. If KI(x, f) ∈ L1

loc,
then f is an annular Q-homeomorphism at each point x0 ∈ D with Q = KI(x, f); see,
e.g., [11, Theorems 8.1 and 8.6]. Moreover, f is an annular Q-mapping at every isolated
point of the boundary of D; see op. cit.

To compute inner dilatations, sometimes it is useful to apply the quantities introduced
below. Assume that a mapping f : D → Rn is differentiable at a point x0 ∈ D and
the Jacobi matrix f ′(x0) is nonsingular: J(x0, f) = det f ′(x0) 6= 0. Then there exist
vector systems e1, . . . , en and ẽ1, . . . , ẽn as well as positive numbers λ1(x0), . . . , λn(x0)
with λ1(x0) ≤ · · · ≤ λn(x0) such that f ′(x0)ei = λi(x0)ẽi; see Theorem 2.1 in Chapter 1
of [16]. Moreover, λ2

1(x0), . . . , λ2
n(x0) are the eigenvalues of the symmetric mapping

(f ′(x0))∗f ′(x0), see Theorem 2.2 in Chapter 1 of [16], and

|J(x0, f)| = λ1(x0) . . . λn(x0), ‖f ′(x0)‖ = λn(x0), l(f ′(x0)) = λ1(x0),

KI(x0, f) =
λ1(x0) . . . λn(x0)

λn
1 (x0)

;
(10)

see property (2.5) and additional comments in §2.1 in Chapter 1 of [16]. The num-
bers λ1(x0), . . . λn(x0) mentioned above are called the principal values, and the vectors
e1, . . . , en and ẽ1, . . . , ẽn are called the principal vectors of the mapping f ′(x0). More
details on this issue can be found in the corresponding comment after the proof of The-
orem 2.2 in Chapter 1 of [16]. Clearly, the principal vectors and principal values depend
on the point x0 and on the mapping f . However, to simplify the notation here and in
what follows, we omit (x0) if there is no confusion.

Recall that the spherical (chordal) metric h(x, y) is equal to |π(x)− π(y)|, where π is
the stereographic projection of Rn onto the sphere Sn( 1

2en+1,
1
2 ) in Rn+1, that is,

h(x,∞) =
1√

1 + |x|2
, h(x, y) =

|x− y|√
1 + |x|2

√
1 + |y|2

, x 6= ∞ 6= y.

Let Q : D → [0,∞] be a Lebesgue measurable function. Then qx0(r) denotes the
integral mean of Q(x) over the sphere |x− x0| = r:

(11) qx0(r) :=
1

ωn−1rn−1

∫
|x−x0|=r

Q(x) dS,

where dS is the area element of the surface S. Below we agree that a/∞ = 0 for a 6= ∞,
a/0 = ∞ for a > 0, and 0 · ∞ = 0.

The following results were formulated and proved in [25].

Proposition 2. Let Q : Bn → [1,∞] be a Lebesgue measurable function, and let f :
Bn \ {0} → Rn, n ≥ 2, be an open, discrete, annular Q-mapping at the point x0 = 0 such
that cap(Rn \ f(Bn \ {0})) > 0. Assume that there exists ε0 > 0, ε0 < 1, such that

(12)
∫ ε0

0

dt

tq
1

n−1
x0 (t)

= ∞.

Then f has a continuous extension onto Bn, that is, f : Bn → Rn. Continuity is
understood in the sense of the space Rn with respect to the chordal metric h. Moreover,
the extended mapping f : Bn → Rn is open and discrete; see Theorem 6 in [25].

In what follows, equicontinuity, normality, and other notions are considered with re-
spect to the spherical (chordal) metric h.

Proposition 3. Assume that x0 ∈ D, E ⊂ Rn is a compact set of positive capacity,
and FQ is a family of open, discrete, annular Q-mappings f : D → Rn \E at the point
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x0. Assume that there exists a number ε0 < dist (x0, ∂D) such that (12) is true. Then
the family FQ is equicontinuous and, hence, normal at the point x0.

Recall that a function Φ : [0,∞] → [0,∞] is said to be convex if

Φ(λt1 + (1− λ)t2) ≤ λ Φ(t1) + (1− λ) Φ(t2)

for all t1, t2 ∈ [0,∞] and λ ∈ [0, 1]. The inverse function Φ−1 is well defined for any
monotone nondecreasing function Φ : [0,∞] → [0,∞] as follows:

(13) Φ−1(τ) = inf
Φ(t)≥τ

t.

As usual, the infimum in (13) is equal to ∞ if there is no t ∈ [0,∞] for which Φ(t) ≥ τ .
Observe that the function Φ−1 is also monotone nondecreasing.

Remark 2. Obviously, the above definition shows that

(14) Φ−1(Φ(t)) ≤ t, t ∈ [0,∞].

Moreover, equality occurs in (14) outside of the intervals where Φ(t) is constant.

For the proposition formulated below, see, e.g., [19, Theorem 2.1]. In (15) and (16),
the integrals are assumed to be equal to infinity if Φp(t) = ∞ or if there exists T ∈ R such
that Hp(t) = ∞ for all t ≥ T ∈ [0,∞). The integral in (16) is that of Lebesgue–Stieltjes,
the integrals in (15) and in (17)–(20) are those of Lebesgue.

Proposition 4. Let Φ : [0,∞] → [0,∞] be a monotone nondecreasing function. Put
Hp(t) = log Φp(t), Φp(t) = Φ(tp), p ∈ (0,∞). Then the relation

(15)
∫ ∞

δ

H ′
p(t)

dt

t
= ∞

implies

(16)
∫ ∞

δ

dHp(t)
t

= ∞.

Identity (16) is equivalent to the following property:

(17)
∫ ∞

δ

Hp(t)
dt

t2
= ∞

for some δ > 0. Also, (17) is equivalent to each of the following relations:

(18)
∫ ∆

0

Hp

(1
t

)
dt = ∞

for some ∆ > 0;

(19)
∫ ∞

δ∗

dη

H−1
p (η)

= ∞

for some δ∗ > H(+0);

(20)
∫ ∞

δ∗

dτ

τΦ−1
p (τ)

= ∞

for some δ∗ > Φ(+0).
Moreover, (15) is equivalent to (16); hence, properties (15)–(20) are equivalent to

each other if Φ is additionally assumed to be absolutely continuous. In particular, all
conditions (15)–(20) are equivalent to each other whenever Φ is convex and monotone
nondecreasing.
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It is easily seen that conditions (15)–(20) become weaker if p grows; see, e.g., (17). Yet
one more clarification is necessary. The right-hand sides of conditions (15)–(20) should
be understood as +∞. If Φp(t) = 0 for t ∈ [0, t∗], then Hp(t) = −∞ for t ∈ [0, t∗]; if
this is the case, we put H ′

p(t) := 0 for t ∈ [0, t∗]. Note that conditions (16) and (17)
exclude the case where t∗ belongs to the interval of integration in the above properties.
Indeed, otherwise the left-hand sides of (16) and (17) are either simultaneously equal to
−∞ or not defined. Hence, in (15)–(17) we may assume that δ > t0 and ∆ < 1/t0 where
t0 : = supΦp(t)=0 t and t0 = 0 if Φp(0) > 0.

§3. Main lemma

The following assertion generalizes and refines Lemma 3.1 in [19].

Lemma 1. Let Q : Bn → [0,∞] be a measurable function, and let Φ : [0,∞] → (0,∞]
be a monotone nondecreasing convex function. Then

(21)
∫ 1

ε

dr

rq
1
p

0 (r)
≥ 1
n

∫ M(ε)
εn

eM(ε)

dτ

τ [Φ−1(τ)]
1
p

, p ∈ (0,∞), ε ∈ (0, 1),

where q0(r) is defined by (11) for x0 = 0, and

(22) M(ε) =
1

Ωn(1− εn)

∫
A(ε,1,0)

Φ(Q(x)) dm(x)

is the integral mean of the function Φ ◦ Q on the annulus A(ε, 1, 0) defined by (5) with
x0 = 0, r1 = ε and r2 = 1.

Remark 3. Observe that, for every p ∈ (0,∞), property (21) is equivalent to the following
inequality:

(23)
∫ 1

ε

dr

rq
1
p

0 (r)
≥ 1
n

∫ M(ε)
εn

eM(ε)

dτ

τΦ−1
p (τ)

, Φp(t) := Φ(tp).

Proof of Lemma 1.
Step 1. Denote

(24) t∗ = sup
Φp(t)=τ0

t, τ0 = Φ(0) > 0.

Putting Hp(t) : = log Φp(t), we see that

(25) H−1
p (η) = Φ−1

p (eη), Φ−1
p (τ) = H−1

p (log τ).

Hence, using Remark 2 and setting

h(r) : = rnΦ(q0(r)) = rnΦp

(
q

1
p

0 (r)
)
, R∗ = { r ∈ (ε, 1) : q

1
p

0 (r) > t∗},

we obtain

q
1
p

0 (r) = H−1
p

(
log

h(r)
rn

)
= H−1

p

(
n log

1
r

+ log h(r)
)
, r ∈ R∗.

Then we also have

(26) q
1
p

0 (e−s) = H−1
p (ns+ log h(e−s)), s ∈ S∗,

where

(27) S∗ =
{
s ∈

(
0, log

1
ε

)
: q

1
p

0 (e−s) > t∗

}
.
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Step 2. Applying Jensen’s inequality and the convexity of the function Φ, we have∫ log 1
ε

0

h(e−s) ds =
∫ 1

ε

h(r)
dr

r
=

∫ 1

ε

Φ(q0(r)) rn−1dr

≤
∫ 1

ε

(
1

ωn−1rn−1

∫
S(0,r)

Φ(Q(x)) dS
)
rn−1dr ≤ Ωn

ωn−1
·M(ε) =

1
n
·M(ε),

(28)

where M(ε) is defined by (22) and, as above, dS is the area element of the surface
of integration. Hence, (28) implies that the linear measure |T | of the set T = {s ∈
(0, log 1

ε ) : h(e−s) > M(ε)} satisfies

(29) |T | =
∫

T

ds ≤ 1
n
.

Step 3. We show that

(30) q
1
p

0 (e−s) ≤ H−1
p (ns+ log M(ε)), s ∈

(
0, log

1
ε

)
\ T∗ ,

where T∗ := T ∩ S∗ and the set S∗ is defined by (27). Observe that(
0, log

1
ε

)
\ T∗ =

[(
0, log

1
ε

)
\ S∗

]
∪

[(
0, log

1
ε

)
\ T

]
=

[(
0, log

1
ε

)
\ S∗

]
∪

[
S∗ \ T

]
.

Remark that inequality (30) is true for s ∈ S∗ \ T , because (26) is true and the function
H−1

p is monotone nondecreasing. Also, by (24),

(31) ensM(ε) > Φ(0) + ε1 = τ0 + ε1, s ∈
(
0, log

1
ε

)
,

for some sufficiently small ε1 > 0. Thus, since the function H−1
p (η) is strictly monotone

increasing for η > τ0, (25) and (31) guarantee that

(32) t∗ < Φ−1
p

(
ensM(ε)

)
= H−1

p

(
ns+ logM(ε)

)
, s ∈

(
0, log

1
ε

)
.

Relation (32) shows that (30) is also valid for s ∈ (0, log 1
ε ) \ S∗, and hence, for all

s ∈
(
0, log 1

ε

)
\ T∗.

Step 4. Since the function H−1
p is monotone nondecreasing, (29) and (30) guarantee

that ∫ 1

ε

dr

rq
1
p

0 (r)
=

∫ log 1
ε

0

ds

q
1
p

0 (e−s)
≥

∫
(0,log 1

ε )\T∗

ds

H−1
p (ns+ logM(ε))

≥
∫ log 1

ε

|T∗|

ds

H−1
p (ns+ logM(ε))

≥
∫ log 1

ε

1
n

ds

H−1
p (ns+ logM(ε))

=
1
n

∫ n log 1
ε +log M(ε)

1+log M(ε)

dη

H−1
p (η)

.

(33)

Note that 1+ logM(ε) = log eM(ε). Therefore, by (33),
∫ 1

ε
dr

rq
1
p
0 (r)

≥ 1
n

∫ log
M(ε)

εn

log eM(ε)
dη

H−1
p (η)

.

Introducing the new variable η = log τ and applying (25), we obtain inequality (23).
Hence, (21) is true. �

Theorem 5. Let Q : Bn → [0,∞] be a Lebesgue measurable function such that

(34)
∫

Bn

Φ(Q(x)) dm(x) <∞,
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where Φ : [0,∞] → [0,∞] is a monotone nondecreasing convex function such that

(35)
∫ ∞

δ0

dτ

τ
[
Φ−1(τ)

] 1
p

= ∞, p ∈ (0,∞),

for some δ0 > τ0 : = Φ(0). Then

(36)
∫ 1

0

dr

rq
1
p

0 (r)
= ∞.

Remark 4. Observe that, in Theorem 5, the assumptions about Φ are more general,
namely, Φ is allowed to take the value 0. Indeed, the above case reduces to the function
Φ : [0,∞] → (0,∞] by consideration of the following auxiliary function:

Φ∗(t) =

{
Φ(t) if Φ(t) > δ,

δ if Φ(t) ≤ δ,

where δ is an arbitrary number such that δ ∈ (0, δ0). Observe that properties (34) and
(35) remain valid for Φ∗(t).

Remark 5. We have [Φ−1(τ)]
1
p = Φ−1

p (τ), where Φp(t) = Φ(tp); hence, (35) implies that

(37)
∫ ∞

δ

dτ

τΦ−1
p (τ)

= ∞, δ ∈ [0,∞).

On the other hand, property (37) with some δ ∈ [0,∞) does not imply (35), in general.
Indeed, property (35) with some δ0 > τ0 clearly implies (37) for δ ∈ [0, δ0). Also, for

δ ∈ (δ0,∞) we have

(38) 0 ≤
∫ δ

δ0

dτ

τΦ−1
p (τ)

≤ 1
Φ−1

p (δ0)
log

δ

δ0
<∞,

because the function Φ−1
p is monotone nondecreasing and Φ−1

p (δ0) > 0. Therefore, (37)
is true for all δ ∈ [0,∞).

On the other hand, by the definition of the inverse function, Φ−1
p (τ) ≡ 0 for all

τ ∈ [0, τ0] with τ0 = Φp(0). Thus, in general, condition (37) with δ ∈ [0, τ0) does not
imply (35). If τ0 > 0, then

(39)
∫ τ0

δ

dτ

τΦ−1
p (τ)

= ∞, δ ∈ [0, τ0).

However, property (39) contains no proper information about the function Q(x). Hence,
condition (37) with δ < Φ(0) definitely does not imply (36).

By property (37), the proof of Theorem 5 reduces to the claim of Lemma 1.

§4. Conditions sufficient for equicontinuity

Proof of Theorem 1. Without loss of generality, we may assume that Φ(0) > 0. By Propo-
sition 3, it suffices to show that the assumptions of Theorem 1 imply property (12) for
every x0 ∈ D and for some ε0 < dist (x0, ∂D). Introducing the variable t = r/ε0, we
obtain

(40)
∫ ε0

ε

dr

rq
1

n−1
x0 (r)

=
∫ 1

ε/ε0

dt

tq
1

n−1
x0 (tε0)

=
∫ 1

ε/ε0

dt

tq̃
1

n−1
0 (t)

,
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where q̃0(t) is the integral mean value of the function Q̃(x) := Q(ε0x+x0) on the sphere
|x| = t, see (11) for the definition. Now, applying Lemma 1 with p = n− 1, we obtain∫ 1

ε/ε0

dt

tq̃
1

n−1
0 (t)

≥ 1
n

∫ M∗(ε/ε0)εn
0

εn

eM∗(ε/ε0)

dτ

τ [Φ−1(τ)]
1

n−1
,(41)

M∗(ε/ε0) =
1

Ωn

(
1− (ε/ε0)n

) ∫
A(ε/ε0,1,0)

Φ
(
Q(ε0x+ x0)

)
dm(x)

=
1

Ωn(εn
0 − εn)

∫
A(ε,ε0,x0)

Φ(Q(x)) dm(x).
(42)

Observe that if x ∈ A(ε, ε0, x0), then |x| ≤ |x− x0|+ |x0| ≤ ε0 + |x0|; thus, (42) implies
that

M∗(ε/ε0) ≤
βn(x0)

Ωn(εn
0 − εn)

∫
A(ε,ε0,x0)

Φ(Q(x))
dm(x)

(1 + |x|2)n
,

where βn(x0) = (1 + (ε+ |x0|)2)n. Hence, for ε ≤ 1/ n
√
εn
0 − 1/2 we have

M∗(ε/ε0) ≤
2βn(x0)

Ωn
M,

where M is the constant on the right-hand side of (8). Also, observe that

M∗(ε/ε0) > Φ(0) > 0.

Therefore, by (40) and (41),∫ ε0

ε

dr

rq
1

n−1
x0 (r)

≥ 1
n

∫ Φ(0)εn
0

εn

2eβn(x0)M
Ωn

dτ

τ
[
Φ−1(τ)

] 1
n−1

.

However, the right-hand side of the above inequality tends to infinity by (7); hence,∫ ε0

0
dr

rq
1

n−1
x0 (r)

= ∞. Now, the required conclusion follows from Proposition 3. The theorem

is proved. �

Corollary 1. Each of conditions (15)–(20) with p ∈ (0, n− 1] implies the equicontinuity
and normality of the class RΦ,Q

M,E for all M ∈ (0,∞).

§5. Conditions sufficient for the removability of singularities

The proof of Theorem 2. is quite similar to that of Theorem 1; namely, first we verify
that the integral

∫ ε0

0
dr

rq
1

n−1
x0 (r)

diverges. Second, we apply Proposition 2. �

For a function f : D → Rn, a set E ⊂ D, and a point y ∈ Rn, we define the
multiplicity function N(y, f, E) as the number of preimages of y in the set E, that is,

N(y, f, E) = card
{
x ∈ E : f(x) = y

}
.

Corollary 2 (a Sokhotsky–Weierstrass type theorem). Let Φ : [0,∞] → [0,∞] be a
monotone nondecreasing convex function. Assume that property (7) is fulfilled for some
δ0 > τ0 := Φ(0), and that an open discrete Q-mapping f : D \ {x0} → Rn has an
essential singular point x0 ∈ D. Suppose Q satisfies condition (8) in the domain D and
Q(x) ≥ 1 almost everywhere. Then there exists an Fσ-set C ⊂ Rn of zero capacity and
such that

N
(
y, f, U \ {x0}

)
= ∞

for any neighborhood U of the point x0 and for all y ∈ Rn \ C.
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Proof. Let U be an arbitrary neighborhood of the point x0. Without loss of generality,
we may assume that x0 = 0 and U = Bn. Consider the sets Vk = B(0, 1/k) \ {0},
k = 1, 2, . . . . Put

(43) C =
∞⋃

k=1

Rn \ f(Vk) .

By Theorem 2, the union of each set Bk := Rn \f(Vk) and the set on the right-hand side
of (43) has zero capacity. Hence, C also has zero capacity; see, e.g., [7]. Fix y ∈ Rn \C.
Then

(44) y ∈
∞⋂

k=1

f(Vk) .

By (44), there exists a sequence {xi}∞i=1 such that xi → 0 as i → ∞ and f(xi) = y,
i = 1, 2, . . . . Corollary 2 is proved. �

Corollary 3 (a Liouville type theorem). Let Φ : [0,∞] → [0,∞] be a monotone nonde-
creasing convex function. Assume that condition (7) is fulfilled for some δ0 > τ0 := Φ(0)
and that f : Rn → Rn is an open discrete Q-mapping at the point x0 = ∞, that is,
the mapping f̃ := f ◦ ϕ with ϕ(x) = x

|x|2 is an annular Q ′(x)-mapping at zero, where
Q ′(x) = Q

(
x
|x|2

)
. Suppose Q satisfies condition (8) in the domain D = Rn and Q(x) ≥ 1

almost everywhere. Then cap (Rn \ f(Rn)) = 0. In particular, f cannot map the space
Rn into a bounded domain.

Proof. Suppose the contrary, that is,

cap
(
Rn \ f(Rn)

)
> 0.

Then, for the auxiliary mapping f̃ = f
(

x
|x|2

)
, f̃ : Rn \ {0} → Rn, we have f̃(Rn \ {0}) =

f(Rn \ {0}), so that

cap
(
Rn \ f̃(Rn \ {0})

)
= cap

(
Rn \ f(Rn \ {0})

)
≥ cap

(
Rn \ f(Rn)

)
> 0.

Moreover, note that ϕ(x) = x
|x|2 is a similarity map from the sphere S(0, r) onto the

sphere S(0, 1/r), whence |J(x, ψ)| = (1/|x|)2n. Using the above observations and chang-
ing the variable in the integral in (8), we have∫

Rn

Q ′(x)
dm(x)

(1 + |x|2)n
=

∫
Rn

Q
( x

|x|2
) dm(x)

(1 + |x|2)n
=

∫
Rn

Q(y) · 1
|y|2n

· dm(y)(
1 + 1

|y|2
)n

=
∫

Rn

Q(y)
dm(y)

(1 + |y|2)n
≤M.

So, by Theorem 2, the mapping f̃ extends by continuity to an open discrete mapping
f̃ : Rn → Rn. Equivalently, f also extends by continuity to an open discrete mapping
f : Rn → Rn. In this case, the set f(Rn) is simultaneously open and closed in Rn,
whence f(Rn) = Rn. However, this contradicts the following assumption made above:
cap(Rn \ f(Rn)) > 0. �

§6. On the branching points of mappings
with integral restrictions on the characteristic

Recall that y0 ∈ D is a branching point of a mapping f : D → Rn if the restriction f |U
is not a homeomorphism for any neighborhood U of y0. Given f , the set of all branching
points of f is denoted by Bf . We say that a point z0 ∈ Rn is an asymptotic limit of a



12 E. A. SEVOST′YANOV

mapping f : D → Rn at a point b ∈ ∂D if there exists a curve α : [0, 1) → D, α(t) → b
as t → 1, such that f(α(t)) → z0 as t → 1; see §2 in Chapter 7 of [17]. Informally, a
mapping f defined on a domain D has z0 ∈ Rn as an asymptotic limit at a point b on the
boundary of D if there exists a curve that approaches b in D and is such that, along this
curve, the mapping f approaches z0. The present section contains several consequences
of the following assertion obtained by the author earlier; see Theorem 1 in [26].

Proposition 5. Let x0 ∈ D. Assume that an open discrete mapping f : D\{x0} → Rn,
n ≥ 2, satisfies (4) at the point x0 for any measurable function η with property (6) and
for some measurable function Q(x), Q : D → [1,∞]. Suppose that x0 is an essential
singular point of f and (12) is true for some δ(x0) > 0, δ(x0) < dist(x0, ∂D). Then:

I. If n ≥ 3 and a point z0 ∈ Rn is an asymptotic limit of f at x0, then z0 ∈ f(Bf ∩ U)
for any neighborhood U ⊂ D of x0.

II. Each point of the set Rn \ f(D \ {x0}) is an asymptotic limit of f at x0.
III. If n ≥ 3, then (Rn \ f(D \ {x0})) ⊂ f(Bf ).
IV. If n ≥ 3 and ∞ /∈ f(D \ {x0}), then

a) the set f(Bf ) is unbounded in Rn;
b) x0 ∈ Bf .

Theorem 6. Let Φ : [0,∞] → [0,∞] be a monotone nondecreasing convex function.
Assume that (7) is true for some δ0 > τ0 := Φ(0), and that an open discrete Q-mapping
f : D \ {x0} → Rn has an essential singular point x0 ∈ D. Suppose Q satisfies condi-
tion (8) in the domain D and Q(x) ≥ 1 almost everywhere. Then the claims I–IV in
Proposition 5 are true.

Proof. As in the proof of Theorem 1, first we prove that the integral
∫ ε0

0
dr

rq
1

n−1
x0 (r)

in (12)

diverges. Second, we apply Proposition 5 to obtain the required conclusion. �

Corollary 4. Let Φ : [0,∞] → [0,∞] be a monotone nondecreasing convex function.
Suppose that (7) is true for some δ0 > τ0 := Φ(0), and that a Q-mapping f : D \
{x0} → Rn is a local homeomorphism in a domain D \ {x0}. Assume that the function
Q satisfies condition (8) in D and Q(x) ≥ 1 almost everywhere. Then f extends to a
local homeomorphism f : D → Rn.

Proof of Corollary 4. easily follows from Theorem 6. Indeed, the condition Bf = ∅
implies that f extends continuously to the point x0. It remains to show that the extended
mapping f : D → Rn is a homeomorphism on a certain ball B(x0, ε1). Assume that
this is not the case. Then x0 ∈ Bf . On the other hand, for an arbitrary open discrete
mapping g : G → Rn of a domain G ⊂ Rn, n ≥ 2, the following inequality for the
Hausdorff dimension is known: dimH g(Bg) ≥ n−2; see, e.g., Proposition 5.3 in Chapter
3 of [17]. In the case under consideration, this means that the domain D contains certain
points of the set Bf besides the point x0, a contradiction. Indeed, by assumption, f is a
local homeomorphism in D \ {x0}. �

§7. Conditions necessary for equicontinuity and for the removability of
singularities

Before proving Theorem 3, we make the following remark.

Remark 6. Without loss of generality, we may assume that, in the definition of the class
RΦ,Q

M,E used in Theorem 3, the measurable function Q(x) related to Φ by (8) is greater
than or equal to 1.
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Also, observe that the function Φ(t) used in Theorem 3 is not constant. Indeed,
there are no restrictions on Q in the theorem under consideration. The only exception
is the condition Φ(t) ≡ ∞, which implies that the class RΦ

M,E is empty. Moreover,
by a well-known convexity criterion (see, e.g., Proposition 5 in § I.4.3 in [4]) the slope
[Φ(t) − Φ(0)]/t is a monotone nondecreasing function. Thus, the proof of Theorem 3
reduces to the following statement.

Lemma 2. Assume that Φ : [0,∞] → [0,∞] is a monotone nondecreasing function, and
that

(45) Φ(t) ≥ C · t
1

n−1 , t ∈ [T,∞],

for some C > 0 and T ∈ (0,∞). If the class RΦ,Q
M,E is equicontinuous (normal) for all

M ∈ (0,∞), all sets E of positive capacity, and all Lebesgue measurable functions Q,
then (9) is true for all δ∗ ∈ (τ0,∞), where τ0 : = Φ(+0).

Proof. It suffices to consider the case where D = Bn. Suppose the contrary: let property
(9) fail, that is,

(46)
∫ ∞

δ0

dτ

τΦ−1
n−1(τ)

<∞

for some δ0 ∈ (τ0,∞), where Φn−1(t) : = Φ(tn−1). Then we also have

(47)
∫ ∞

δ

dτ

τΦ−1
n−1(τ)

<∞, δ ∈ (τ0,∞),

because Φ−1(τ) > 0 for all τ > τ0, and Φ−1(τ) is a monotone nondecreasing function.
Note that, by (45), the inequality Φn−1(t) ≥ C · t, t ≥ T , is also valid for some C > 0
and T ∈ (1,∞). Moreover, applying the linear transformation αΦ + β, where α = 1/C
and β = T (see, e.g., (17)), we may assume that

(48) Φn−1(t) ≥ t, t ∈ [0,∞).

Clearly, we may also assume that Φ(t) = t for all t ∈ [0, 1) because the values of the
function Φ on the half-open interval [0, 1) provide no information about the set Q(x) ≥ 1
in (8). Also, property (47) implies the condition Φ(t) < ∞ for all t < ∞; see the
criterion (17), and also (20). Now, observe that the function Ψ(t) : = tΦn−1(t) is strictly
monotone increasing, Ψ(1) = Φ(1), and Ψ(t) → ∞ as t → ∞. Thus, the functional
equation

(49) Ψ(K(r)) =
(γ
r

)2

, r ∈ (0, 1],

with γ = Φ1/2(1) ≥ 1, is solvable if K(1) = 1, and K(r) is a strictly monotone decreasing
continuous function such that K(r) < ∞, r ∈ (0, 1], and K(r) → ∞ as r → 0. Taking
the logarithm in (49), we have log K(r) + log Φn−1(K(r)) = 2 log γ

r . So, by (48), we
obtain log K(r) ≤ log γ

r , that is,

(50) K(r) ≤ γ

r
.

Hence, by (49), Φn−1(K(r)) ≥ γ
r and, by (14),

(51) K(r) ≥ Φ−1
n−1

(γ
r

)
.

We define the following mappings in the punctured unit ball Bn \ {0}:

f(x) =
x

|x|
ρ(|x|), fm(x) =

x

|x|
ρm(|x|), m = 1, 2, . . . ,
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where ρ(t) = exp{I(0)− I(t)}, ρm(t) = exp{I(0)− Im(t)}, t ∈ [0, 1], and put

I(t) =
∫ 1

t

dr

rK(r)
, Im(t) =

∫ 1

t

dr

rKm(r)
,

and

Km(r) =

{
K(r) for r ≥ 1/m,
K

(
1
m

)
for r ∈ (0, 1/m).

Using (51), we obtain

I(0)− I(t) =
∫ t

0

dr

rK(r)
≤

∫ t

0

dr

rΦ−1
n−1

(
γ
r

) =
∫ ∞

γ
t

dτ

τΦ−1
n−1(τ)

, t ∈ (0, 1],

where γ/t ≥ γ ≥ 1 > Φ(0) = 0. Thus, by (47),

(52) I(0)− I(t) ≤ I(0) =
∫ 1

0

dr

rK(r)
<∞, t ∈ (0, 1].

Also, we have fm, f ∈ C1(Bn \ {0}) because Km(r) and K(r) are continuous. We show
that the fm are Km-quasiconformal in Bn, where Km = Kn−1(1/m), fm(0) = 0.

Fix ρ ∈ (0, 1) and a point x ∈ Bn \ {0} such that |x| = ρ. Observe that the principal
distortions λi1(x), . . . , λin−1(x) of the mapping f at the point x in n − 1 directions
i1, . . . , in−1 tangential to the sphere |x| = ρ are all equal and are given by the following
formula:

(53) λik
(x) := δτ (x) =

|f(x)|
|x|

=
exp

{∫ ρ

0
dr

rK(r)

}
ρ

,

k = 1, . . . , n−1. The value λin(x) that corresponds to the perpendicular (radial) direction
is computed as follows:

(54) λin
(x) := δr(x) =

∂|f(x)|
∂|x|

=
exp

{∫ ρ

0
dr

rK(r)

}
ρK(ρ)

.

For more details about the definition and computation of distortions, see, e.g., §5 in
Chapter 1 of [16], see also Proposition 6.3 in Chapter 4 of [11]. Properties (53) and (54)
imply that δr(x) ≤ δτ (x), because K(r) ≥ 1. Hence, applying (10), we see that

KI(x, f) =
δn−1
τ (x) · δr(x)

δn
r (x)

= Kn−1(|x|)

at all points x ∈ Bn \ {0}; see also [16, § I.2.1]. Note that

(55) fm(x) ≡ f(x) for all x with
1
m
< |x| < 1, m = 1, 2 . . . .

Thus, KI(x, fm) = KI(x, f) = Kn−1(|x|) for 1
m < |x| < 1, and KI(x, fm) = Kn−1(1/m)

for 0 < |x| < 1
m can be computed similarly. Therefore, by Proposition 1, each fm is an

annular Q-mapping in Bn with Q(x) = KI(x, f), because K(r) is monotone nonicreasing.
By (49),∫

Bn

Φ(KI(x, fm)) dm(x) ≤
∫

Bn

Φn−1(K(|x|)) dm(x) = ωn−1

∫ 1

0

Ψ(K(r))
rK(r)

· rn dr

≤ γ2ωn−1

∫ 1

0

dr

rK(r)
≤M : = γ2ωn−1I(0) <∞.

(56)
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Note that fm maps the unit ball Bn onto the ball with center at the origin and of radius
R = eI(0) < ∞. Therefore, fm ∈ RΦ,Q

M,E , where M is defined above; so, we may put
E = Rn \B(0, eI(0)). On the other hand, it is easily seen that

(57) lim
x→0

|f(x)| = lim
t→0

ρ(t) = e0 = 1,

that is, f maps the punctured ball Bn \ {0} onto the annulus 1 < |y| < R = eI(0). Hence,
by (55) and (57),

|fm(x)| = |f(x)| ≥ 1 for all x with |x| ≥ 1/m, m = 1, 2, . . . ,

that is, the family {fm}∞m=1 is not equicontinuous at zero. The contradiction obtained
shows that (46) cannot be true. �

Remark 7. Theorem 3 shows that (7) is not merely sufficient, but also necessary for the
continuity (normality) of the mapping classes satisfying the integral conditions (8) with
a convex monotone nondecreasing function Φ. By Proposition 4, this remark extends to
conditions (15)–(20) for p = n− 1.

Proof of Theorem 4. Applying the construction described in the proof of Theorem 3 and
Lemma 2 and retaining the above notation, consider the mapping

f(x) =
x

|x|
ρ(|x|)

on the domain D = Bn \ {0}. As was mentioned above, f maps the punctured ball
Bn \ {0} onto the annulus 1 < |y| < R = eI(0). This means that f has an essential
singularity at zero. Also, as was proved above, f is an annular Q-mapping at zero for
Q(x) = KI(x, f) = Kn−1(|x|); moreover, Q satisfies (56), that is, f ∈ KΦ,Q

M,E(Bn \ {0})
for some M > 0 and a set E such that capE > 0. �

§8. Applications to the Sobolev classes

Assume that the first order partial derivatives are defined for a mapping f : D → Rn,
n ≥ 2, at almost all points x ∈ D. Then the outer dilatation of f at a point x is defined
as

KO(x, f) =
‖f ′(x)‖n

|J(x, f)|
,

provided that J(x, f) 6= 0. If J(x, f) = 0, then KO(x, f) = 1 when f ′(x) = 0, otherwise
KO(x, f) = ∞. It is possible to verify that, for almost all x ∈ D, we have KI(x, f) ≤
Kn−1

O (x, f), KO(x, f) ≤ Kn−1
I (x, f); see, e.g., §3 in Chapter 1 of [16]. The following

theorem was obtained by the author earlier (see [27, Theorem 1]):

Theorem 7. Let x0 ∈ D, and let f : D → Rn be an open discrete mapping of class
W 1,n

loc (D) such that Q := Kn−1
O (x, f) ∈ L1

loc(D) and m(Bf ) = 0. Then f satisfies
condition (4) at the point x0 for every nonnegative measurable function η with property
(6) and for Q := Kn−1

O (x, f). The case where x0 is an essential singular point in D is
admissible.

Therefore, the results mentioned above apply to the Sobolev classes. Also, such results
have direct reformulations in terms of the Sobolev classes.

Postscriptum. The present work continues the studies initiated by the prominent math-
ematician G. D. Suvorov who described “the ideal (and the goal!) of the function theory
as achieving the situation when we have a large number of function classes and, for each
class, we have an elaborate catalog of properties (metric and topological)”.
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