УДК 517.5

Е. А. Севостьянов

К теории устранения особенностей отображений с неограниченной характеристикой квазиконформности

Доказано, что множества нулевого модуля с весом Q, в частности изолированные особые точки, для открытых дискретных Q-отображений $f\colon D\to\overline{\mathbb{R}^n}$ устранимы, если функция Q(x) имеет конечное среднее колебание либо логарифмические особенности порядка не выше n-1 на соответствующем множестве. Получен аналог хорошо известной теоремы Сохоцкого—Вейерштрасса, а также аналог теоремы Пикара. В частности, доказано, что в окрестности существенно особой точки открытое дискретное Q-отображение принимает любое значение бесконечно много раз, за исключением, быть может, некоторого множества значений емкости нуль.

Библиография: 27 наименований.

Ключевые слова: отображения с ограниченным искажением и их обобщения, открытые дискретные отображения, устранение особенностей отображений, существенные особые точки, теоремы Пикара, Сохоцкого и Лиувилля.

§ 1. Введение

Известный математик, основатель школы по теории отображений Γ . Д. Суворов считал, что "сегодня идеалом (и целью!) в теории функций можно считать достижение такой ситуации, когда мы будем располагать большим числом различных классов функций и для каждого класса иметь разработанный каталог свойств (метрических и топологических)" [1, с. 325]. Настоящая работа посвящена исследованиям отображений с конечным искажением в пространстве \mathbb{R}^n , $n \geq 2$, которые интенсивно изучаются в последнее десятилетие в работах многих специалистов по теории отображений (см., например, [2]–[8]).

Как известно, в основу геометрического определения квазиконформных отображений, заданных в области D из $\mathbb{R}^n,\,n\geqslant 2,$ положено неравенство

$$M(f\Gamma) \leqslant KM(\Gamma),$$
 (1.1)

которое выполняется для произвольного семейства Γ кривых γ в области D, где M — конформный модуль семейства кривых (внешняя мера, определенная на семействах кривых в \mathbb{R}^n), а $K\geqslant 1$ — некоторая постоянная. Другими словами, искажение модуля ограничено при квазиконформных отображениях. В терминах емкостей соотношение (1.1) означает, что отображение f искажает емкость любого конденсатора из D в не более чем K раз. Предположим теперь, что в основе определения рассматриваемого класса отображений вместо соотношения (1.1) лежит неравенство вида

$$M(f\Gamma) \leqslant \int_{D} Q(x)\rho^{n}(x) dm(x),$$
 (1.2)

где m — мера Лебега \mathbb{R}^n , ρ — произвольная неотрицательная борелевская функция такая, что произвольная кривая γ семейства Γ имеет длину, не меньшую 1 в метрике ρ , а $Q \colon D \to [1,\infty]$ — фиксированная вещественнозначная функция. В случае, когда $Q(x) \leqslant K$ п.в., мы снова приходим к неравенству (1.1). В общем случае последнее неравенство означает, что искажение модуля исходного семейства Γ происходит с некоторым весом Q(x),

$$M(f\Gamma) \leqslant M_Q(\Gamma).$$
 (1.3)

В настоящей статье рассматривается задача следующего характера: поиск условий, налагаемых на функцию Q(x), участвующую в определении отображения f (см. соотношение (1.2)), при которых f продолжается по непрерывности в точки особого множества. Отображение f предполагается здесь открытым и дискретным; для гомеоморфизмов аналогичные теоремы были получены в [3]. Отметим, что техника исследования отображений с ветвлением во многом отличается от ранее использованных методов. Как мы увидим, из теорем подобного рода вытекает ряд интересных следствий и, в частности, теоремы типа Сохоцкого—Вейерштрасса и Пикара. Точные определения и понятия будут приведены ниже.

Теория Q-гомеоморфизмов – гомеоморфизмов, для которых выполнено (1.2), а также близких к ним классов – развивалась, в основном, для случая, когда мажоранта принадлежала известному пространству BMO (функций ограниченного среднего колебания по Джону–Ниренбергу [9]); см., например, [5] и [6]. Возможность непрерывного продолжения в точки особого множества нулевой емкости для квазирегулярных отображений была показана в работах О. Мартио, С. Рикмана и Ю. Вяйсяля (см., например, [10] и [11]).

Необходимо также отметить вклад В. М. Миклюкова в данную теорию (см. [12]). В статье [12] приведен ряд интересных теорем для квазирегулярных отображений, некоторые из которых предшествуют результатам настоящей работы. В частности, показано, что если квазирегулярное отображение $f\colon \Omega\setminus A\to\mathbb{R}^n$ имеет в каждой точке $x_0\in A$ компактного множества A нулевой емкости существенную особенность, то предельным множеством в x_0 будет все пространство $\overline{\mathbb{R}^n}$ (см. [12, теорема 2]).

В последнее время в работах многих авторов можно найти различные условия для дилатаций, при которых так называемые отображения с конечным искажением допускают непрерывное продолжение на особые множества (см., например, [4], [8]). Более подробно, рассматриваемые отображения f должны удовлетворять целому ряду достаточно громоздких условий типа экспоненциальной интегрируемости дилатаций, которые, в частности, влекут $f \in W^{1,n}_{loc}$. В отличие от упомянутых работ, условия, при которых доказаны все результаты настоящей статьи, имеют более простой вид, а возможность непрерывного продолжения в особые точки показана для более широких классов отображений. Таким образом, избранные методы исследования демонстрируют здесь свою эффективность. В последнем параграфе приводятся некоторые сведения о связях изучаемых классов отображений с другими известными классами и формулируются открытые проблемы.

§ 2. Определения и предварительные замечания

Приведем некоторые определения. Всюду далее D – область в \mathbb{R}^n , $n \ge 2$, $\overline{\mathbb{R}^n} = \mathbb{R}^n \cup \{\infty\}$ — одноточечная компактификация \mathbb{R}^n , $\operatorname{dist}(A,B)$ — евклидово расстояние между множествами A и B в \mathbb{R}^n . Отображение $f\colon D\to\overline{\mathbb{R}^n}$ называется $\partial ucкретным$, если прообраз $f^{-1}(y)$ каждой точки $y \in \overline{\mathbb{R}^n}$ состоит из изолированных точек, и *открытым*, если образ любого открытого множества $U \subseteq D$ является открытым множеством в \mathbb{R}^n . Запись $f\colon D\to \overline{\mathbb{R}^n}$ предполагает, что отображение f непрерывно в области задания. Запись $G \in D$ означает, что \overline{G} – компактное подмножество области D. Говорят, что отображение f сохраняет ориентацию, если топологический индекс $\mu(y, f, G)$ больше нуля для произвольной области $G \subseteq D$ и произвольного $y \in f(G) \setminus f(\partial G)$ (см., например, [13]). Пусть $f: D \to \mathbb{R}^n$ – произвольное отображение, и пусть существует область $G \in D$ такая, что $\overline{G} \cap f^{-1}(f(x)) = \{x\}$. Тогда величина $\mu(f(x), f, G)$, называемая локальным топологическим индексом, не зависит от выбора области Gи обозначается через i(x, f). В дальнейшем $B(x_0, r) = \{x \in \mathbb{R}^n : |x - x_0| < r\}$, $B(r) = \{x \in \mathbb{R}^n \colon |x| < r\}$. Для отображения $f \colon D \to \overline{\mathbb{R}^n}$, множества $E \subset D$ и $y \in \mathbb{R}^n$ определим функцию кратности N(y, f, E) как число прообразов точки y в множестве E, т. е. $N(y, f, E) = \text{card}\{x \in E : f(x) = y\}$.

Напомним, что борелева функция $\rho \colon \mathbb{R}^n \to [0,\infty]$ называется допустимой для семейства Γ кривых γ в \mathbb{R}^n , если $\int_{\gamma} \rho(x) \, ds \geqslant 1$ для всех путей $\gamma \in \Gamma$. В этом случае записываем: $\rho \in \operatorname{adm} \Gamma$. Модулем семейства кривых Γ называется величина

$$M(\Gamma) = \inf_{\rho \in \operatorname{adm} \Gamma} \int_D \rho^n(x) \, dm(x).$$

Рассмотрим следующее определение (см. [6], [14], [15], а также [7], концепцию весовых пространств Соболева в [16] и работу [17]). Пусть $Q \colon D \to [1,\infty]$ – измеримая по Лебегу функция. Говорят, что гомеоморфизм $f \colon D \to \overline{\mathbb{R}^n}$ является Q-гомеоморфизмом, если

$$M(f\Gamma) \leqslant \int_{D} Q(x)\rho^{n}(x) dm(x)$$
 (2.1)

для любого семейства Γ путей γ в D и каждой допустимой функции $\rho \in \operatorname{adm} \Gamma$. Аналогично, непрерывное отображение $f \colon D \to \overline{\mathbb{R}^n}$, допускающее ветвления, будем называть Q-отображением, если (2.1) выполнено для любого семейства Γ путей γ в D и каждой допустимой функции $\rho \in \operatorname{adm} \Gamma$.

Пусть Q(x) – произвольная неотрицательная измеримая функция. *Модуль* с весом Q определяется следующим образом:

$$M_Q(\Gamma) = \inf_{\rho \in \operatorname{adm} \Gamma} \int_D Q(x) \rho^n(x) \, dm(x).$$

В соответствии с этим определение Q-отображения можно дать посредством формулы (1.3). Легко видеть, что модуль с весом при фиксированной функции Q обладает теми же свойствами, что и обычный модуль: неотрицательностью, полуаддитивностью, минорированием.

6

Следуя [18], конденсатором в \mathbb{R}^n , $n \ge 2$, называем пару E = (A, C), где A – открытое множество в \mathbb{R}^n , а C – компактное подмножество в A. Емкостью конденсатора E называется следующая величина:

$$\operatorname{cap} E = \operatorname{cap}(A, C) = \inf_{u \in W_0(E)} \int_A |\nabla u|^n \, dm(x), \tag{2.2}$$

где $W_0(E) = W_0(A,C)$ – семейство неотрицательных непрерывных функций $u\colon A\to\mathbb{R}$ с компактным носителем в A таких, что $u(x)\geqslant 1$ при $x\in C$ и $u\in ACL$. В формуле (2.2), как обычно, $|\nabla u|=\left(\sum_{i=1}^n(\partial_i u)^2\right)^{1/2}$. Напомним, что отображение $f\colon D\to\mathbb{R}^n$ называется абсолютно непрерывным на линиях, $f\in ACL$, если в любом n-мерном параллелепипеде P с ребрами, параллельными осям координат, таком, что $\overline{P}\subset D$, все координатные функции $f=(f_1,\ldots,f_n)$ абсолютно непрерывны на почти всех прямых, параллельных осям координат.

В дальнейшем в расширенном пространстве $\overline{\mathbb{R}^n} = \mathbb{R}^n \cup \{\infty\}$ используется сферическая (хордальная) метрика $h(x,y) = |\pi(x) - \pi(y)|$, где π – стереографическая проекция $\overline{\mathbb{R}^n}$ на сферу $S^n(\frac{1}{2}e_{n+1},\frac{1}{2})$ в \mathbb{R}^{n+1} :

$$h(x,\infty) = \frac{1}{\sqrt{1+|x|^2}}, \qquad h(x,y) = \frac{|x-y|}{\sqrt{1+|x|^2}\sqrt{1+|y|^2}}, \quad x \neq \infty \neq y.$$

Непрерывность отображений в $\overline{\mathbb{R}^n}$ понимается относительно метрики h. Пусть $f\colon D\to\mathbb{R}^n,\ n\geqslant 2$, — открытое дискретное отображение, $\beta\colon [a,b)\to\mathbb{R}^n$ — некоторая кривая и $x\in f^{-1}(\beta(a))$. Кривая $\alpha\colon [a,c)\to D$ называется максимальным поднятием кривой β при отображении f с началом в точке x, если $\alpha(a)=x,\ f\circ\alpha=\beta\big|_{[a,c)}$ и при $c< c'\leqslant b$ не существует кривой $\alpha'\colon [a,c')\to D$ такой, что $\alpha=\alpha'\big|_{[a,c)}$ и $f\circ\alpha=\beta\big|_{[a,c')}$. Пусть f — открытое дискретное отображение и $x\in f^{-1}(\beta(a))$. Тогда кривая β имеет максимальное поднятие при отображении f с началом в точке x (см. [11, гл. II, следствие 3.3]). Нам понадобится следующее утверждение (см. [11, гл. II, предложение 10.2]).

ЛЕММА 2.1. Пусть E=(A,C) – произвольный конденсатор в \mathbb{R}^n , и пусть Γ_E – семейство всех кривых вида $\gamma\colon [a,b)\to A$ таких, что $\gamma(a)\in C$ и $|\gamma|\cap (A\setminus F)\neq\varnothing$ для произвольного компакта $F\subset A$. Тогда $\operatorname{cap} E=M(\Gamma_E)$.

ЗАМЕЧАНИЕ 2.1. Понятие конденсатора и емкости конденсатора в \mathbb{R}^n можно перенести в $\overline{\mathbb{R}^n}$ (см. [10, п. 2.1]). Лемма 2.1 остается справедливой для конденсаторов в $\overline{\mathbb{R}^n}$ (см. [11, гл. II, замечание 10.8, 1]).

Говорят, что компакт C в \mathbb{R}^n , $n \geq 2$, имеет *нулевую емкость*, сар C=0, если существует ограниченное открытое множество A такое, что сар(A,C)=0. Известно (см., например, [13, гл. II, лемма 3.4]), что в последнем случае и для любого другого ограниченного открытого множества A в \mathbb{R}^n , содержащего C, будет выполнено сар(A,C)=0. В противном случае полагаем сар C>0. Легко видеть, что произвольное одноточечное множество $C=\{a\}$ имеет нулевую емкость. Аналогично тому, как последнее определение введено в \mathbb{R}^n , можно определить понятие множества нулевой емкости в $\overline{\mathbb{R}^n}$ (см., например, [10, п. 2.12]). Именно, компактное собственное подмножество F пространства $\overline{\mathbb{R}^n}$

имеет нулевую емкость, если сар(A,F)=0 для некоторого открытого множества $A\supset F,\ \bar{A}\neq \overline{\mathbb{R}^n}$. Говорят, что произвольное множество $H\subset \overline{\mathbb{R}^n}$ имеет нулевую емкость, если каждое его компактное подмножество $F\subset H$ также имеет нулевую емкость. Следующая лемма (см. [10, лемма 3.11] или [11, гл. III, лемма 2.6]) играет ключевую роль в дальнейших рассуждениях.

ЛЕММА 2.2. Пусть E – компактное собственное подмножество в $\overline{\mathbb{R}^n}$ такое, что $\operatorname{cap} E > 0$. Тогда для каждого a > 0 существует положительное число $\delta > 0$ такое, что $\operatorname{cap}(\overline{\mathbb{R}^n} \setminus E, C) \geqslant \delta$ для произвольного континуума $C \subset \overline{\mathbb{R}^n} \setminus E$, удовлетворяющего условию $h(C) \geqslant a$.

Замечание 2.2. Если компакт F в \mathbb{R}^n , $F \subset D$, имеет нулевую емкость, то при каждом $\alpha > 0$ α -мерная хаусдорфова мера $\Lambda_{\alpha}(F)$ множества F равна нулю (см. [10, лемма 2.13]). Следовательно, mes F = 0, Int $F = \emptyset$ и $D \setminus F$ является областью по теореме Менгера–Урысона (см., например, [19, теорема IV.4]).

Пусть $Q(x)\colon D\to [1,+\infty]$ — измеримая по Лебегу функция. Будем говорить, что множество $A\subset D$ является множеством *нулевого модуля с весом Q*, $M_Q(A)=0$, если для семейства Γ_A всех кривых в $\overline{\mathbb{R}^n}$ с началом на множестве A модуль с весом $M_Q(\Gamma_A)$ равен нулю (см. [4], [8]). Поскольку $Q(x)\geqslant 1$, такие множества, очевидно, также являются и множествами нулевой емкости, в частности нулевой хаусдорфовой размерности. Такие множества полностью разрывны, т. е. любая их связная компонента вырождается в точку.

§ 3. Основная лемма

ЛЕММА 3.1. Пусть $C\subset D$ — замкнутое подмножество области D с $M_Q(C)=0,\ f\colon D\setminus C\to \mathbb{R}^n$ — открытое дискретное Q-отображение такое, что

$$\operatorname{cap}(\overline{\mathbb{R}^n} \setminus f(D \setminus C)) > 0. \tag{3.1}$$

Предположим, что для некоторой точки $x_0 \in C$ существует $\varepsilon_0 = \varepsilon(x_0)$, $0 < \varepsilon_0 < \operatorname{dist}(x_0, \partial D)$, такое, что

$$\int_{\varepsilon < |x-x_0| < \varepsilon_0} Q(x) \psi_{\varepsilon}^n(|x-x_0|) \, dm(x) = o(I^n(\varepsilon)), \qquad \varepsilon \in (0, \varepsilon_0), \tag{3.2}$$

еде $\{\psi_{\varepsilon}(t)\}$ — семейство измеримых (по Лебегу) неотрицательных на $(0,\infty)$ функций, для которых

$$0 < I(\varepsilon) = \int_{\varepsilon}^{\varepsilon_0} \psi_{\varepsilon}(t) dt < \infty, \qquad \varepsilon \in (0, \varepsilon_0).$$

Тогда f имеет непрерывное продолжение в точку x_0 .

Здесь непрерывность понимается в смысле пространства $\overline{\mathbb{R}^n}$ относительно хордальной метрики h.

ДОКАЗАТЕЛЬСТВО ЛЕММЫ 3.1. Из замечания 2.2 следует, что $D \setminus C$ является областью. Не ограничивая общности рассуждений, можно считать, что $x_0 = 0$.

Предположим, что отображение f не может быть продолжено по непрерывности в точку $x_0=0$. Тогда найдутся две последовательности x_j и x_j' , принадлежащие $B(\varepsilon_0)\setminus C,\, x_j\to 0, x_j'\to 0$, такие, что $h(f(x_j),f(x_j'))\geqslant a>0$ для всех $j\in\mathbb{N}$. Положим $r_j=\max\{|x_j|,|x_j'|\}<\varepsilon_0$. По замечанию 2.2 точки x_j и x_j' можно соединить кривой, лежащей в $\overline{B(r_j)}\setminus C$. Обозначим эту кривую через C_j , и пусть $E_j=(B(\varepsilon_0)\setminus C,C_j),\, \Gamma_{E_j}$ и Γ_{fE_j} —семейства кривых в смысле обозначений леммы 2.1, а Γ_j^* —семейство всех максимальных поднятий кривых Γ_{fE_j} с началом в C_j при отображении f. Покажем, что $\Gamma_j^*\subset \Gamma_{E_j}$.

Предположим противное. Тогда существует кривая $\beta \colon [a,b) \to \mathbb{R}^n$ семейства Γ_{fE_j} , для которой соответствующее максимальное поднятие $\alpha \colon [a,c) \to B(\varepsilon_0) \setminus C$ лежит со своим замыканием $\overline{\alpha}$ в некотором компакте внутри $B(\varepsilon_0) \setminus C$. Следовательно, $\overline{\alpha}$ – компакт в $B(\varepsilon_0) \setminus C$. Заметим, что $c \neq b$, поскольку в противном случае $\overline{\beta}$ —компакт в $f(B(\varepsilon_0) \setminus C)$, что противоречит условию $\beta \in \Gamma_{fE_j}$.

Рассмотрим множество $G = \{x \in \mathbb{R}^n : x = \lim_{k \to \infty} \alpha(t_k)\}$, где $t_k \in [a,c)$ такие, что $\lim_{k \to \infty} t_k = c$, $\lim_{k \to \infty} \alpha(t_k) = x$. Заметим, что, переходя к подпоследовательностям, здесь можно ограничиться рассмотрением монотонных последовательностей t_k . Проще говоря, G – предельное множество $\alpha(t)$ при $t \to c - 0$. Для $x \in G$ в силу непрерывности отображения f будем иметь $f(\alpha(t_k)) \to f(x)$ при $k \to \infty$, где $t_k \in [a,c)$, $t_k \to c$ при $k \to \infty$. Однако $f(\alpha(t_k)) = \beta(t_k) \to \beta(c)$ при $k \to \infty$. Отсюда заключаем, что f постоянна на G в $B(\varepsilon_0) \setminus C$. С другой стороны, по условию Кантора в компакте $\overline{\alpha}$ (см. [20, c. 8-9])

$$G = \bigcap_{k=1}^{\infty} \overline{\alpha([t_k, c))} = \limsup_{k \to \infty} \alpha([t_k, c)) = \liminf_{k \to \infty} \alpha([t_k, c)) \neq \emptyset$$

ввиду монотонности последовательности связных множеств $\alpha([t_k,c))$, таким образом, G является связным согласно [21, гл. I, утверждение (9.12)]. Следовательно, в силу дискретности f множество G не может состоять из более чем одной точки и кривая $\alpha\colon [a,c)\to B(\varepsilon_0)\setminus C$ продолжается до замкнутой кривой $\alpha\colon [a,c]\to B(\varepsilon_0)\setminus C$. Тогда имеем $f(\alpha(c))=\beta(c)$, т. е. $\alpha(c)\in f^{-1}(\beta(c))$. С другой стороны, можно построить (см. [11, гл. II, следствие 3.3]) максимальное поднятие α' кривой $\beta|_{[c,b)}$ с началом в точке $\alpha(c)$. Наконец, объединяя поднятия α и α' , получаем новое поднятие α'' кривой β , которое определено на [a,c'), что противоречит максимальности поднятия α .

Таким образом, имеем $\Gamma_j^* \subset \Gamma_{E_j}$. Заметим, что $\Gamma_{fE_j} > f\Gamma_j^*$, следовательно, $M(\Gamma_{fE_j}) \leqslant M(f\Gamma_j^*) \leqslant M(f\Gamma_{E_j})$. Поэтому по лемме 2.1 получаем

$$\operatorname{cap} f E_j \leqslant \int_D Q(x) \rho^n(x) \, dm(x) \tag{3.3}$$

для каждой допустимой функции $\rho \in \operatorname{adm} \Gamma_{E_j}$. Заметим, что семейство Γ_{E_j} разбивается на три подсемейства:

$$\Gamma_{E_j} = \Gamma_{E_i^1} \cup \Gamma_{E_i^2} \cup \Gamma_{E_i^3}, \tag{3.4}$$

где $\Gamma_{E_j^1}$ – семейство всех спрямляемых кривых $\alpha(t)\colon [a,c)\to B(\varepsilon_0)\setminus C$ с началом в C_j таких, что $\mathrm{dist}(\alpha(t),C)\to 0$ при $t\to c-0$, $\Gamma_{E_j^2}$ – семейство всех спрямляемых кривых $\alpha(t)\colon [a,c)\to B(\varepsilon_0)\setminus C$ с началом в C_j таких, что

 $\mathrm{dist}(\alpha(t),\partial B(\varepsilon_0))\to 0$ при $t\to c-0,$ а $\Gamma_{E_j^3}$ – подсемейство всех неспрямляемых кривых семейства $\Gamma_{E_j}.$ Заметим, что по определению Q-отображения в силу условия $M_Q(C)=0$ имеем

$$M(f\Gamma_{E_i^1}) = 0. (3.5)$$

Рассмотрим кольцо $A_j=\{x\in\mathbb{R}^n\colon r_j<|x|<\varepsilon_0\}$. По теореме Лузина при каждом $\varepsilon>0$ существует борелевская функция $\psi_\varepsilon^*(t)=\psi_\varepsilon(t)$ для п.в. t. Тогда семейство

$$\rho_j(x) = \begin{cases} \psi_{r_j}^*(|x|)/I(r_j), & x \in A_j, \\ 0, & x \in \mathbb{R}^n \setminus A_j, \end{cases}$$

состоит из борелевских функций и, кроме того, для любой кривой γ семейства $\Gamma_{E_i^2}$

$$\int_{\gamma} \rho_j \, ds \geqslant \frac{1}{I(r_j)} \int_{r_j}^{\varepsilon_0} \psi_{r_j}^*(t) \, dt = 1 \tag{3.6}$$

(см., например, [22, теорема 5.7]). Отсюда следует, что $\rho_j \in \operatorname{adm} \Gamma_{E_j^2}$. Заметим также, что $\rho_j \in \operatorname{adm} \Gamma_{E_j^3}$. Таким образом, в силу (3.2)–(3.6) имеем

$$\begin{split} \operatorname{cap} f E_j &\leqslant \int_{r_j < |x| < \varepsilon_0} Q(x) \rho_j^n(x) \, dm(x) \\ &= \frac{1}{I^n(r_j)} \int_{r_j < |x| < \varepsilon_0} Q(x) \psi_{r_j}^n(|x|) \, dm(x) \to 0 \quad \text{при} \quad j \to \infty. \end{split}$$

С другой стороны, $h(fC_j) \geqslant a$, и в силу условия (3.1) по лемме 2.2 имеем сар $fE_j \geqslant \delta > 0$, где δ не зависит от j. Полученное противоречие доказывает лемму.

§ 4. Устранение особенностей модуля нуль с весом

Говорят, что функция $\varphi \colon D \to \mathbb{R}, \ \varphi \in L^1_{loc}(D)$, имеет ограниченное среднее колебание в области $D, \ \varphi \in BMO$, если

$$\|\varphi\|_* = \sup_{B \subset D} \frac{1}{|B|} \int_B |\varphi(x) - \varphi_B| \, dm(x) < \infty,$$

где точная верхняя грань берется по всем шарам $B \subset D$ и $\varphi_B = \frac{1}{|B|} \int_B \varphi(x) \, dm(x)$ есть среднее значение функции φ в шаре B (см., например, [9]). С целью упрощения записи мы обозначаем в дальнейшем

$$\int_A f(x)\,dm(x):=\frac{1}{|A|}\int_A f(x)\,dm(x),$$

где, как обычно, |A| – лебегова мера множества $A \subseteq \mathbb{R}^n$. Хорошо известно, что $L^{\infty}(D) \subset BMO(D) \subset L^p_{\text{loc}}(D), \ p \in [1,\infty)$ (см., например, [9]). Следуя работе [3], говорим, что функция $\varphi \colon D \to \mathbb{R}$ имеет конечное среднее колебание в точке $x_0 \in D$, и записываем $\varphi \in FMO(x_0)$, если

$$\overline{\lim}_{\varepsilon \to 0} \int_{B(x_0, \varepsilon)} |\varphi(x) - \overline{\varphi}_{\varepsilon}| \, dm(x) < \infty, \tag{4.1}$$

где $\overline{\varphi}_{\varepsilon} = \int_{B(x_0,\varepsilon)} \varphi(x) \, dm(x).$

Заметим, что при выполнении условия (4.1) возможна ситуация, когда $\overline{\varphi}_{\varepsilon} \to \infty$ при $\varepsilon \to 0$. Также говорим, что $\varphi \colon D \to \mathbb{R}$ – функция конечного среднего колебания в D, и записываем $\varphi \in FMO(D)$, или $\varphi \in FMO$, если φ имеет конечное среднее колебание в каждой точке $x_0 \in D$. В частности, если в точке $x_0 \in D$ выполнено соотношение $\overline{\lim}_{\varepsilon \to 0} \int_{B(x_0,\varepsilon)} |\varphi(x)| \, dm(x) < \infty$, то функция φ имеет конечное среднее колебание в точке x_0 [3]. Очевидно, $BMO \subset FMO$. Версию следующей леммы можно найти, например, в [3, следствие 2.3].

ЛЕММА 4.1. Пусть $\varphi \colon D \to \mathbb{R}, n \geqslant 2$, – неотрицательная функция, имеющая конечное среднее колебание в точке $0 \in D$. Тогда при $\varepsilon \to 0$

$$\int_{\varepsilon < |x| < \varepsilon_0} \frac{\varphi(x) \, dm(x)}{(|x| \log \frac{1}{|x|})^n} = O\left(\log \log \frac{1}{\varepsilon}\right)$$

для некоторого $\varepsilon_0 \leq \operatorname{dist}(0, \partial D)$.

ТЕОРЕМА 4.1. Пусть $C \subset D$ – замкнутое подмножество области D такое, что $M_Q(C) = 0$, и пусть $f \colon D \setminus C \to \mathbb{R}^n$ – открытое дискретное Q-отображение такое, что $\operatorname{cap}(\overline{\mathbb{R}^n} \setminus f(D \setminus C)) > 0$. Если функция Q(x) имеет конечное среднее колебание в каждой точке $x_0 \in C$, то f имеет непрерывное продолжение, $f \colon D \to \overline{\mathbb{R}^n}$.

Доказательство. Фиксируем $x_0 \in C$. Пусть $\varepsilon_0 < \min\{e^{-1}, \operatorname{dist}(x_0, \partial D)\}$. Если функция Q(x) имеет конечное среднее колебание в точке x_0 , то по лемме 4.1 для функции $0 < \psi(t) = \frac{1}{t \log \frac{1}{x}}$ имеем

$$\int_{\varepsilon < |x-x_0| < \varepsilon_0} Q(x)\psi^n(|x-x_0|) \, dm(x) = \int_{\varepsilon < |y| < \varepsilon_0} Q(x_0+y)\psi^n(|y|) \, dm(y)
= \int_{\varepsilon < |y| < \varepsilon_0} \frac{Q(x_0+y)}{(|y|\log\frac{1}{|y|})^n} \, dm(y) = O\left(\log\log\frac{1}{\varepsilon}\right).$$
(4.2)

Заметим, что

$$I(\varepsilon) := \int_{\varepsilon}^{\varepsilon_0} \psi(t) dt = \log\left(c\log\frac{1}{\varepsilon}\right), \tag{4.3}$$

где $c=\frac{1}{\log\frac{1}{\varepsilon_0}}$. На основании соотношений (4.2) и (4.3) теперь получаем, что для выбранной функции ψ в точности выполнено соотношение (3.2). Оставшаяся часть утверждения следует теперь из леммы 3.1.

Следствие 4.1. В частности, если в каждой точке $x_0 \in C$

$$\overline{\lim}_{\varepsilon \to 0} \oint_{B(x_0, \varepsilon)} Q(x) \, dm(x) < \infty, \tag{4.4}$$

то f имеет непрерывное продолжение, $f\colon D\to \overline{\mathbb{R}^n}$.

ТЕОРЕМА 4.2. Пусть C – замкнутое подмножество области D такое, что $M_Q(C)=0, f\colon D\setminus C\to \mathbb{R}^n$ – открытое дискретное Q-отображение, $\operatorname{cap}(\overline{\mathbb{R}^n}\setminus f(D\setminus C))>0$. Если в каждой точке $x_0\in C$ при $r\to 0$

$$q_{x_0}(r) = O\left(\left[\log \frac{1}{r}\right]^{n-1}\right),\tag{4.5}$$

еде $q_{x_0}(r)$ – среднее интегральное значение Q(x) на сфере $|x-x_0|=r,$ то f имеет непрерывное продолжение, $f\colon D\to\overline{\mathbb{R}^n}$.

Доказательство. Выбирая $\psi_{\varepsilon}(t) \equiv \frac{1}{t\log\frac{1}{t}}$ в лемме 3.1, получаем заключение теоремы.

Следствие 4.2. В частности, если в кажедой точке $x_0 \in C$

$$Q(x) = O\left(\log \frac{1}{|x - x_0|}\right)^{n-1} \quad npu \quad x \to x_0, \tag{4.6}$$

то f имеет непрерывное продолжение, $f\colon D\to \overline{\mathbb{R}^n}$.

§ 5. Об изолированных сингулярностях

Наиболее интересным, на взгляд автора, является частный случай изолированной особой точки. Следующее утверждение показывает, что в случае изолированной особой точки $a \in \mathbb{R}^n$ из условий вида (3.2) следует, что множества вида $A = \{a\}$ являются также и множествами с $M_Q(A) = 0$.

ЛЕММА 5.1. Пусть D_0 – область в \mathbb{R}^n , содержащая точку $x_0 = 0$. Предположим, что существует $\varepsilon_0 \in (0,1)$ такое, что при $\varepsilon \to 0$

$$\int_{\varepsilon <|x|<\varepsilon_0} Q(x)\psi^n(|x|) \, dm(x) = o(I^n(\varepsilon,\varepsilon_0)), \tag{5.1}$$

где $\psi(t)$ – неотрицательная на $(0,\infty)$ функция такая, что $\psi(t)>0$ п.в. и

$$0 < I(\varepsilon, \varepsilon') = \int_{\varepsilon}^{\varepsilon'} \psi(t) \, dt < \infty$$

для всех (фиксированных) ε' из $(0,\varepsilon_0]$ и $\varepsilon\in(0,\varepsilon')$. Тогда $M_Q(\{0\})=0$.

Доказательство. Обозначим через Γ_0 семейство всех кривых в \mathbb{R}^n с началом в точке $x_0=0$. Нужно доказать, что $M_Q(\Gamma_0)=0$.

Заметим, что $\Gamma_0 > \bigcup_{i=1}^{\infty} \Gamma_i$, где Γ_i – семейство кривых, соединяющих точку $x_0 = 0$ со сферой $0 < |x| = r_i < \varepsilon_0$, r_i – некоторая последовательность и $r_i \to 0$ при $i \to \infty$. Поэтому, как и в случае обычного конформного модуля (см., например, [22]), достаточно доказать, что

$$M_Q(\Gamma_i) = 0. (5.2)$$

Зафиксируем $i \geqslant 1$ и рассмотрим произвольное $\varepsilon \in (0, r_i)$. Рассмотрим кольцо $A_{\varepsilon} = \{x \in \mathbb{R}^n : \varepsilon < |x| < r_i\}$. По теореме Лузина существует борелевская функция $\psi_*(t) = \psi(t)$ для п.в. t. Следовательно, функция

$$\rho_{\varepsilon}(x) = \begin{cases} \psi_*(|x|)/I(\varepsilon, r_i), & x \in A_{\varepsilon}, \\ 0, & x \in \mathbb{R}^n \setminus A_{\varepsilon}, \end{cases}$$

корректно определена и является борелевской. Кроме того, для любого $\gamma \in \Gamma_i$

$$\int_{\gamma} \rho_{\varepsilon} |dx| \geqslant \frac{1}{I(\varepsilon, r_i)} \int_{\varepsilon}^{r_i} \psi_*(t) dt = 1$$

(см. [22, теорема 5.7]). Следовательно, $\rho_{\varepsilon} \in \operatorname{adm} \Gamma_i$. Положим

$$\mathcal{F}(\varepsilon) := \frac{1}{I(\varepsilon, r_i)^n} \int_{\varepsilon < |x| < \varepsilon_0} Q(x) \psi_*^n(|x|) \, dm(x). \tag{5.3}$$

Покажем, что $\mathcal{F}(\varepsilon) \to 0$. Учитывая (5.1), имеем следующее соотношение:

$$\int_{\varepsilon < |x| < \varepsilon_0} Q(x) \psi_*^n(|x|) \, dm(x) = G(\varepsilon) \left(\int_{\varepsilon}^{\varepsilon_0} \psi_*(t) \, dt \right)^n,$$

где $G(\varepsilon) \to 0$ при $\varepsilon \to 0$. Заметим, что

$$\mathcal{F}(\varepsilon) = G(\varepsilon) \left(1 + \frac{\int_{r_i}^{\varepsilon_0} \psi_*(t) \, dt}{\int_{\varepsilon}^{r_i} \psi_*(t) \, dt} \right)^n,$$

где $\int_{r_i}^{\varepsilon_0} \psi_*(t) dt < \infty$ — фиксированное число, а $\int_{\varepsilon}^{r_i} \psi_*(t) dt \to \infty$ при $\varepsilon \to 0$, поскольку величина интеграла слева в (5.1) увеличивается при уменьшении ε . Таким образом, $\mathcal{F}(\varepsilon) \to 0$. Отсюда и из (5.3) следует, что

$$\int_{\varepsilon < |x| < r_i} Q(x) \rho_{\varepsilon}^n(x) \, dm(x) \to 0 \tag{5.4}$$

при $\varepsilon \to 0$ для некоторого семейства допустимых функций $\{\rho_{\varepsilon}\}\in \operatorname{adm}\Gamma_{i}, \varepsilon\in (0,r_{i})$. Соотношение (5.2) следует теперь (в силу минорирования) предельным переходом из (5.4). Лемма доказана.

ЛЕММА 5.2. Пусть $f: \mathbb{B}^n \setminus \{0\} \to \overline{\mathbb{R}^n}, \ n \geqslant 2,$ – открытое дискретное Q-отображение такое, что $\operatorname{cap}(\overline{\mathbb{R}^n} \setminus f(\mathbb{B}^n \setminus \{0\})) > 0$. Предположим, что существует $\varepsilon_0 \in (0,1)$ такое, что при $\varepsilon \to 0$

$$\int_{\varepsilon < |x| < \varepsilon_0} Q(x) \psi^n(|x|) \, dm(x) = o(I^n(\varepsilon, \varepsilon_0)), \tag{5.5}$$

где $\psi(t)$ – неотрицательная на $(0,\infty)$ функция такая, что $\psi(t)>0$ п.в. и

$$0 < I(\varepsilon, \varepsilon') = \int_{\varepsilon}^{\varepsilon'} \psi(t) \, dt < \infty$$

для всех (фиксированных) ε' из $(0,\varepsilon_0]$ и $\varepsilon \in (0,\varepsilon')$. Тогда f имеет непрерывное продолжение, $f \colon \mathbb{B}^n \to \overline{\mathbb{R}^n}$, в \mathbb{B}^n .

Доказательство следует из лемм 5.1 и 3.1.

Следующие утверждения непосредственно вытекают из леммы 5.2.

ТЕОРЕМА 5.1. Пусть $x_0 \in D$, $f: D \setminus \{x_0\} \to \overline{\mathbb{R}^n}$ – открытое дискретное Q-отображение такое, что $\operatorname{cap}(\overline{\mathbb{R}^n} \setminus f(D \setminus \{x_0\})) > 0$. Если

$$q_{x_0}(r) = O\left(\left[\log\frac{1}{r}\right]^{n-1}\right) \tag{5.6}$$

при $r\to 0$, где $q_{x_0}(r)$ – среднее интегральное значение Q(x) на сфере $|x-x_0|=r$, то f имеет непрерывное продолжение, $f\colon D\to\overline{\mathbb{R}^n}$.

В частности, если $Q(x) \leq \left[\log \frac{1}{|x-x_0|}\right]^{n-1}$ для любого $x \in B(x_0, \varepsilon(x_0))$ при некотором $\varepsilon(x_0)$, то выполнено (5.6) и, значит, справедливо заключение теоремы 5.1.

ТЕОРЕМА 5.2. Пусть $x_0 \in D$, $f: D \setminus \{x_0\} \to \overline{\mathbb{R}^n}$ – открытое дискретное Q-отображение такое, что $\operatorname{cap}(\overline{\mathbb{R}^n} \setminus f(D \setminus \{x_0\})) > 0$. Если функция Q(x) имеет конечное среднее колебание в точке x_0 , то f имеет непрерывное продолжение, $f: D \to \overline{\mathbb{R}^n}$.

Следствие 5.1. В частности, если

$$\int_{|x-x_0|<\varepsilon} Q(x) \, dm(x) = O(\varepsilon^n) \tag{5.7}$$

 $npu \ \varepsilon \to 0, \ mo \ f$ имеет непрерывное продолжение в D.

§ 6. Аналог теоремы Сохоцкого-Вейерштрасса

Напомним, что изолированная точка x_0 границы ∂D области D в \mathbb{R}^n называется yстранимой, если существует конечный предел $\lim_{x\to x_0} f(x)$. Если $f(x)\to \infty$ при $x\to x_0$, точку x_0 будем называть *полюсом*. Изолированная точка x_0 границы ∂D называется существенной особой точкой отображения $f\colon D\to \mathbb{R}^n$, если не существует $\lim_{x\to x_0} f(x)$.

ТЕОРЕМА 6.1. Пусть x_0 – изолированная точка границы D, $f: D \to \overline{\mathbb{R}^n}$ – открытое дискретное Q-отображение, а функция Q(x) имеет конечное среднее колебание в точке x_0 либо удовлетворяет хотя бы одному из условий (5.6), (5.7). Если x_0 – существенная особая точка отображения f, то $\operatorname{cap}(\overline{\mathbb{R}^n}\setminus f(U\setminus \{x_0\}))=0$ для любой окрестности U точки x_0 .

Доказательство непосредственно вытекает из теорем 5.2, 5.1 и следствия 5.1.

ТЕОРЕМА 6.2. Пусть x_0 – изолированная точка границы D, $f: D \to \mathbb{R}^n$ – открытое дискретное Q-отображение, а функция Q(x) имеет конечное среднее колебание в точке x_0 либо удовлетворяет хотя бы одному из условий (5.6), (5.7). Тогда точка x_0 является устранимой для отображения f в том и только в том случае, когда f ограничено в некоторой окрестности U точки x_0 .

ДОКАЗАТЕЛЬСТВО. Предположим, что точка x_0 устранима, т. е. существует предел $\lim_{x\to x_0} f(x) = A < \infty$. Тогда $|f(x)| \leqslant |A| + 1$ в достаточно малой окрестности U точки x_0 . Обратно, пусть существует окрестность U точки x_0 такая, что $|f(x)| \leqslant M$ для некоторого $M \in (0,\infty)$ и всех $x \in U \setminus \{x_0\}$. Тогда $\operatorname{cap}(\mathbb{R}^n \setminus f(U \setminus \{x_0\})) > 0$ и заключение следует из теоремы 6.1.

ТЕОРЕМА 6.3. Пусть x_0 – изолированная точка границы D, $f: D \to \overline{\mathbb{R}^n}$ – открытое дискретное Q-отображение, а функция Q(x) имеет конечное среднее колебание в точке x_0 либо удовлетворяет хотя бы одному из условий (5.6), (5.7). Если $\operatorname{cap}(\overline{\mathbb{R}^n} \setminus f(U \setminus \{x_0\})) > 0$ для некоторой окрестности U точки x_0 , то f может быть непрерывным образом продолжено до открытого дискретного Q-отображения $f: D \cup \{x_0\} \to \overline{\mathbb{R}^n}$.

ДОКАЗАТЕЛЬСТВО. Действительно, f продолжается до непрерывного отображения, $f \colon D \cup \{x_0\} \to \overline{\mathbb{R}^n}$, в силу теорем 5.2, 5.1 и следствия 5.1. Модуль семейства кривых в \mathbb{R}^n , проходящих через точку, равен нулю (см. [22, п. 7.9]), откуда следует, что продолженное отображение $f \colon D \cup \{x_0\} \to \overline{\mathbb{R}^n}$ является Q-отображением.

Известно, что дискретные открытые отображения в \mathbb{R}^n , $n \ge 2$, либо сохраняют ориентацию, либо антисохраняют (см., например, [11, гл. I, § 4]). Пусть f для определенности сохраняет ориентацию. Покажем, что продолженное отображение сохраняет ориентацию, открыто и дискретно. Обозначим, как обычно, через $B_f(D)$ множество точек ветвления отображения f в области D, а через $B_f(D')$ – множество точек ветвления отображения f в области $D' = D \cup \{x_0\}$. Если x_0 – точка локальной гомеоморфности отображения f, доказательство очевидно.

Пусть $x_0 \in B_f(D')$. По теореме Чернавского верно равенство $\dim B_f(D) = \dim f(B_f(D)) \le n-2$ (см., например, [11, гл. I, теорема 4.6]), где \dim обозначает топологическую размерность множества [19]. Тогда получим

$$\dim f(B_f(D')) \leqslant n - 2,\tag{6.1}$$

так как $f(B_f(D')) = f(B_f(D)) \cup \{f(x_0)\}$, множество $\{f(x_0)\}$ замкнуто и топологическая размерность каждого из множеств $f(B_f(D))$ и $\{f(x_0)\}$ не превышает n-2 (см. [19, гл. III, § 3, следствие 1]).

Пусть G — область в D', $G \in D'$, и пусть $y \in f(G) \setminus f(\partial G)$. Тогда в силу (6.1) существует точка $y_0 \notin f(B_f(D'))$, принадлежащая той же компоненте связности множества $\overline{\mathbb{R}^n} \setminus f(\partial G)$, что и y. В силу того, что топологический индекс есть величина постоянная, на каждой связной компоненте множества $\overline{\mathbb{R}^n} \setminus f(\partial G)$ (см. [13]) будем иметь

$$\mu(y, f, G) = \mu(y_0, f, G) = \sum_{x \in G \cap f^{-1}(y_0)} i(x, f) > 0.$$

Таким образом, отображение f сохраняет ориентацию в D'.

Наконец, для любого $y \in f(D')$ в силу дискретности отображения f в области D множество $\{f^{-1}(y)\}$ не более чем счетно, и потому $\dim\{f^{-1}(y)\}=0$. Следовательно, согласно [23, с. 333] отображение f открыто и дискретно, что и требовалось доказать.

ТЕОРЕМА 6.4 (аналог теоремы Сохоцкого-Вейерштрасса). Пусть x_0 – изолированная точка границы $D, f: D \to \overline{\mathbb{R}^n}$ – открытое дискретное Q-отображение, а функция Q(x) имеет конечное среднее колебание в точке x_0 либо удовлетворяет хотя бы одному из условий (5.6), (5.7). Если x_0 – существенная особая точка отображения f, то для любого $a \in \overline{\mathbb{R}^n}$ найдется последовательность $x_k \to x_0$ при $k \to \infty$ такая, что $f(x_k) \to a$ при $k \to \infty$.

ДОКАЗАТЕЛЬСТВО. Допустим, что заключение теоремы неверно для некоторого $a \in \overline{\mathbb{R}^n}$. Тогда существуют окрестность U точки x_0 и $\varepsilon_0 > 0$ такие, что

$$h(f(x), a) \geqslant \varepsilon_0 \qquad \forall x \in U \setminus \{x_0\},$$

и по неравенству треугольника имеем $d_0 = h(B(a, \varepsilon_0/2), f(U \setminus \{x_0\})) \geqslant \varepsilon_0/2$. Следовательно, $\operatorname{cap}(\overline{\mathbb{R}^n} \setminus f(U \setminus \{x_0\})) > 0$. Отсюда по теореме 6.1 следует существование предела (конечного или бесконечного) отображения f в точке x_0 , что противоречит первоначальному предположению.

ТЕОРЕМА 6.5. Пусть x_0 – изолированная точка границы D, $f: D \to \overline{\mathbb{R}^n}$ – открытое дискретное Q-отображение, а функция Q(x) имеет конечное среднее колебание в точке x_0 либо удовлетворяет хотя бы одному из условий (5.6), (5.7). Если x_0 – существенная особая точка отображения f, то существует множество C типа F_{σ} нулевой емкости в $\overline{\mathbb{R}^n}$ такое, что

$$N(y, f, U \setminus \{x_0\}) = \infty \tag{6.2}$$

для любой окрестности U точки x_0 и для всех $y \in \overline{\mathbb{R}^n} \setminus C$.

ДОКАЗАТЕЛЬСТВО. Пусть U – произвольная окрестность точки x_0 . Не ограничивая общности рассуждений, можно считать, что $x_0=0$ и $U=\mathbb{B}^n$. Рассмотрим множества $V_k=B(1/k)\setminus\{0\},\,k=1,2,\ldots$. Полагаем

$$C = \bigcup_{k=1}^{\infty} \overline{\mathbb{R}^n} \setminus f(V_k). \tag{6.3}$$

По теореме 6.1 каждое из множеств $B_k := \overline{\mathbb{R}^n} \setminus f(V_k)$ в объединении правой части соотношения (6.3) имеет нулевую емкость. Тогда C также имеет нулевую емкость (см., например, [25, с. 126]).

Осталось доказать соотношение (6.2). Фиксируем $y \in \mathbb{R}^n \setminus C$. Тогда

$$y \in \bigcap_{k=1}^{\infty} f(V_k). \tag{6.4}$$

Из (6.4) вытекает существование подпоследовательности $\{x_{k_i}\}_{i=1}^{\infty}$ такой, что $x_{k_i} \to 0$ при $i \to \infty$ и $f(x_{k_i}) = y, i = 1, 2, \dots$ Теорема доказана.

§ 7. Аналоги теоремы Пикара

Пусть D — область в $\overline{\mathbb{R}^n}$, $n\geqslant 2$, содержащая некоторую окрестность точки $x_0=\infty$. Будем говорить, что функция $\varphi\colon D\to \mathbb{R}$ имеет конечное среднее колебание в точке ∞ , если $\varphi^*(x)=\varphi\big(\frac{x}{|x|^2}\big)$ имеет конечное среднее колебание в точке 0.

Заметим, что отображение $\psi(x) = \frac{x}{|x|^2}$ подобно отображает сферу S(0,r) на сферу S(0,1/r), откуда следует, что $|J(x,\psi)| = (1/|x|)^{2n}$. Таким образом, прибегая к замене переменной в интеграле, мы можем переформулировать определение конечного среднего колебания в точке ∞ в следующем виде.

Будем говорить, что функция $\varphi \colon D \to \mathbb{R}$ имеет конечное среднее колебание в точке ∞ , и записывать $\varphi \in FMO(\infty)$, если при $R \to \infty$

$$\int_{|x|>R} |\varphi(x) - \varphi_R| \, \frac{dm(x)}{|x|^{2n}} = O\left(\frac{1}{R^n}\right),$$

где $\varphi_R=rac{R^n}{\Omega_n}\int_{|x|>R}\varphi(x)rac{dm(x)}{|x|^{2n}},$ а Ω_n – объем единичного шара в $\mathbb{R}^n.$

Аналогично, в случае бесконечности можно переформулировать условия вида (5.6), (5.7) соответственно:

$$\oint_{S(0,R)} Q(x) dS = O([\log R]^{n-1}), \tag{7.1}$$

$$\int_{|x|>R} Q(x) \frac{dm(x)}{|x|^{2n}} = O\left(\frac{1}{R^n}\right).$$
 (7.2)

Таким образом, на основании теорем 5.2, 5.1 и следствия 5.1 получаем следующее утверждение.

ТЕОРЕМА 7.1 (аналог теоремы Лиувилля). Пусть $f: \mathbb{R}^n \to \overline{\mathbb{R}^n}$ – открытое дискретное Q-отображение, функция Q(x) имеет конечное среднее колебание в точке ∞ либо удовлетворяет хотя бы одному из условий (7.1), (7.2). Тогда $\operatorname{cap}(\overline{\mathbb{R}^n} \setminus f(\mathbb{R}^n)) = 0$. В частности, f не может отображать все \mathbb{R}^n на ограниченную область.

При n=2 теоремы об устранении особенностей могут быть сформулированы в другой, более удобной форме. Обозначим $\Delta=\{z\in\mathbb{C}\colon |z|<1\}.$

ТЕОРЕМА 7.2. Пусть $f: \Delta \setminus \{0\} \to \overline{\mathbb{C}}$ – открытое дискретное Q-отображение, которое не принимает по крайней мере три значения в $\overline{\mathbb{C}}$. Если Q(z) имеет конечное среднее колебание в нуле либо удовлетворяет одному из условий типа (5.6), (5.7) в точке $z_0 = 0$, то отображение f может быть непрерывным образом продолжено в Δ до открытого дискретного Q-отображения $\overline{f}: \Delta \to \overline{\mathbb{C}}$.

Доказательство основано на теореме Стоилова о факторизации (см. [24, гл. V, §5]). Согласно упомянутой теореме отображение f может быть представлено как композиция $f = \varphi \circ g$, где g – гомеоморфизм, φ – аналитическая функция. В таком случае отображение g является Q-гомеоморфизмом. В силу [3, лемма 4.1, теорема 4.1 и следствие 4.2] отображение g допускает гомеоморфное продолжение g в Δ . В таком случае g(0) является изолированной точкой границы области $g(\Delta)$ для функции φ . Из условия вытекает, что φ также не принимает как минимум три значения в $\overline{\mathbb{C}}$. Возможность непрерывного продолжения следует теперь из классической теоремы Пикара для аналитических функций.

ТЕОРЕМА 7.3 (аналог теоремы Пикара при n=2). Пусть $f: \mathbb{C} \to \overline{\mathbb{C}}$ – открытое дискретное Q-отображение, а Q(z) имеет конечное среднее колебание 6∞ либо удовлетворяет хотя бы одному из условий (7.1), (7.2). Тогда f принимает все значения $6 \overline{\mathbb{C}}$, кроме, быть может, двух.

§ 8. О приложениях

Практически для всех известных ныне классов отображений установлены оценки вида (1.2). Сформулированные в статье результаты могут быть применены, например, к отображениям с конечным искажением длины, (см., например, [5, теорема 6.10]). Кроме того, все вышеизложенное справедливо для так называемых отображений с конечным искажением. Отображение $f \colon D \to \mathbb{R}^n$

называется отображением с конечным искажением, если $f \in W^{1,n}_{\mathrm{loc}}(D)$ и п.в. $\|f'(x)\|^n \leqslant K(x)J(x,f)$ для некоторой функции $K(x)\colon D\to [1,\infty)$ (см., например, [2]).

Замечание 8.1. Каждое открытое дискретное отображение $f: D \to \mathbb{R}^n$ с конечным искажением такое, что $K(x) \in L^{n-1}_{\mathrm{loc}}$ и мера множества B_f точек ветвления отображения f равна нулю, является Q-отображением при $Q = K^{n-1}(x)$ (см. [5, замечание 4.10, теорема 6.10 и неравенство (4.14)]).

В известной работе В. А. Зорича [26] было сделано предположение о том, что аналог теоремы Пикара верен для отображений с ограниченным искажением. Для квазирегулярных отображений один из вариантов теоремы Пикара см. в работе [27]. Аналог теоремы Пикара, сформулированный в настоящей статье относительно изучаемого класса отображений, пока что доказан автором только при n=2. Пока не известно, верно ли аналогичное утверждение в пространствах больших размерностей.

Список литературы

- 1. Г.Д. Суворов, Об искусстве математического исследования, ТЕАН, Донецк, 1999.
- 2. T. Iwaniec, G. Martin, Geometric function theory and non-linear analysis, Oxford Math. Monogr., Clarendon Press, New York; Oxford Univ. Press, Oxford, 2001.
- 3. А. А. Игнатьев, В. И. Рязанов, "Конечное среднее колебание в теории отображений", Укр. матем. вестник, **2**:3 (2005), 395–417; англ. пер.: А. А. Ignat'ev, V. I. Ryazanov, "Finite mean oscillation in the mapping theory", *Ukr. Math. Bull.*, **2**:3 (2005), 403–424.
- P. Koskela, K. Rajala, "Mappings of finite distortion: removable singularities", Israel J. Math., 136:1 (2003), 269–283.
- 5. O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, "Mappings with finite length distortion", J. Anal. Math., 93:1 (2004), 215–236.
- O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, "On Q-homeomorphisms", Ann. Acad. Sci. Fenn. Math., 30:1 (2005), 49–69.
- 7. В. М. Миклюков, Конформное отображение нерегулярной поверхности и его применения, Изд-во ВолГУ, Волгоград, 2005.
- 8. K. Rajala, "Mappings of finite distortion: removable singularities for locally homeomorphic mappings", *Proc. Amer. Math. Soc.*, **132**:11 (2004), 3251–3258.
- 9. F. John, L. Nirenberg, "On functions of bounded mean oscillation", Comm. Pure Appl. Math., 14:3 (1961), 415–426.
- O. Martio, S. Rickman, J. Väisälä, "Distortion and singularities of quasiregular mappings", Ann. Acad. Sci. Fenn. Ser. A I, 465 (1970), 1–13.
- S. Rickman, Quasiregular mappings, Ergeb. Math. Grenzgeb. (3), 26, Springer-Verlag, Berlin, 1993.
- 12. В. М. Миклюков, "Граничные свойства *n*-мерных квазиконформных отображений", Докл. АН СССР, **193**:3 (1970), 525–527; англ. пер.: V. M. Miklyukov, "Boundary properties of *n*-dimensional quasi-conformal mappings", Soviet Math. Dokl., **11** (1970), 969–971.
- 13. Ю. Г. Решетняк, *Пространственные отображения с ограниченным искажением*, Наука, Новосибирск, 1982.
- 14. Ю. Ф. Стругов, Квазиконформные в среднем отображения и экстремальные задачи, ч. 1, деп. в ВИНИТИ 2786-В94, 1994.

- 15. Ю. Ф. Стругов, Квазиконформные в среднем отображения и экстремальные задачи, ч. 2, деп. в ВИНИТИ 2787-В94, 1994.
- 16. С. К. Водопьянов, А. Д. Ухлов, "Весовые пространства Соболева и квазиконформные отображения", *Докл. РАН*, **403**:5 (2005), 583–588; англ. пер.: S. K. Vodop'yanov, A. D. Ukhlov, "Weighted Sobolev spaces and quasiconformal mappings", *Dokl. Math.*, **72**:1 (2005), 561–566.
- 17. Ch. J. Bishop , V. Ya. Gutlyanskii, O. Martio, M. Vuorinen, "On conformal dilatation in space", Int. J. Math. Math. Sci., 22 (2003), 1397–1420.
- 18. Ю. Г. Решетняк, "О понятии емкости в теории функций с обобщенными производными", *Сиб. матем. журн.*, **10**:5 (1969), 1109–1138; англ. пер.: Yu. G. Reshetnyak, "The concept of capacity in the theory of functions with generalized derivatives", *Siberian Math. J.*, **10**:5 (1969), 818–842.
- 19. W. Hurewicz, H. Wallman, *Dimension theory*, Princeton Math. Ser., 4, Princeton Univ. Press, Princeton, 1948.
- 20. К. Куратовский, *Топология*. 2, Мир, М., 1969; пер. с англ.: К. Kuratowski, *Topology*, vol. 2, Academic Press, New York–London, 1968.
- 21. G. Th. Whyburn, *Analytic topology*, Amer. Math. Soc. Colloq. Publ., 28, Amer. Math. Soc., New York, 1942.
- 22. J. Väisälä, Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Berlin-New York, Springer-Verlag, 1971.
- 23. C. J. Titus, G. S. Young, "The extension of interiority, with some applications", *Trans. Amer. Math. Soc.*, **103**:2 (1962), 329–340.
- 24. С. Стоилов, Лекции о топологических принципах теории аналитических функций, Наука, М., 1964; пер. с фр.: S. Stoïlow, Leçons sur les principes topologiques de la théorie des fonctions analytiques, Gauthier-Villars, Paris, 1956.
- 25. В. М. Гольдштейн, Ю. Г. Решетняк, Введение в теорию функций с обобщенными производными и квазиконформные отображения, Наука, М., 1983.
- 26. В. А. Зорич, "Теорема М. А. Лаврентьева о квазиконформных отображениях пространства", *Матем. сб.*, **74(116)**:3 (1967), 417–433; англ. пер.: V. A. Zorič, "A theorem of M. A. Lavrent'ev on quasiconformal space map", *Math. USSR-Sb.*, **3**:3 (1967), 389–403.
- 27. S. Rickman, "On the number of omitted values of entire quasiregular mappings", J. Analyse Math., 37:1 (1980), 100–117.

Е. А. Севостьянов (Е. А. Sevost'yanov) Институт прикладной математики и механики НАН Украины, г. Донецк

E-mail: sevostyanov@skif.net; e_sevostyanov@rambler.ru; brusin2006@rambler.ru Поступило в редакцию 14.04.2008