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Abstract. Sharp estimates of product of inner radii for pairwise disjoint domains are obtained. In
particular, we solve an extremal problem in the case of arbitrary finite number of rays containing
arbitrary even number of free poles.

Introduction

This paper belongs to the theory of extremal problems on classes of non-overlapping domain,
which is a separate direction in geometric theory of functions of a complex variable. The begin of these
investigations associated with the paper of M.A. Lavrent’ev [1] in 1934. He found the maximum of
some functional with respect to two simply connected domains with two fixed points. We note that this
result was needed him for applying to some aerodynamics problems. In 1947, G.M. Goluzin solved a
similar problem for three fixed points on the complex plane [2]. Then the topic began to evolve rapidly.
In this connection we may recall papers of many authors, including Y. E. Alenitsina, M.A. Lebedev,
J. Jenkins, P.M. Tamrazov, P. P. Kufareva and others. Using the idea of P.M. Tamrazov, in 1975
G. P. Bakhtin solved first the problem with so-called ”free poles” on the unit circle, see, e.g., [3].

An important step for the development of this topic was papers of V.N. Dubinin. He developed a
new method of research that is method of piecewise-separating transformation. He also first solved
numerous of extremal problems for an arbitrary but fixed multi connected non-overlapping domains
(see, e.g., [4], [5], [6]). Now this type of extremal problems is used for investigations in holomorphic
dynamics.

In the last decade actively used Bakhtin’s method of ”managing functional”. He managed to solve
a series of extremal problems for so-called ”radial systems of points” (see, e.g., [4], [7], [8], [9], [10]).
In the present paper we use the mentioned about Bakhtin’s method.

Theory

Let N, R and C be the sets of natural, real and complex numbers respectively. Let C := C
∪
{∞}

be the Riemannian sphere and R+ := (0,∞).
We fix a number n ∈ N. A system of points An = {ak ∈ C : k = 1, n}, we will called the

n-equiangular system of points on rays, if for all k = 1, n, the following relations are satisfied:

arg ak =
2π

n
(k − 1). (1)

We introduce the following ”managing” functionals for an arbitrary n-equiangular system of
points on rays
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L(α) (An) =

[
n∏

k=1

χ

(∣∣∣∣ ak
ak+1

∣∣∣∣n4
)]1− 2α

n2

·

[
n∏

k=1

|ak|

]1+α
n

,

where χ(t) = 1
2
(t+ 1

t
), t ∈ R+.

Let us consider a system of angular domains:

Pk := {w ∈ C :
2π

n
(k − 1) < argw <

2π

n
k}, k = 1, n.

Let {Bk, B∞} be an arbitrary non-overlapping domains such that

ak ∈ Bk,∞ ∈ B∞, Bk, B∞ ⊂ C, k = 1, n.

Let

gB (B, a) = hB,a(z) + log
1

|z − a|

generalized Green’s function of domains B with respect to a point a ∈ B. If a = ∞, then

gB (B,∞) = hB,∞(z) + log
1

|z|
.

The value of
r(B, a) := exp (hB,a(z))

the define of inner radius domain B ⊂ C with respect to a point a ∈ B (see [4], [5], [6], [11], [12],
[13]).

We use the concept of a quadratic differential. Recall that a quadratic differential on a Riemann
surface S is a map

φ : TS → C

satisfying
φ(λυ) = λ2φ(υ)

for all υ ∈ TS and all λ ∈ C. If z ∈ U → C, is a chart defined on some open set U ⊂ S then φ is
equal on U to

φU(z)dz
2

for some function φU defined on z(U).

Suppose that two charts z : U → C and w : V → C on S overlap, and let

h := w ◦ z−1

be the transition function. If φ is represented both as φU(z)dz
2 and φV (w)dw

2 on U ∩ V , then we
have

φV (h(z)) (h′(z))
2
= φU(z).

One way to say this is that quadratic differentials transform under pull-backs by the square of the
derivative. As the main results associated with it can be found in [14].
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Results

In this paper we investigate the following problems.

Problem. Let n ∈ N, n ≥ 2, α ≤ n2, α ∈ R+. We intend to find a maximum of the functional

rα (B∞,∞) ·
n∏

k=1

r (Bk, ak) ,

and to describe all its extremals, ifAn be an arbitrary n-equiangular system of points on rays satisfying
the condition (1), and {Bk, B∞} be an arbitrary set of non-overlapping domains, ak ∈ Bk,∞ ∈ B∞,
Bk, B∞ ⊂ C, k = 1, n.

Theorem. Let n ≥ 2, n ∈ N, α ∈ R+, α ≤ n2. Let also An = {ak}nk=1 be an n-equiangular
system of points on rays, and B∞, Bk ⊂ C, k = 1, n, ak ∈ Bk,∞ ∈ B∞ be an arbitrary set of
non-overlapping domains. Then we have the inequality

rα (B∞,∞)
n∏

k=1

r(Bk, ak) ≤ rα
(
B(0)

∞ ,∞
) n∏
k=1

r
(
B

(0)
k , a

(0)
k

)
.

The equality sign holds, if points {ak} and domains Bk, B∞ are the poles and the circular domains
of the quadratic differential

Q(w)dw2 = −wn−2n
2 + (wn − 1)α

(wn − 1)2
dw2, (2)

where L(α) (An) = 1.
When α = n2 we obtain the result follows.
Corollary. Let n ≥ 2, n ∈ N, α ∈ R+, α ≤ n2. Let also An = {ak}nk=1 be an n-equiangular

system of points on rays, and B∞, Bk ⊂ C, k = 1, n, ak ∈ Bk,∞ ∈ B∞ be an arbitrary set of
non-overlapping domains. Then we have the inequality

rn
2

(B∞,∞)
n∏

k=1

r(Bk, ak) ≤ rn
2 (

B(0)
∞ ,∞

) n∏
k=1

r
(
B

(0)
k , a

(0)
k

)
.

The equality sign holds, if points {ak} and domains Bk, B∞ are the poles and the circular domains
of the quadratic differential

Q(w)dw2 = − w2n−2

(wn − 1)2
dw2,

where L(α) (An) = 1.
Proof of Theorem. The proof leans on a method of the piece-dividing transformation developed by

V. Dubinin (see [4], [5], [6]).
The function

zk(w) = −iw
n
2 (3)

realizes univalent and conformal transformations of domain Pk on the right half-plane Rez > 0 for all
k = 1, n.

Let ω(1)
k := zk (ak), ω(2)

k−1 := zk−1 (ak), an+1 := a1, ω(2)
0 := ω

(2)
n , z0 := zn (k = 1, n).

The family of functions {zk(w)}nk=1 is a piece-dividing transformation (see [4], [5], [6]) of the
domains

{
Bk : k = 1, n

}
with respect to the system of angles {Pk}nk=1. For any domain ∆ ∈ C we

define (∆)∗ :=
{
w ∈ C : 1

w
∈ ∆

}
. We denote by Ω(1)

k the connected component
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zk

(
Bk

∩
P k

)∪(
zk

(
Bk

∩
P k

))∗
containing a point ω(1)

k , and by Ω(2)
k−1 we denote the connected component

zk−1

(
Bk

∩
P k−1

)∪(
zk−1

(
Bk

∩
P k−1

))∗
containing a point ω(2)

k−1, k = 1, n, P 0 := P n, Ω
(2)
0 := Ω

(2)
n . Generally speaking, the domains Ω(s)

k

are multiconnected domains, k = 1, n, s = 1, 2. The pair of domains Ω(2)
k−1 and Ω

(1)
k is result of

piece-dividing transformation of domains Bk concerning families {Pk−1, Pk}, {zk−1, zk} at a point
ak, k = 1, n.We denote by, too, Ω(∞)

k the connected component

zk

(
B∞

∩
P k

)∪(
zk

(
B∞

∩
P k

))∗
containing a point ∞. The system of domains Ω(∞)

k is result of piece-dividing transformation of do-
mains B∞ concerning families {Pk}, {zk} at a point∞, k = 1, n.

From the formula (3) we obtain the following asymptotic expressions:∣∣∣zk(w)− zk(am)
∣∣∣ ∼ n

2
· |am|

n
2
−1 · |w − am|, w → am, w ∈ P k, m = k, k + 1. (4)

From the Theorem 1.9 [11] (see also [5], [6]) and the formulae (4), we have the inequalities

r (Bk, ak) 6
2

n
·

r
(
Ω

(1)
k , ω

(1)
k

)
· r
(
Ω

(2)
k−1, ω

(2)
k−1

)
(|ak||ak+1|)

n−2
2


1
2

, k = 1, n,

r (B∞,∞) 6
n∏

k=1

(
r
(
Ω

(∞)
k ,∞

)) 2
n2

. (5)

Using the inequality (5), we get the following relations:
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rα (B∞,∞)
n∏

k=1

r(Bk, ak) ≤

≤
(
2

n

)n

·
n∏

k=1

r
4α
n2

(
Ω

(∞)
k ,∞

)
·
r
(
Ω

(1)
k , ω

(1)
k

)
· r
(
Ω

(2)
k−1, ω

(2)
k−1

)
(|ak||ak+1|)

n−2
2


1
2

=

=

(
2

n

)n

·
n∏

k=1

(
|ak|

n
2 + |ak+1|

n
2

)1− 2α
n2 ·

(
|ak|

n
2 · |ak+1|

n
2

) 2α
n2

(|ak||ak+1|)
n
4

|ak| =

×
n∏

k=1

r
4α
n2

(
Ω

(∞)
k ,∞

)
·

r
(
Ω

(1)
k , ω

(1)
k

)
· r
(
Ω

(2)
k−1, ω

(2)
k−1

)
∣∣∣ω(1)

k − ω
(2)
k

∣∣∣2− 4α
n2

·
(∣∣∣ω(1)

k

∣∣∣ ∣∣∣ω(2)
k

∣∣∣) 4α
n2


1
2

=

=

(
2

n

)n

·
n∏

k=1

|ak|1+
α
n ·

n∏
k=1

(
|ak|

n
2 + |ak+1|

n
2

(|ak||ak+1|)
n
4

)1− 2α
n2

×

×
n∏

k=1

r
4α
n2

(
Ω

(∞)
k ,∞

)
· r
(
Ω

(1)
k , ω

(1)
k

)
· r
(
Ω

(2)
k−1, ω

(2)
k−1

)
∣∣∣ω(1)

k − ω
(2)
k

∣∣∣2− 4α
n2

·
(∣∣∣ω(1)

k

∣∣∣ ∣∣∣ω(2)
k

∣∣∣) 4α
n2


1
2

=

=

(
2

n

)n

· 2n−
2α
n · L(α) (An)×

×
n∏

k=1

r
4α
n2

(
Ω

(∞)
k ,∞

)
· r
(
Ω

(1)
k , ω

(1)
k

)
· r
(
Ω

(2)
k−1, ω

(2)
k−1

)
∣∣∣ω(1)

k − ω
(2)
k

∣∣∣2− 4α
n2

·
(∣∣∣ω(1)

k

∣∣∣ ∣∣∣ω(2)
k

∣∣∣) 4α
n2


1
2

. (6)

Functional
rα1(B1, a1) · rα2(B2, a2) · rα3(B3, a3)

|a1 − a2|α1+α2−α3 · |a1 − a3|α1−α2+α3 · |a2 − a3|−α1+α2+α3
,

ak ∈ Bk ⊂ C, Bk∩Bp, k ̸= p, αk ∈ R+, k, p = 1, 2, 3, relatively invariant conformal automorphisms
of the complex plane C ([4], [15]).

Taking into account the ratio of the last assertion of from (6), we have:

rα (B∞,∞)
n∏

k=1

r(Bk, ak) ≤
(
2

n

)n

· L(α) (An)

×
n∏

k=1

(
r

4α
n2

(
G

(∞)
k ,∞

)
· r
(
G

(1)
k ,−i

)
· r
(
G

(2)
k−1, i

)) 1
2

=

(
2

n

)n

· L(α) (An) ·
(
r

4α
n2 (D∞,∞) · r (D1,−i) · r (D2, i)

)n
2
, (7)

where D∞, D1, D2 – the circular domains of the quadratic differential

Q(z)dz2 =
n2 − α(1 + z2)

(1 + z2)2
dz2. (8)
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In the quadratic differentials (8) make the change from the formula (3).

Q(w)dw2 =
n2 − α(1 +

(
−iw

n
2

)2
)

(1 +
(
−iw

n
2

)2
)2

(
−i

n

2
w

n
2
−1
)2

dw2 =

=
n2 + α(wn − 1)

(wn − 1)2

(
−n2

4

)
wn−2dw2.

We obtain the differential (2).
Using the relation (7) we finally obtain

rα (B∞,∞)
n∏

k=1

r(Bk, ak) ≤ rα
(
B(0)

∞ ,∞
) n∏
k=1

r
(
B

(0)
k , a

(0)
k

)
,

where points {ak} and domains Bk, B∞ are the poles and the circular domains of the quadratic dif-
ferential (2). The theorem is proved.
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