http://dx.doi.org/10.15407/dopovidi2016.06.095 УДК 546.431′42′654′682

Ю. О. Тітов¹, Н. М. Білявина¹, член-кореспондент НАН України М. С. Слободяник¹, В. В. Чумак²

 1 Київський національний університет ім. Тараса Шевченка 2 Житомирський державний університет ім. Івана Франка *E-mail:* tit@univ.kiev.ua

Кристалічна структура ізовалентно заміщених шаруватих індатів $Ba_{1-x}Sr_xLa_2In_2O_7$

Встановлено умови ізовалентного заміщення атомів Ва в шаруватій перовськітоподібній структурі (ШПС) ВаLa₂In₂O₇ по типу Ва_{1-x}Sr_xLa₂In₂O₇ (0 $\leq x \leq 0.75$). Методом рентгенівської дифракції на порошку визначено ШПС індатів Ва_{1-x}Sr_xLa₂In₂O₇ (x = 0.2, 0.5 і 0.7). Установлено належність ШПС Ва_{1-x}Sr_xLa₂In₂O₇ до структурного типу SrLa₂Sc₂O₇ (пр. гр. Fmmm) та виявлено взаємозв'язки склад — будова ШПС. Показано, що збільшення вмісту стронцію в ШПС Ва_{1-x}Sr_xLa₂In₂O₇ підвищує ступінь деформації міжблочних поліедрів АО₉ і зменшує довжину міжблочної відстані A(2)–O(2) в ШПС Ва_{1-x}Sr_xLa₂In₂O₇.

Ключові слова: шарувата перовськітоподібна структура, ізоморфне заміщення, порошкова рентгенівська дифракція.

Серед представників сімейства Руддлесдена–Поппера загального складу $A_{n+1}B_nO_{3n+1}$ із шаруватою перовськітоподібною структурою (ШПС) особливу увагу привертають сполуки зі значною розмірною невідповідністю А- і В-підграток їх ШПС [1, 2], оскільки більшість властивостей оксидних функціональних матеріалів обумовлена деформацією їх кристалічної структури. До таких сполук належать нечисленні індати загального складу $A^{II}Ln_nIn_nO_{3n+1}$ [3], в А-позиції ШПС яких знаходяться катіони лужноземельних металів та РЗЕ, а у В-позиції ШПС розташовані великі катіони In³⁺.

Одним із шляхів регулювання властивостей сполук типу $A_{n+1}B_nO_{3n+1}$ є ізоморфні заміщення атомів в їх ШПС. На сьогодні досить детально встановлена протяжність областей з ШПС в рядах одно- і двошарових сполук типу $A^{II}Ln_nB_n^{III}O_{3n+1}$ залежно від розмірів атомів РЗЕ [3], тоді як дані щодо меж ізовалентного заміщення атомів лужноземельних металів в їх ШПС практично відсутні.

Мета даної роботи — визначення умов ізовалентного заміщення атомів Ва в ШПС $BaLa_2In_2O_7$ по типу $Ba_{1-x}Sr_xLa_2In_2O_7$ та дослідження його впливу на особливості будови двошарової ШПС індатів $Ba_{1-x}Sr_xLa_2In_2O_7$.

Полікристалічні зразки $Ba_{1-x}Sr_xLa_2In_2O_7$ одержано послідовною термообробкою (1170 К 5 год, 1570 К 3 + 3 год) спільнозакристалізованих солей. Як вихідні речовини використовувалися: La(NO₃)₃, In(NO₃)₃, Sr(NO₃)₂ та BaAc₂ марок "хч" і "чда". Рентгенівські дифракційні спектри записано на дифрактометрі ДРОН-3 у дискретному режимі (крок сканування 0,03°, експозиція в точці 5 с) на мідному фільтрованому випромінюванні. Управління процесом зйомки та збором інформації, початкова обробка дифрактограм, а також структурні розрахунки виконано з використанням апаратно-програмного комплексу [4].

[©] Ю.О. Тітов, Н.М. Білявина, М.С. Слободяник, В.В. Чумак, 2016

Рис. 1. Залежність об'єму елементарної комірки ШПС $Ba_{1-x}Sr_xLa_2In_2O_7$ від ступеня заміщення атомів Ва (значення x)

Дослідження меж ізовалентного заміщення атомів Ва на атоми Sr в ШПС ВаLa₂In₂O₇ по типу Ва_{1-x}Sr_xLa₂In₂O₇ показало існування широкої ($0 \le x \le 0.75$) області фаз з ШПС (рис. 1). Лінійний характер залежності V = f(x) дає підставу розглядати їх як обмежений ряд твердих розчинів з ШПС.

За об'єкти дослідження впливу ізовалентного заміщення атомів лужноземельного металу на особливості будови ШПС були вибрані фази складу $Ba_{1-x}Sr_xLa_2In_2O_7$ з x = 0,2, 0,5і 0,7. Дифрактограми $Ba_{0,8}Sr_{0,2}La_2In_2O_7$, $Ba_{0,5}Sr_{0,5}La_2In_2O_7$ та $Ba_{0,3}Sr_{0,7}La_2In_2O_7$ виявилися подібними до дифрактограм двошарових $BaLa_2In_2O_7$ (пр. гр. $P4_2/mnm$ [5]) та $SrLa_2Sc_2O_7$ (пр. гр. *Fmmm* [6]), а їх індексування показало належність ШПС $Ba_{1-x}Sr_xLa_2In_2O_7$ (x = 0,5і 0,7) до ромбічної сингонії. Систематика погасань відбиттів на їх дифрактограмах відповідає центросиметричній просторовій групі *Fmmm*. Дифрактограма $Ba_{0,8}Sr_{0,2}La_2In_2O_7$ (x = 0,2), аналогічно дифрактограмі незаміщеного індату $BaLa_2In_2O_7$, задовільно індексується в тетрагональній сингонії. Проте подальші структурні розрахунки показали належність ШПС $Ba_{0,8}Sr_{0,2}La_2In_2O_7$ до ромбічної сингонії, а різниця в величинах періодів a і bїї ШПС, очевидно, менша точності їх визначення (0,003 Å).

Первинну оцінку координатних параметрів атомів для початкових моделей $Ba_{1-x}Sr_xLa_2In_2O_7$ (x = 0,2, 0,5 і 0,7) проведено за відомими структурними даними для $SrLa_2Sc_2O_7$ (пр. гр. *Fmmm*) [6]. Зіставлення експериментальних і розрахованих інтенсивностей відбиттів для запропонованих моделей структури $Ba_{1-x}Sr_xLa_2In_2O_7$ із статистичним розподілом атомів Ba, Sr та La по A-позиціях ШПС показало їх задовільну збіжність.

Результати уточнення координатних та теплових параметрів структур ізовалентно заміщених індатів $Ba_{1-x}Sr_xLa_2In_2O_7$ та інші структурні дані наведені в табл. 1 і 2 та на рис. 2. Уточнений при розрахунку структури склад цих зразків у межах похибки визначення відповідає експериментально заданому.

Згідно з [5], розподіл атомів Ва та La у ШПС вихідного індату BaLa₂In₂O₇ є повністю впорядкованим із локалізацією великих атомів Ва в центрі блока в поліедрах BaO₁₂, а менших атомів La на межі блока в поліедрах LaO₉. Враховуючи вищевказане, нами було проведено також уточнення початкових моделей ШПС ізовалентно заміщених фаз Ba_{1-x}Sr_xLa₂In₂O₇ із впорядкованим розподілом атомів Ba та Sr лише в центрі перовськітоподібного блока (поліедр $A^{II}O_{12}$, позиція 4b), а атомів La на границях блока (поліедр LaO₉, позиція 8i).

Зіставлення значень одержаних факторів недостовірності для обох типів моделей будови ШПС ізовалентно заміщених фаз $Ba_{1-x}Sr_xLa_2In_2O_7$ (x = 0,2, 0,5 і 0,7) показало, що

Таблиця 1. К	ристалографічні дані l	$\mathrm{Ba}_{0,3}\mathrm{Sr}_{0,3}$	$_{7}$ La $_{2}$ In $_{2}$	O_7 , $Ba_{0,5}Sr_0$,5La2In2C	₇ та Ва	$_{0,8}\mathrm{Sr}_{0,2}\mathrm{I}$	la2In2O7 (пр	. rp. Fmn	(m)			
			$\mathrm{Ba}_{0,3}\mathrm{Si}$	$^{0,7}\mathrm{La_2In_2O_7}$			$\mathrm{Ba}_{0,5}\mathrm{S}$	$r_{0,5}La_2In_2O_7$			$\mathrm{Ba}_{0,8}\mathrm{Si}$	0,2 La $_2$ In $_2$ O $_7$	
Позиція	Atom	X	Y	Ζ	Запов- нення	X	Y	Ζ	Запов- нення	X	Y	Ζ	Запов- нення
4b	Ba(1)	0	0	0,5	0,100	0	0	0,5	0,167	0	0	0,5	0,267
4b	Sr(1)	0	0	0,5	0,233	0	0	0,5	0,167	0	0	0,5	0,067
4b	La(1)	0	0	0,5	0,667	0	0	0,5	0,666	0	0	0,5	0,666
8i	$\operatorname{Ba}(2)$	0	0	0,3135(3)	0,100	0	0	0,3153(3)	0,167	0	0	0,3193(3)	0,267
8i	$\operatorname{Sr}(2)$	0	0	0,3135(3)	0,233	0	0	0,3153(3)	0,167	0	0	0,3193(3)	0,067
8i	La(2)	0	0	0,3135(3)	0,667	0	0	0,3153(3)	0,666	0	0	0,3193(3)	0,666
8i	In	0	0	0,0975(2)	1	0	0	0,1005(2)	1	0	0	0,1063(2)	1
4a	O(1)	0	0	0	1	0	0	0	1	0	0	0	1
8i	O(2)	0	0	0,210(2)	1	0	0	0,208(2)	1	0	0	0,206(2)	1
16j	O(3)	0,25	0,25	0,107(2)	1	0,25	0,25	0,107(2)	1	0,25	0,25	0,108(2)	1
Періоди кр	исталічної гратки, Å		a = a	5,882(2)			<i>a</i> =	= 5,918(1)			a = a	5,900(3)	
			p = q	5,872(2)			p = q	5,887(2)			p = q	5,900(3)	
			c = c	20,753(8)			с = С	20,787(4)			с =	20,96(1)	
Фактор не,	цостовірності		R_B	= 0,060			R_B	= 0,065			R_B	= 0,065	
			R_0	= 0,018			R_0	= 0,026			R_0	= 0,024	
Незалежні	відбиття			93				94				94	
Загальний В фактор,	ізотропний Å ²)	,94(5)			-	0,88(6)			0	,28(5)	

 F_m ГD (III) Č LacInc 5 Ba Ę Č LacIn J. Ба Č The Las 5 лані Ва, innachiuni a 1 Kn

ISSN 1025-6415 Доп. НАН України, 2016, №6

							-		
$ m SrLa_2Sc_2O_7$		$\mathrm{Ba_{0,3}Sr_{0,7}L^{5}}$	$_{12}\mathrm{In}_{2}\mathrm{O}_{7}$	$\mathrm{Ba}_{0,5}\mathrm{Sr}_{0,5}\mathrm{Le}$	$_{12}\mathrm{In}_{2}\mathrm{O}_{7}$	$\mathrm{Ba_{0,8}Sr_{0,2}L^{6}}$	$_{12}\mathrm{In}_{2}\mathrm{O}_{7}$	$BaLa_2In$	$^{2}O_{7}$
(mp. rp. Fmmm)		($\pi p. rp. F_1$	nmm)	(np. rp. F_1	nmm)	(np. rp. $F\eta$	nmm)	(пр. гр. $P4_2$	(mnm)
Ποліедр $(0.59Sr + 0.41La)($	$(1)O_{12}$	Поліедр А	$(1)O_{12}$	Поліедр А	$(1)O_{12}$	Поліедр А	$(1)O_{12}$	Поліедр I	aO_{12}
$(0,59 { m Sr}+0,41 { m La})(1)-{ m O}_{ m cep}$	2,95	${\rm A(1)-O_{cep}}$	3,01	${\rm A(1)}{\rm -}{\rm O_{cep}}$	3,02	${\rm A(1)-O_{cep}}$	3,04	${\rm Ba-O_{cep}}$	3,05
\bigtriangledown	$3\cdot 10^{-4}$	4	$2\cdot 10^{-4}$	Þ	$2\cdot 10^{-4}$	4	$4 \cdot 10^{-4}$	Þ	$72\cdot 10^{-4}$
III III III IIII IIII IIII IIIIIIIIII	$(2)O_9$	Поліедр А	$(2)O_{9}$	Поліедр А	$(2)O_{9}$	Поліедр А	$(2)O_{9}$	Поліедр	LaO ₉
$(0,21{ m Sr}+0,79{ m La})(2)\!-\!{ m O}_{ m cep}$	2,70	${\rm A(2){-}O_{cep}}$	2,74	${\rm A}(2){\rm -}{\rm O}_{\rm cep}$	2,75	${ m A}(2){ m -O_{cep}}$	2,74	$\rm La-O_{cep}$	2,77
Міжблочна відстань	2,22(2)	Міжблочна відстань	2,15(2)	Міжблочна відстань	2,23(2)	Міжблочна відстань	2,38(2)	Міжблочна відстань	2,30(2)
□	$68\cdot 10^{-4}$	4	$90\cdot 10^{-4}$	4	$81\cdot 10^{-4}$	4	$74\cdot 10^{-4}$	Q	$234\cdot 10^{-4}$
Поліедр ScO ₆		Поліедр	InO_6	Поліедр	InO_6	Поліедр	InO_6	Поліедр	InO_6
$\rm Sc-O_{cep}$	2,07	${\rm In-O_{cep}}$	2,12	${\rm In-O_{cep}}$	2,12	$_{\rm In-O_{cep}}$	2,11	${\rm In-O_{cep}}$	2,16
\bigtriangledown	$5\cdot 10^{-4}$	\bigtriangledown	$21\cdot 10^{-4}$	\bigtriangledown	$7\cdot 10^{-4}$	\bigtriangledown	$6\cdot 10^{-4}$	∇	$24\cdot 10^{-4}$
Примітка. Ступінь деформац	ії поліедрів	МеО _п у крист	алічній стр	уктурі сполук	типу A_{n+1}	$B_n O_{3n+1} pospa$	ховано за ф	ормулою $\Delta =$	$1/n \sum [(R_i -$

0 ₇ ,	
$\ln_2($	
Ja2.	
0,51	
$_{5}$ Sr	
Ba_0	
07	
$_{2}In_{2}$	
Lag	
r _{0,7}	
0,35	
\mathbf{Ba}	
[6],	
07	
S_{C_2}	
.a2	
SrI	
IC	
Ξ	
В	
⊴	
O_n	
Me	
iB	
іедг	
ГОІ	
Ë	
Mal	
pop	
деф	
Hb	
L A	
С в	
Ĥ	
Å)	۲.
гані	ċ
ідсэ	L u
i B	J
OMF	ц Ц
кат	ć
Miz	Inc
Ś	Loc
ъ'n	3000
nvg	J
T_{a}	ğ

 $(-\overline{R})/\overline{R}^2$ (R_i — відстань Ме-О, \overline{R} — середня відстань Ме-О, n — координаційне число) [7].

Рис. 2. Кристалічна структура Ba_{0,8}Sr_{0,2}La₂In₂O₇ у вигляді октаедрів InO₆ та атомів типу A (Ba, Sr, La) (*a*) та будова міжблочної границі (поліедр AO₉) в ШПС Ba_{0,3}Sr_{0,7}La₂In₂O₇ (*б*)

значення R_B дуже близькі і відрізняються один від одного на 0,001–0,006. Такий підхід не дав обгрунтованих підстав для однозначного вибору способу розподілу атомів Ba, Sr та La в ШПС фаз $Ba_{1-x}Sr_xLa_2In_2O_7$.

Кристалічна структура $Ba_{1-x}Sr_xLa_2In_2O_7$ (x = 0,2, 0,5 і 0,7) є шаровою і утворена двовимірними (нескінченними в напрямках осей X і Y) перовськітоподібними блоками, кожен з яких складається з двох шарів деформованих октаедрів InO_6 (див. рис. 2, a). Октаедри InO_6 з'єднані тільки вершинами, причому кожний октаедр має п'ять спільних вершин із суміжними октаедрами одного і того ж блока. В напрямку діагоналі площини XY сусідні блоки зміщені один відносно іншого на половину ребра перовськітового куба і чергуються один з одним.

Безпосередній зв'язок між октаедрами InO_6 сусідніх перовськітоподібних блоків в ШПС $Ba_{1-x}Sr_xLa_2In_2O_7$ відсутній. Блоки розділені шаром поліедрів AO_9 і утримуються разом за допомогою зв'язків -O-A-O- (див. рис. 2, δ). З дев'яти атомів оксигену поліедра AO_9 вісім (чотири O2 та чотири O3) належать до того ж блока, що і атоми A, а один атом оксигену (O2) належить до сусіднього блока. Довжина цього міжблочного зв'язку A-O2 (2,15–2,38 Å) найменша серед усіх зв'язків поліедра AO_9 і наближається до мінімально відомих відстаней Ln-O (табл. 2).

Останній факт вказує на неможливість знаходження значно більших, ніж РЗЕ, атомів Ва в позиції 8і між перовськітоподібними блоками та на їх локалізацію (аналогічно ШПС $BaLa_2In_2O_7$ [5]) лише в позиції 4b у великих внутрішньоблочних пустотах перовськітоподібного блока. Враховуючи недостатню кількість атомів Ba в ШПС $Ba_{1-x}Sr_xLa_2In_2O_7$ для повного заповнення позиції 4b, а також співвідношення розмірів атомів Ba, Sr та La, можна припустити, що склад внутрішньоблочного кубооктаедра ШПС $Ba_{1-x}Sr_xLa_2In_2O_7$ буде близький до формули (Ba, Sr)O₁₂, проте не виключена можливість також часткового входження до його складу і атомів La.

Одержані дані показали, що заміна атомів Ва на менші за розмірами атоми Sr в тетрагональній (пр. гр. $P4_2/mnm$) ШПС ВаLa₂In₂O₇ по типу Ва_{1-x}Sr_xLa₂In₂O₇ призводить до пониження симетрії кристалічної гратки до ромбічної (пр. гр. *Fmmm*). При цьому відбувається досить істотне зменшення ступеня деформації внутрішньоблочних поліедрів A(1)O₁₂ (більш ніж на порядок) та зовнішньоблочних поліедрів A(2)O₉ (в 2,5–3 рази), а значення $\Delta A(1)O_{12}$ і $\Delta A(2)O_9$ для Ва_{1-x}Sr_xLa₂In₂O₇ близькі до таких для SrLa₂Sc₂O₇ (пр. гр. *Fmmm*) (див. табл. 2).

Аналіз залежностей величин ступеня деформації поліедрів $A(1)O_{12}$, $A(2)O_9$, InO_6 та довжини зв'язків метал–оксиген від ступеня заміщення атомів Ва на атоми Sr в ШПС $Ba_{1-x}Sr_xLa_2In_2O_7$ показав, що зі збільшенням значення x відбуваються такі зміни:

ISSN 1025-6415 Доп. НАН України, 2016, №6

Рис. 3. Залежності ступеня деформації зовнішньоблочних поліедрів AO₉ в ШПС $Ba_{1-x}Sr_xLa_2In_2O_7$ (*a*) та довжини міжблочного зв'язку A(2)–O(2) в зовнішньоблочних поліедрах AO₉ ШПС $Ba_{1-x}Sr_xLa_2In_2O_7$ (*б*) від ступеня заміщення атомів Ba (значення *x*)

1) зростає деформація зовнішньоблочних поліедрів $A(2)O_9$ (рис. 3, *a*);

2) зменшується довжина міжблочного зв'язку A(2)-O(2) в зовнішньоблочних поліедрах $A(2)O_9 \ \text{ШПС Ba}_{1-x}Sr_xLa_2In_2O_7$ (див. рис. 3, 6).

Перша призводить до зростання напруженості в міжблочному просторі ШПС $Ba_{1-x}Sr_xLa_2In_2O_7$, а друга наближує будову ШПС $Ba_{1-x}Sr_xLa_2In_2O_7$ до будови тривимірного перовськіту. Кінцевим результатом наростання дії цих факторів є руйнація ШПС фаз $Ba_{1-x}Sr_xLa_2In_2O_7$ при x > 0.75.

Таким чином, у даній роботі встановлено умови ізовалентного заміщення атомів Ва в ШПС ВаLa₂In₂O₇ по типу Ba_{1-x}Sr_xLa₂In₂O₇ та методом Рітвельда визначено кристалічну структуру трьох ізовалентно заміщених індатів складу Ba_{1-x}Sr_xLa₂In₂O₇ (x = 0,2,0,5та 0,7), проаналізовано особливості будови їх ШПС та встановлено взаємозв'язки склад будова шаруватої структури, зокрема, виявлено характер впливу вмісту атомів стронцію на ступінь деформації міжблочних поліедрів AO₉ і довжини міжблочних відстаней -O-A-Oв ШПС Ba_{1-x}Sr_xLa₂In₂O₇.

Цитована література

- 1. Александров К. С., Безносиков Б. В. Перовскиты. Настоящее и будущее. Новосибирск: Изд-во СО РАН, 2004. 231 с.
- Schaak R. E., Mallouk T. E. Perovskites by design: a toolbox of solid-state reactions // Chem. Mater. 2002. – 14, No 4. – P. 1455–1471.
- Тітов Ю. О., Слободяник М. С., Краєвська Я. А. Кристалохімічні критерії існування сполук і фаз Руддлесдена-Поппера типу А^{II}Ln_nB^{III}_nO_{3n+1} // Укр. хим. журн. – 2012. – 78, № 5. – С. 8–13.
- Марків В. Я., Белявіна Н. М. Апаратно-програмний комплекс для дослідження полікристалічних речовин за їх дифракційними спектрами // Тези доп. Другої міжнар. конф. "КФМ – 97", 14–16 жовтня 1997 р. – Львів: Вид-во наук. тов-ва ім. Т. Г. Шевченка, 1997. – С. 260–261.
- 5. *Тітов Ю. О., Білявина Н. М., Марків В. Я., Слободяник М. С., Краєвська Я. А., Ящук В. П.* Синтез та кристалічна структура BaLn₂In₂O₇ // Доп. НАН України. 2010. № 1. С. 148–154.
- 6. *Тітов Ю. О., Білявина Н. М., Марків В. Я., Слободяник М. С., Краєвська Я. А., Чумак В. В.* Синтез та кристалічна структура шаруватих скандатів SrLn₂Sc₂O₇ // Доп. НАН України. 2009. № 3. С. 155–161.
- Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides // Acta Cryst. – 1976. – A32, No 5. – P. 751–767.

References

- 1. Alexandrov K. S., Beznosikov B. V. Perovskites. The present and future, Novosibirsk: Publ. SO RAN, 2004 (in Russian).
- 2. Schaak R. E., Mallouk T. E. Chem. Mater., 2002, 14, No 4: 1455–1471.
- 3. Titov Yu. A., Slobodyanik M. S., Krayevska Ya. A. Ukr. Khim. Zh., 2012, 78, No 5: 8–13 (in Ukrainian).
- Markiv V. Ya., Belyavina N. M. Proc. of the IInd Intern. Conf. "KFM-97", Lviv 14–16 October, 1997: 260–261 (in Ukrainian).
- Titov Yu. A., Belyavina N. M., Markiv V. Ya., Slobodyanik M. S., Krayevska Ya. A., Yaschuk V. P. Dopov. NAN Ukraine, 2010, No 1: 148–154 (in Ukrainian).
- Titov Yu. A., Belyavina N. M., Markiv V. Ya., Slobodyanik M. S., Krayevska Ya. A., Chumak V. V. Dopov. NAN Ukraine, 2009, No 3: 155–161 (in Ukrainian).
- 7. Shannon R. D. Acta Cryst., 1976, A32, No 5: 751–767.

Надійшло до редакції 06.10.2015

Ю. А. Титов¹, Н. Н. Белявина¹, член-корреспондент НАН Украины **Н. С. Слободяник¹, В. В. Чумак²**

¹Киевский национальный университет им. Тараса Шевченко ²Житомирский национальный университет им. Ивана Франко

E-mail: tit@univ.kiev.ua

Кристаллическая структура изовалентно замещенных слоистых индатов Ba_{1-x}Sr_xLa₂In₂O₇

Установлены условия изовалентного замещения атомов Ва в слоистой перовскитоподобной структуре (СПС) ВаLa₂In₂O₇ по типу Ва_{1-x}Sr_xLa₂In₂O₇ ($0 \le x \le 0.75$). Методом рентгеновской дифракции на порошке определена СПС индатов Ва_{1-x}Sr_xLa₂In₂O₇ (x = 0.2, 0.5 и 0.7). Установлена принадлежность СПС Ва_{1-x}Sr_xLa₂In₂O₇ к структурному типу SrLa₂Sc₂O₇ (пр. гр. Fmmm) и выявлены взаимосвязи состав — строение СПС. Показано, что увеличение содержания стронция в СПС Ва_{1-x}Sr_xLa₂In₂O₇ повышает степень деформации межблочных полиэдров AO₉ и уменьшает длину межблочного расстояния A(2)–O(2) в СПС Ва_{1-x}Sr_xLa₂In₂O₇.

Ключевые слова: слоистая перовскитоподобная структура, изоморфное замещение, порошковая рентгеновская дифракция.

Yu. A. Titov¹, N. M. Belyavina¹, Corresponding Member of the NAS of Ukraine M. S. Slobodyanik¹, V. V Chumak²

¹Taras Shevchenko National University of Kiev ²Ivan Franko State University of Zhytomyr *E-mail:* tit@univ.kiev.ua

Crystal structure of isovalent substituted layered indates $Ba_{1-x}Sr_xLa_2In_2O_7$

Conditions of isovalent substitution of barium atoms in layered perovskite-like structure (LPS) of $BaLa_2In_2O_7$ by the type $Ba_{1-x}Sr_xLa_2In_2O_7$ ($0 \le x \le 0.75$) are determined. The LPS of indates $Ba_{1-x}Sr_xLa_2In_2O_7$ (x = 0.2, 0.5, and 0.7) are determined by X-ray powder diffraction. It is found

ISSN 1025-6415 Доп. НАН України, 2016, №6

that the LPS of $Ba_{1-x}Sr_xLa_2In_2O_7$ belongs to the $SrLn_2Sc_2O_7$ -type structure (sp. gr. Fmmm), and the interrelations composition — constitution of LPS are determined. It is shown that the increase of the strontium content in LPS $Ba_{1-x}Sr_xLa_2In_2O_7$ increases a degree of deformation of interblock polyhedra AO_9 and decreases the length of the interblock distance A(2)-O(2) in LPS $Ba_{1-x}Sr_xLa_2In_2O_7$.

Keywords: layered perovskite-like structure, isomorphous substitution, X-ray powder diffraction.