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Solutions of some partial differential equations with variable

coefficients by properties of monogenic functions
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Abstract. We study some partial differential equations, by using the properties of Gateaux differen-
tiable functions on a commutative algebra. It is proved that components of differentiable functions satisfy
some partial differential equations with coefficients related to properties of the bases of subspaces of the
corresponding algebra.
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1. Introduction

The idea of studying the partial differential equation by using the properties of differentiable func-
tions on algebras is not new. The first step in this direction was the connection established between
complex differential functions and harmonic functions. Ketchum [1] extended this idea to the three-
dimensional Laplace equation, by using the algebra of functions associated with the equation.

The so-called biharmonic bases in commutative algebras and monogenic functions on these al-
gebras associated with the biharmonic equation are studied in [2, 3]. An interesting solution of the
three-dimensional Laplace equation has been elaborated in [4], by defining a related commutative and
associative algebra over the field of complex numbers. These ideas were generalized in [5] to a wide
class of partial differential equations (PDEs) with constant coefficients. Here, we propose a further
generalization to the case of PDEs with linearly dependent variable coefficients.

2. Differentiability on commutative algebras

Let A be an infinite-dimensional (or finite-dimensional) commutative unitary Banach algebra over
a field K of characteristic 0. Assume that the set of vectors ~en, n = 1, 2, . . . is a basis of A. Suppose B
is an m-dimensional subspace of A with the basis ~e1, ~e2, . . . , ~em, m ∈ N. Now, any function ~f : B → A
is of the form

~f(~x) =
∞∑

k=1

~ekuk(~x),

where uk(~x) = uk(x1, x2, . . . , xm) are K-valued functions of m variables xi ∈ K. We will assume that
all considered series are convergent in A.
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Definition 2.1. ~f(~x) is called differentiable at a point ~x0 ∈ B, if there exists a unique element
~f ′(~x0) ∈ A such that, for any ~h ∈ B,

~h~f ′(~x0) = lim
ε→0

~f(~x0 + ε~h)− ~f(~x0)

ε
, (2.1)

where ~h~f ′(~x0) is the product of elements ~h and ~f ′(~x0) in the algebra A.

It should be keep in mind that ε ∈ K in accordance with the algebra A. The classification of
monogenic functions in a finite-dimensional commutative algebra is performed in [6]. The element
~f ′(~x0) is called as the Gateaux derivative of ~f at the point ~x0. For A = B = C, this definition is also
equivalent to the (complex) differentiability of the complex function ~f , and ~f ′(~x0) becomes the usual
complex derivative.

We say that ~f : B −→ A is differentiable (in B) or monogenic if it is differentiable at any point of
B.

Theorem 2.1. Suppose that, for some 1 ≤ l ≤ m, there exists ~e−1
l . Then a function ~f(~x) =∑∞

k=1 ~ekuk(~x) is monogenic, iff there exists the function ~f ′ : B → A such that, for all k = 0, 1, . . . ,m,
and ∀ ~x ∈ B,

~ek ~f ′(~x) = lim
ε→0

~f(~x+ ε~ek)− ~f(~x)

ε
, (2.2)

where ~f ′ does not depend on ~ek.

Proof. Suppose that (2.2) is fulfilled. Since, by assumption, there exists ~e−1
l (1 ≤ l ≤ m), we have

~el ~f ′ = lim
ε→0

~f(~x+ ε~e1)− ~f(~x)

ε
=

∞∑

k=1

~ek
∂uk
∂xl

or, equivalently,

~e1~f ′ = limε→0
~f(~x+ε~e1)−~f(~x)

ε =
∑n

k=1 ~ek
∂uk
∂x1

= ~e1~e
−1
l

∑∞
k=1 ~ek

∂uk
∂xl

,

~e2~f ′ = limε→0
~f(~x+ε~e2)−~f(~x)

ε =
∑∞

k=1 ~ek
∂uk
∂x2

= ~e2~e
−1
l

∑∞
k=1 ~ek

∂uk
∂xl

,

...

~em~f ′ = limε→0
~f(~x+ε~em)−~f(~x)

ε =
∑n

k=0 ~ek
∂uk
∂xm

= ~em~e
−1
l

∑∞
k=1 ~ek

∂uk
∂xl

.

(2.3)

Now, let us consider ~h =
∑m

k=1 hk~ek. It follows from (2.3) that

h1~e1~f ′ = h1
∑∞

k=1 ~ek
∂uk
∂x1

,

h2~e2~f ′ = h2
∑∞

k=1 ~ek
∂uk
∂x2

,

...

hm~em~f ′ = hm
∑∞

k=1 ~ek
∂uk
∂xm

.
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This implies that

~h~f ′ = h1
∑∞

k=1 ~ek
∂uk
∂x1

+ h2
∑∞

k=1 ~ek
∂uk
∂x2

+ · · ·+ hm
∑∞

k=1 ~ek
∂uk
∂xm

= lim
ε→0

~f(~x+ε~h)−~f(~x)
ε .

Furthermore, it follows from (2.3) that

h1
∑∞

k=1 ~ek
∂uk
∂x1

+ h2
∑∞

k=1 ~ek
∂uk
∂x2

+ · · ·+ hm
∑∞

k=1 ~ek
∂uk
∂xm

= h1~e1~e
−1
l

∑∞
k=1 ~ek

∂uk
∂xl

+ h2~e2~e
−1
l

∑∞
k=1 ~ek

∂uk
∂xl

+ · · ·

+hm~em~e
−1
l

∑∞
k=1 ~ek

∂uk
∂xl

.

Hence, for every ~h ∈ B,

~h~e−1
l

∞∑

k=1

~ek
∂uk
∂xl

= lim
ε→0

~f(~x+ ε~h)− ~f(~x)

ε

or

~f ′ = ~e−1
l

∞∑

k=1

~ek
∂uk
∂xl

. (2.4)

The set of (2.4) implies the following Cauchy–Riemann type of conditions for a differentiable
function ~f :

~el

∞∑

k=1

~ek
∂uk
∂x1

= ~e1

∞∑

k=1

~ek
∂uk
∂xl

,

~el

∞∑

k=1

~ek
∂uk
∂x2

= ~e2

∞∑

k=1

~ek
∂uk
∂xl

,

...

~el

∞∑

k=1

~ek
∂uk
∂xm

= ~em

∞∑

k=1

~ek
∂uk
∂xl

(2.5)

or, in the vector form,

~el
∂ ~f

∂xk
= ~ek

∂ ~f

∂xl
, k = 1, 2, . . . ,m. (2.6)

3. Differentiable functions providing solutions to partial differential equations

In this section, we extend the basic idea of relating analytic and harmonic functions into more
general situations. For given integers m, r ≥ 1, let

P (ξ1, ξ2, . . . , ξm) :=
∑

i1+i2+···+im=r

Ci1,i2,...,im(x1, x2, . . . , xm)ξi11 ξ
i2
2 . . . ξ

im
m , (3.1)
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where Ci1,i2,...,im(x1, x2, . . . , xm) are K-valued continuous functions of m variables xi, i = 1, 2, . . . ,m.
Consider the partial differential equation

P (∂0, ∂1, . . . , ∂m) [u(x1, x2, . . . , xm)] = 0, (3.2)

where ∂k :=
∂k

∂xk
.

Theorem 3.1. Let P be a polynomial as in (3.1). Let a function ~f : B −→ A and its derivatives

~f ′, ~f ′′, . . . , ~f r be differentiable, ~f(~x) =
n∑

k=0

~ekuk(~x). Assume that the functions Ci1,i2,...,im(x1, x2, . . . , xm)

are linearly dependent in Km, and the basis ~e1, ~e2, . . . , ~em of the subspace B of the algebra A is such
that

P (~e1, ~e2, . . . , ~em) = 0. (3.3)

Then the functions uk(~x), k = 1, 2, . . . are solutions of (3.2).

Proof. It follows from the Cauchy–Riemann condition (2.6) that

∂in ~f

∂xink
= ~ek

in~el
−in ∂

~f

∂xl
, k = 1, 2, . . . ,m. (3.4)

This implies, for i1 + i2 + · · ·+ im ≤ r, that

∂i1+i2+···+im ~f

∂xi11 ∂x
i2
2 · · · ∂ximm

= ~e
−(i1+i2+···+im)
l ~e i11 ~e

i2
2 · · ·~e imm

∂i1+i2+···+im ~f

∂xi1+i2+···+im
1

. (3.5)

Therefore, we obtain

∑

i1+i2+···+im=r

Ci1,i2,...,im(x1, x2, . . . , xm)
∂r

∂xi11 ∂x
i2
2 · · · ∂ximm

~f(x1, x2, . . . , xm)

= ~e−r
l

∂r ~f(x1, x2, . . . , xm)

∂xrl

∑

i1+i2+···+im=r

Ci1,i2,...,im(x1, x2, . . . , xm)(~e1)
i1(~e2)

i2 · · · (~em) im = 0.

Hence, every component uk(~x), k = 1, 2, . . . , n of the function ~f is a solution of (3.2).

Remark 3.1. We should note that if subspace B contains the unity, then there is an invertible element
among its basis vectors.

4. Examples

4.1. The three-dimensional equation

Let us consider the PDE
(
∂2

∂x2
+ x2

∂2

∂y2
+ (x2 + 1)

∂2

∂z2

)
u(x, y, z) = 0. (4.1)

This equation implies that the polynomial P (ξ1, ξ2, ξ3) = ξ21 + x2ξ22 + (x2 + 1)ξ23 , and (3.3) has the
view e21+x

2e22+(x2+1)e23 = 0. In this case, we can use the bicomplex algebra BC = {a0+a1i+a2j+
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a3e| ak ∈ R}. This algebra is commutative, and its basis vectors 1, i, j, e satisfy i2 = j2 = −e2 = 1,
and ij = ji = e, ie = ei = −j, je = ej = −i.

It is easy to see that x2i2 + j2 + (x2 + 1)e2 = 0. So, we may consider BC as the algebra A and
B = {a1i + a2j + a3e| ak ∈ R} ⊂ BC as a subspace of A.

Consider a function ~f : B → A, namely,

~f(x, y, z) = u0(x, y, z) + u1(x, y, z) i + u2(x, y, z) j + u3(x, y, z) e

where x, y, z ∈ R and uk : R3 → R, k = 0, 1, 2, 3.
According to Theorem 3.1, if the function ~f is monogenic, then the functions uk(x, y, z) are solutions

of (4.1).
Thus, to obtain solutions of (4.1), it is enough to find a monogenic function ~f : B → A. As an

example, consider the function ~f(z) = exi+yj+ze, where z = xi + yj + ze. It is easily seen that f is
monogenic and

~f(z) = exi+yj+ze

= (cos(x) + i sin(x))(cos(y) + j sin(y))(cosh(z) + e sinh(z))

= cos(x) cos(y) cosh(z) + sin(x) sin(y) sinh(z)

+ i(sin(x) cos(y) cosh(z)− cos(x) sin(y) sinh(z))

+ j(cos(x) sin(y) cosh(z)− sin(x) cos(y) cosh(z))

+ e(cos(x) cos(y) sinh(z) + sin(x) sin(y) cosh(z)).

Therefore, we obtain four solutions of (4.1)

u0(x, y, z) = cos(x) cos(y) cosh(z) + sin(x) sin(y) sinh(z);

u1(x, y, z) = sin(x) cos(y) cosh(z)− cos(x) sin(y) sinh(z);

u2(x, y, z) = cos(x) sin(y) cosh(z)− sin(x) cos(y) cosh(z);

u3(x, y, z) = cos(x) cos(y) sinh(z) + sin(x) sin(y) cosh(z).

4.2. The four-dimensional equation

Now, let us consider the PDE

(
y2

∂2

∂x2
+ v

∂2

∂y2
− (y2 + v + 1)

∂2

∂z2
+

∂2

∂v2

)
u(x, y, z, v) = 0. (4.2)

This equation implies that the polynomial P (ξ1, ξ2, ξ3, ξ4) = y2ξ21 + vξ22 − (y2+ v+1)ξ23 + ξ24 , and (3.3)
has the form y2e21 + ve22 − (y2 + v + 1)e23 + e24 = 0. Suppose that A is a commutative algebra of the
form A = {a0 + ea1 + fa2 + ga3|ak ∈ R}, where e2 = f2 = g2 = 1 and efg = 1.

We will find a monogenic function such as

~f : A → A,

namely,
~f(x, y, z, v) = u0(x, y, z, v) + u1(x, y, z, v) e + u2(x, y, z, v) f

+u3(x, y, z, v)g

where x, y, z, v ∈ R and uk : R4 → R, k = 0, 1, 2, 3.
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Let us define
~f(x, y, z, v) = (x+ y e + z f + v g)3.

It is easily verified that this function is monogenic. Hence, by calculating ui(x, y, z, v), i = 0, 1, 2, 3,
we obtain four solutions of (4.2). After a simple computation, we obtain a solution of (4.2) in the
following form:

u0(x, y, z, v) = x3 + 3xy2 + 3xz2 + 3xv2 + 6yzv.

We may obtain solutions of (4.2), by using such monogenic functions as ~f(z) = ex+ye+zf+vg,
~f(z) = cos(x+ ye + zf + vg), and so on.

4.3. The linearized Korteweg–de-Vries equation

A linearized version of the KdV equation is

∂w

∂t
+
∂3w

∂x3
= 0. (4.3)

Then, in order to show the potentialities of our method, we consider the slightly different equation

∂3w

∂z2∂t
+
∂3w

∂x3
= 0. (4.4)

The corresponding polynomial can be defined as

P (ξ1, ξ2, ξ3) = ξ23ξ1 + ξ32 .

Let A0 be a three-dimensional commutative algebra over R. We assume that the set e0, e1, e2, is
a basis of A0 with the Cayley table:

eiej = ei⊕j ,

where ⊕j = i+ j (mod 3).

The algebra A0 has the following matrix representation:

ek → Pk = P k
1 ,

where

P1 =




0 1 0
0 0 1
1 0 0


 .

We define

τ
(l)
0 = el, l = 0, 1, 2, τ

(m)
1 = emi = iem, m = 0, 1, 2,

where i is the imaginary unit.

Let us consider the commutative algebra with the basis τ
(l)
0 , τ

(m)
1 , l = 0, 1, 2, m = 0, 1, 2, as A and

the element τ
(0)
0 = e0 is a unit of A. We state B =

{
ti+ xτ

(1)
1 + ze0

}
, since it is easily seen that

P (ξ1, ξ2, ξ3) = ξ23ξ1 + ξ32 .

P
(
i, τ

(1)
1 , e0

)
= 0.
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Consider a function
−→
f : B → A such that

−→
f (z, t, x) =

2∑

l=0

ul (t, x, z) el +
2∑

m=0

um+3 (t, x, z) emi,

where ul : R
3 → R, l = 0, 1, · · · , 5, are functions continuously differentiable three times.

We will find
−→
f as an exponential function of the following form:

−→
f (t, z, x) = eti+xτ

(1)
1 +ze0 = (cos t + i sin t )

×
( ∞∑

k=0

(−1)kx6k

(6k)!
+ e1i

∞∑

k=0

(−1)kx6k+1

(6k + 1)!
− e2

∞∑

k=0

(−1)kx6k+2

(6k + 2)!
− i

∞∑

k=0

(−1)kx6k+3

(6k + 3)!

+ e1

∞∑

k=0

(−1)kx6k+4

(6k + 4)!
+ e2i

∞∑

k=0

(−1)kx6k+5

(6k + 5)!

)
ez.

We note that

∞∑

k=0

(−1)kx6k

(6k)!
=

14 +
√
3

48
e−

√
3
2
xcos

(x
2

)
+

3− 2
√
3

48
e−

√
3
2
xsin

(x
2

)

+
1

3
e

√
3
2
xcos

(x
2

)
+

1

3
cos (x).

∞∑

k=0

(−1)kx6k+3

(6k + 3)!
=

14 +
√
3

48
e−

√
3
2
xsin

(x
2

)
+

2
√
3− 3

48
e−

√
3

2
xcos

(x
2

)

+
1

3
e

√
3
2
xsin

(x
2

)
− 1

3
sin (x).

.
Omitting the factor ez, we obtain three particular solutions of the linearized Korteweg–de-Vries

equation. One of them is given by

w1 (t, x) = cos t

(
K1 e

−
√
3
2
xcos

(x
2

)
−K2 e

−
√
3
2
xsin

(x
2

)
+

1

3
e

√
3
2
xcos

(x
2

)
+

1

3
cos (x)

)

+sin t

(
K1 e

−
√
3
2
xsin

(x
2

)
+K2 e

−
√
3
2
xcos

(x
2

)
+

1

3
e

√
3

2
xsin

(x
2

)
− 1

3
sin (x)

)
,

where K1 =
14+

√
3

48 and K2 =
2
√
3−3
48 .

In the same manner, by computing the pairs

∞∑

k=0

(−1)kx6k+1

(6k + 1)!
,

∞∑

k=0

(−1)kx6k+4

(6k + 4)!

and ∞∑

k=0

(−1)kx6k+2

(6k + 2)!
,

∞∑

k=0

(−1)kx6k+5

(6k + 5)!
,

we obtain two more solutions of (4.4), respectively, w2 (t, x) and w3 (t, x) .
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4.4. Fourth-order equation

Let us consider the equation
∂2w

∂t2
+ a2

∂4w

∂x4
= 0. (4.5)

This equation arises in the problems of transverse vibrations of a uniform elastic rod [7].

To use our method, we consider the closely related equation

∂4w

∂t2∂z2
+ a2

∂4w

∂x4
= 0. (4.6)

The corresponding polynomial is as follows:

P (ξ1, ξ2, ξ3) = ξ21ξ
2
2 + a2ξ43 .

In this case, we may consider the bicomplex algebra as A and B = {a0 + a1ia+ a2e} with the
basis 1, i

√
a, e, which satisfies the equation P (ξ1, ξ2, ξ3) = 0.

Consider a function
−→
f : B → A:

−→
f (x1, x2, x3) = u0 (x1, x2, x3) + u1 (x1, x2, x3) i+ u2 (x1, x2, x3) j

+u3 (x1, x2, x3) e,

where ul : R
3 → R, l = 0, 1, · · · , 5 are functions continuously differentiable four times.

The components of the exponential function

−→
f (x1, x2, x3) = ez+iat+ex

are solutions of (4.6). It is easily seen that solutions of (4.5) are components of the function eiat+ex,
namely

u0 (t, x) = cos (at) cosh (x),

u1 (t, x) = sin (at) cosh (x),

u2 (t, x) = cos (at) sinh (x),

u3 (t, x) = sin (at) sinh (x).
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7. S. B. Coskun, M. T. Atay, and B. Öztürk, “Transverse vibration analysis of Euler-Bernoulli beams using
analytical approximate techniques,” in: Advances in Vibration Analysis Research, InTech, Vienna, 2011,
pp. 1–22.

Anatoliy Pogorui
Department of Mathematical Analysis, Ivan Franko Zhytomyr State University,

Zhytomyr, Ukraine

E-Mail: pogor@zu.edu.ua

Ramón M. Rodŕıguez-Dagnino
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