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Solutions of some partial differential equations with variable
coefficients by properties of monogenic functions
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Abstract. We study some partial differential equations, by using the properties of Gateaux differen-
tiable functions on a commutative algebra. It is proved that components of differentiable functions satisfy
some partial differential equations with coefficients related to properties of the bases of subspaces of the
corresponding algebra.
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1. Introduction

The idea of studying the partial differential equation by using the properties of differentiable func-
tions on algebras is not new. The first step in this direction was the connection established between
complex differential functions and harmonic functions. Ketchum [1] extended this idea to the three-
dimensional Laplace equation, by using the algebra of functions associated with the equation.

The so-called biharmonic bases in commutative algebras and monogenic functions on these al-
gebras associated with the biharmonic equation are studied in [2,3]. An interesting solution of the
three-dimensional Laplace equation has been elaborated in [4], by defining a related commutative and
associative algebra over the field of complex numbers. These ideas were generalized in [5] to a wide
class of partial differential equations (PDEs) with constant coefficients. Here, we propose a further
generalization to the case of PDEs with linearly dependent variable coefficients.

2. Differentiability on commutative algebras

Let A be an infinite-dimensional (or finite-dimensional) commutative unitary Banach algebra over
a field K of characteristic 0. Assume that the set of vectors €,, n = 1,2,... is a basis of A. Suppose B
is an m-dimensional subspace of A with the basis €1, €3, ..., €mn, m € N. Now, any function f: B— A
is of the form
. oo
F@) =) e (@),
k=1

where ug (%) = ug(z1,x2,...,Tn) are K-valued functions of m variables x; € K. We will assume that
all considered series are convergent in A.
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Definition 2.1. f( 7) is called differentiable at a point Ty € B, if there exists a unique element
f’(xg) € A such that, for any h € B,

(@) = tim B0+ R = F(@) (2.1)

e—0 £

where ﬁf’(fo) 1s the product of elements h and f’(fg) in the algebra A.

It should be keep in mind that ¢ € K in accordance with the algebra A. The classification of
monogenic functions in a finite-dimensional commutative algebra is performed in [6]. The element
F(Zo) is called as the Gateaux derivative of f at the point Zy. For A = B = C, this definition is also
equivalent to the (complex) differentiability of the complex function f, and f” (Zp) becomes the usual
complex derivative.

We say that f : B — A is differentiable (in B) or monogenic if it is differentiable at any point of

B.
Theorem 2.1. Suppose that, for some 1 < | < m, there exists é’l_l. Then a function _'(a_c') =
> req €puk (@) is monogenic, iff there exists the function f’ : B — A such that, for allk =0,1,...,m,
and V¥ € B,

& F(T) = lim 228 = F(@) (2.2)

where f’ does not depend on €.

Proof. Suppose that (2.2) is fulfilled. Since, by assumption, there exists é’l_l (1 <1< m), we have

rY o)

17y TEHR I
or, equivalently,
71 f! = lime_0 7ﬂﬁ+62)_ @ _ Shr Gk = &8 Yo g,
_'2JF, = limg—)o £(f+z—:é’ Zk 1 _’k gzg == 52 _}_1 Zk 1 _'k (?;;01

> T f@+een)—f(@) ~1 &, Quk
€m —hmg_mi > h—o kaxm =Em€ Yot €k 3z, -

Now, let us consider i = > pey hiég. It follows from (2.3) that
e f = hy Y0 e gk,

ho@s ! = hy Y200, &, 9t T

Do ! = hn S22, @ g;;.
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This implies that

L . Sue o ouy
hf' = hy SO0 @t + ho SO0 GG e B YR ke

— i fEteh) = f(@)

e—0 €

Furthermore, it follows from (2.3) that

00 = Ouy 00 & Ouy
ha 161@8901 +ho 3Rl Chiges + o b D Gt
- ——1 — o0 —» au
= mheg > kax + haéa€;” Ek 1€k T

>—1 —» Ouy,
+hm€mé " Y g€ kG

Hence, for every he B,

hel igkai _ iy @+ 2R) = (@)
! el pa) e—0 £
or
- > 6uk
T= Y e 2.4
f 1 ; k 833'l ( )

The set of (2.4) implies the following Cauchy—Riemann type of conditions for a differentiable
function f:

l ko~ — €2 )
o Om k=1 (2.5)
oo o
5 5 Guk R 5 6uk
PICLINES X
k=1 k=1
or, in the vector form,
3f af
€L k=1,2,...,m. 2.6
8xk 8:1:1 IR (2:6)

3. Differentiable functions providing solutions to partial differential equations

In this section, we extend the basic idea of relating analytic and harmonic functions into more
general situations. For given integers m, r > 1, let

P(€15627"'7§m) = Z C’i1,’i2,...,im(x1ax2a"'7$m) il ;2 'f;zn? (3].)

i1HioteHim=r
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where Cj, . i (T1,%2,..., %) are K-valued continuous functions of m variables x;, ¢ = 1,2,...,m.
Consider the partial differential equation

P(@O,al,...ﬁm) [u(a:l,mg,...,xm)] :O, (3.2)

ak
here Oy == —.
where O := o
Theorem 3.1. Let P be a polynomial as in (3.1). Let a function f: B — A and its derivatives
n
Ff7, . f7 be differentiable, f(Z) = Z éruk(Z). Assume that the functions Ci 4y, i (T1,22, ..., Tm)
k=0

are linearly dependent in K™, and the basis €1,€, ..., €y of the subspace B of the algebra A is such
that
P(é1,89,...,€n) =0. (3.3)

Then the functions ug(Z), k =1,2,... are solutions of (3.2).

Proof. 1t follows from the Cauchy-Riemann condition (2.6) that

Onf i OF
=" n_ k=1,2,... . 3.4
a$;€n €L € 83)1’ s 4y , M ( )

This implies, for 1 + 2 + - -+ + i, < 7, that

ai1+i2+~-~+imf (i1 tinttim) 8i1+i2+-~~+imf

iy g =i
— — =¢ ejrtey? gl — . (3.5)
l 1 €2
8.@? 8xl22 e ax?fr? m 837111+Z2+ +im
Therefore, we obtain
" -
Z Civigyosim (X1, X2, ., Ty) — : — f(x1,22,...,Zm)
0zt 0x? -+ - Oxyy
i1tig+ -+ im =T 1 2 m
JE— arf($17x2)"'7$m) NG o N 5 ;
= ox” > Chinin (@1, @, ) (€1)1(€2) 2 (En) ' = 0.
! i14ittim=r
Hence, every component u (%), k = 1,2,...,n of the function f is a solution of (3.2). ]
) y p ) b ) b

Remark 3.1. We should note that if subspace B contains the unity, then there is an invertible element
among its basis vectors.

4. Examples

4.1. The three-dimensional equation

Let us consider the PDE

0? 0? 0?

This equation implies that the polynomial P(£1, &2, &3) = &2 + 2263 + (22 +1)&€3, and (3.3) has the
view €2 +z%e3 + (22 4+ 1)e3 = 0. In this case, we can use the bicomplex algebra BC = {ag + a1i+ asj +
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ase|ar € R}. This algebra is commutative, and its basis vectors 1,1, j, e satisfy iZ=j=—e?=
and ij = ji = e, ie = ei = —j, je = ej = —i.

It is easy to see that z%i% + j? + (22 + 1)e® = 0. So, we may consider BC' as the algebra A and
B = {a1i + azj + ase| a; € R} C BC as a subspace of A.

Consider a function f : B — A, namely,

f(:p?y, Z) = UO(x’yv Z) + Ul(x,y, Z) i+ UQ(xayv Z)j =+ Ug(..’E, Y, Z) €

where z,y,z € R and uy, : R? — R, k—0,1,2 3.

According to Theorem 3.1, if the function f is monogenic, then the functions ug(z, y, z) are solutions
of (4.1).

Thus, to obtain solutions of (4.1), it is enough to find a monogenic function f B —> A Asan
example, consider the function f( ) = e*ituitze where z = 2i + yj + ze. It is easily seen that f is
monogenic and

—

f(z)

6x1+y3+ze

= (cos(x) + isin(x))(cos(y) + jsin(y))(cosh(z) 4 esinh(z))
= cos(x) cos(y) cosh(z) + sin(x) sin(y) sinh(z)
(y) cosh(z) — Cos( ) sin(y) sinh(z))

z) cos(y) cosh(z))

i(sin
J(co )
y) cosh(z)).

()
s(x)

e(cos(z) cos(y) sinh(z) + sin(x) sin

cos
sin(y) cosh(z) — sin(x

+
+ cos
+

Therefore, we obtain four solutions of (4.1)

uo(x,y, z) = cos(x) cos(y) cosh(z) + sin(z) sin(y) sinh(z);
ui(z,y,z) = sin(z) cos(y) cosh(z) — cos(x) sin(y) sinh(z);
uz(z,y ) cosh(z);

) cosh(z).

4.2. The four-dimensional equation

Now, let us consider the PDE
0? 0? 0? 0?
2 _
( 922 —i—vay — (P +v+ )a 5 av2>u(x,y,z,v) =0. (4.2)

This equation implies that the polynomial P(£1, &2, &3,&4) = y262 +v€3 — (y> +v+1)E3 +£2, and (3.3)
has the form y?e? + ve2 — (y> + v + 1)6% + €2 = 0. Suppose that A is a commutative algebra of the
form A = {ag + ea; + fay + gasla, € R}, where e? = f* = g2 = 1 and efg = 1.

We will find a monogenic function such as

fr A=A,

namely,
flz,y,z,v) = uo(z,y, 2,v) + ui(x,y, z,v) e + uz(z,y, z,v) f
+us(r,y,2,v) 8
where z,y,z,v € Rand u, : R* 2 R, k=0,1,2,3.
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Let us define
f@,y,2,0) = (z+ye+z2f+vg)’

It is easily verified that this function is monogenic. Hence, by calculating u;(z,y, z,v), i = 0,1,2,3,
we obtain four solutions of (4.2). After a simple computation, we obtain a solution of (4.2) in the
following form:

wo(x,y, z,v) = 2° + 3xy* + 3x2° + 3zv® + 6yzv.

—

We may obtain solutions of (4.2), by using such monogenic functions as f(z) = e*tvetzfrve
f(2) = cos(z + ye + 2f + vg), and so on.
4.3. The linearized Korteweg—de-Vries equation

A linearized version of the KdV equation is

o, P _

5t a3 =0 (4.3)

Then, in order to show the potentialities of our method, we consider the slightly different equation

Pw  Pw

920t + 923 0. (4.4)

The corresponding polynomial can be defined as

P(fla€27€3) = f§§1 + fg

Let Ag be a three-dimensional commutative algebra over R. We assume that the set eg, e1, e, is
a basis of Ay with the Cayley table:

€;€; = €igyj,
where @j =i+ j (mod 3).
The algebra Ay has the following matrix representation:
ey — Py = Pl
where
010
P=|0 01
100
We define
‘Tél) =e,1=0,1,2, Tl(m) =e,i=1ie,, m=0,1,2,

where i is the imaginary unit.

Let us consider the commutative algebra with the basis ’T(l), Tl(m), [=0,1,2, m=0,1,2, as A and

the element TO(O) = ¢( is a unit of A. We state B = {ti + le(l) + zeo} , since it is easily seen that

P(&1,6,86) =84+ 8.
P (i, 7-1(1), eo) = 0.
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Consider a function 7 : B — A such that

7225@' Zult:vzel—l—Zuergtxzeml

where u; : R?> - R, [ =0,1,---,5, are functions continuously differentiable three times.
We will find ? as an exponentlal function of the following form:

(1

- )
? (t,z,x) = "T¥T1 T2 — (cost 4 isint)
o k 26k k 2 0k+1 k 26k+2 o0 (_1)kz6k+3
X -y
kzo “Z 6k:+1 22 6k+2 lkzo (6k + 3)!
1)k 6k—+4 & (_1)kzx6k+5 .
* elz (6k + 4)! +e2‘k_0 6k+5)! )°©

We note that

X (—1)Fat+3 1443 _vs. . sxy 2V3-3 _us, x
Z = e 2 *¥sin (—) + ——e 2 COS( )
— 6k+3 48 2

Omitting the factor e®, we obtain three particular solutions of the linearized Korteweg—de-Vries
equation. One of them is given by

VE] V] 1 v 1
wy (t,x) = cost (Kl e~ %cos (g) — Kye % %sin (£> + §€T3xCOS (g) + —cos (:n))

2 3
+sint | Kje™ — e sm( ) + Kse — P2 cos <§> + 1eé%’sm (E) — 1sim ()
! 2 2 2) "3 2) 3 ’
where K = 71418‘/5 and Ky = 72\/4‘1_3.
In the same manner, by computing the pairs
o0 k 26k+1 00 k Bk+4
2) 6k: + 1) Z 6l<: +4)!
and
i k 26k+2 00 (_1)kx6kz+5
1’ |’
— 6l<: +2) — (6k + 5)!

we obtain two more solutions of (4.4), respectively, ws (t,z) and ws (¢, x) .
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4.4. Fourth-order equation

Let us consider the equation
Pw 0w
— +a"— =0. 4.5
ot? Ox* (45)
This equation arises in the problems of transverse vibrations of a uniform elastic rod [7].
To use our method, we consider the closely related equation

otw 5 0%w
—o. 4,
51202 T4 gt =0 (4.6)

The corresponding polynomial is as follows:

P (&1,6, &) = £165 + a®43.

In this case, we may consider the bicomplex algebra as A and B = {ag + ajia + aze} with the
basis 1,1y/a, e, which satisfies the equation P ({1, £&2,&3) = 0.

Consider a function 7 :B — A:

? (x1, 2, 23) = uo (z1, T2, x3) + w1 (1, 2, 3) 1+ w2 (1,2, 23) j

+us (1,22, 23) €,

where u; : R?> - R, 1 =0,1,---,5 are functions continuously differentiable four times.
The components of the exponential function

? (xl’ T, 1?3) — 6z—i—iat+ea:

are solutions of (4.6). It is easily seen that solutions of (4.5) are components of the function el®+e®,
namely
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