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Abstract
We consider the concept of the Hausdorff analyticity for functions ranged in real
algebras and the corresponding notion of the Hausdorff derivative. Both apply to the
real algebraH ofHamilton’s quaternions. Themain aimof thework is to compare them
with the well-known classes of H-valued functions which have their own definitions
of the derivative.

Keywords Hausdorff derivative · Quaternions · Quaternionic hyperholomorphic
functions · Quaternionic slice regular functions

Mathematics Subject Classification 30G35 · 57R35

1 Hausdorff Analyticity and Hausdorff Derivative

1.1 Introduction

Hausdorff [10] proposed the definition of an analytic function taking values in a
complex associative (commutative or non-commutative) algebraAwith unit. It can be
formulated as follows. Let e1, . . . , en be a basis of A, let η1, . . . , ηn be the respective
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complex variables and let η := ∑n
k=1 ηkek be the hypercomplex variable, consider

an A-valued function

f (η) =
n∑

k=1

fk(η1, . . . , ηn)ek, (1.1)

where the components fk are holomorphic functions of η1, . . . , ηn in the sense of
several complex variables theory. In other words, f is a holomorphic mapping from
C
n to C

n seen as a hypercomplex function. Its complex differential is defined in the
usual way as

d fη(dη1, . . . , dηn) :=
n∑

k=1

d fk(dη1, . . . , dηn)ek

=
n∑

j,k=1

∂ fk
∂η j

(η1, . . . , ηn) dη j ek . (1.2)

It is assumed tacitly that we deal with a domain in C
n with the coordinates

η1, . . . , ηn , and that d fk is an n-linear mapping on the complex tangential space to
the points of this domain. The function f is called Hausdorff-analytic or H -analytic
function of the hypercomplex variable η if d fη is aC-linear homogeneous polynomial
of the differential dη := ∑n

k=1 dηk ek , i.e.,

d fη =
n2∑

s=1

As(η) dη Bs(η), (1.3)

where As and Bs are some A-valued functions of the variable η.

For an H -analytic function f the element f ′
H (η) := ∑n2

s=1 As(η) Bs(η) is called
the Hausdorff derivative of the function f at a point η.

It is worth noting that although the origin of the formula (1.3) is clear: the corre-
sponding antecedents for functions of a real or a complex variable, but at the same
time (1.3) is not related explicitly with the Hausdorff derivative and it is not so obvious
if both inherit the structures of their antecedents.

There exists a kind of a “real version” of Hausdorff’s approach, see [17–19], where
A is a real algebra, η1, . . . , ηn are real variables, the components { fk} in (1.1) are
R-valued functions of η and we assume all fk to be R-differentiable at a given point
of Rn (the real analyticity is assumed in [19]). In all that follows in this work we deal
with such a real approach employing the same terms as above; for instance, d fη means
the real differential, etc.

1.2 Relations with some other notions of analyticity

In the case of a commutative algebra A, the class of H -analytic functions coincides
with well-known subclasses of differentiable functions. Namely, it is shown in [5] that
the class of H -analytic functions coincides with the class of Scheffers differentiable
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functions [20] (d f = f ′(η)dη). It follows from the results of paper [21] that the class
of H -analytic functions coincides with the classes of functions differentiable in the
sense of Gateaux and in the sense of Lorch [11].

Moreover, for a commutative variable η := ∑n
k=1 ηkek , where e1 = 1 and ηk ∈ R,

all mentioned derivatives are equal and

f ′
H (η) = ∂ f

∂η1
(η). (1.4)

In particular, it is clear that in the algebra of complex numbers C the H -analytic
functions coincide with usual holomorphic functions, and for z := x + iy we have:
f ′
H (z) = f ′(z) = ∂ f

∂x (z).

1.3 Quaternionic functions and H-analyticity

We now realize the Hausdorff approach for functions with values in the skew-field
of (real) quaternions H. We use the notations e1 = 1 and e2, e3, e4 for the canonical
imaginary units, thus {e1 = 1, e2 = i, e3 = j, e4 = k} is a basis of H = R

4.
Let � be a domain in H. Consider a function f : � → H of the variable x =

x1e1 + x2e2 + x3e3 + x4e4 given as

f (x) =
4∑

k=1

fk(x) ek . (1.5)

Definition 1.1 The function f : � → H of the form (1.5) is H -analytic in the domain
�, if f is analytic byHausdorff at every point x ∈ �, i.e., if the real-valued components
fk are real differentiable functions of four real variables x1, x2, x3, x4, and the differ-
ential d fx = ∑4

k=1 d fk(x1, x2, x3, x4)ek is an R-linear homogeneous polynomial of
the differential dx := dx1e1 + dx2e2 + dx3e3 + dx4e4, i.e.,

d fx =
16∑

s=1

As(x) dx Bs(x), (1.6)

where As and Bs are some H-valued functions of the variable x .

In this case, for any x ∈ � the quaternion

f ′
H (x) :=

16∑

s=1

As(x) Bs(x) (1.7)

is the Hausdorff derivative (H -derivative) of the function f at the point x .
Denote by MH (�) the set of all quaternion-valued H -analytic functions in the

domain �.

Author's personal copy



M. E. Luna-Elizarrarás et al.

1.4 Examples of quaternionic H-analytic functions

Let us consider some examples of quaternionic H -analytic functions and compute
their H−derivatives.

Example Let fn(x) = xn for n ∈ N.
If n = 1 then f1(x) = x and d f1 = dx = 1 · dx · 1 thus f1 is H -analytic and its

derivative is

f ′
1,H (x) = 1 for all x .

If n = 2 then f2(x) = x2 and d f2(x) = d(x2) = x · dx + dx · x . Therefore, f2 is
H -analytic and

f ′
2,H (x) = (x2)′H = x · 1 + 1 · x = 2x .

In the same way for the function f3(x) = x3 we have:

d(x3) = d(x2) · x + x2 · dx = x · dx · x + dx · x2 + x2 · dx .

Therefore f3 is also H -analytic and its derivative is

f ′
3,H (x) = (x3)′H = x · x + 1 · x2 + x2 · 1 = 3x2.

By induction fn is H -analytic for all n ∈ Nwith the derivative f ′
n,H (x) = (xn)′H =

nxn−1. Clearly xn ·a and a ·xn are also H -analytic for all a ∈ H and their H -derivatives
aren·xn−1·a anda·n·xn−1. It is obvious that the polynomials

∑m
n=0 x

n an ,
∑m

n=0 an x
n

are H -analytic and

(
m∑

n=0

xn an

)′

H

=
m∑

n=1

nxn−1 an,

(
m∑

n=0

an x
n

)′

H

=
m∑

n=1

nan x
n−1.

Example Since the quaternionic multiplication is non-commutative, more sophisti-
cated polynomials should be considered. First, let f (x) = x a x b x , where a, b ∈ H,
then

d(x a x b x) = dx · a x b x + x a · dx · b x + x a x b · dx .

Therefore, the function f is H -analytic and

f ′
H (x) = a x b x + x a b x + x a x b.

In the same way, it can be shown that any general quaternionic polynomial:

pn(x) =
n∑

k=0

Mk(x)
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is H -analytic where the monomial Mk is defined by Mk := ∑m
�=1 ak,�,1 x ak,�,2 x ·

. . . · x ak,�,k+1, m is some natural number, and ak,�,p ∈ H.

1.5 The H-derivative of quaternionic functions

The peculiarities of the skew-field H allow one to describe all the quaternionic H -
analytic functions and their H -derivatives.

Theorem 1.2 Any quaternionic function with real differentiable components is H-
analytic.

Proof It is known that

x1 = 1

4
(e1x e1 − e2x e2 − e3x e3 − e4x e4) ,

x2 = 1

4
(−e1x e2 − e2x e1 + e3x e4 − e4x e3) ,

x3 = 1

4
(−e1x e3 − e3x e1 − e2x e4 + e4x e2) ,

x4 = 1

4
(−e1x e4 − e4x e1 + e2x e3 − e3x e2) ,

which implies the same kind of formulas for the differentials:

dx1 = 1

4
(e1dx e1 − e2dx e2 − e3dx e3 − e4dx e4) , (1.8)

dx2 = 1

4
(−e1dx e2 − e2dx e1 + e3dx e4 − e4dx e3) , (1.9)

dx3 = 1

4
(−e1dx e3 − e3dx e1 − e2dx e4 + e4dx e2) , (1.10)

dx4 = 1

4
(−e1dx e4 − e4dx e1 + e2dx e3 − e3dx e2) . (1.11)

Take now the differential d f and use (1.8)–(1.11):

d f =
4∑

k=1

∂ f

∂xk
dxk

= ∂ f

∂x1
· 1
4

(e1dx e1 − e2dx e2 − e3dx e3 − e4dx e4)

+ ∂ f

∂x2
· 1
4

(−e1dx e2 − e2dx e1 + e3dx e4 − e4dx e3)

+ ∂ f

∂x3
· 1
4

(−e1dx e3 − e3dx e1 − e2dx e4 + e4dx e2)

+ ∂ f

∂x4
· 1
4

(−e1dx e4 − e4dx e1 + e2dx e3 − e3dx e2) .
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We abbreviate ∂k f := ∂ f
∂xk

(x), then

d f = 1

4
· ((∂1 f e1dxe1 − ∂2 f e2dxe1 − ∂3 f e3dxe1 − ∂4 f e4dxe1)

+ (−∂1 f e2dxe2 − ∂2 f e1dxe2 + ∂3 f e4dxe2 − ∂4 f e3dxe2)

+ (−∂1 f e3dxe3 − ∂2 f e4dxe3 − ∂3 f e1dxe3 + ∂4 f e2dxe3)

+ (−∂1 f e4dxe4 + ∂2 f e3dxe4 − ∂3 f e2dxe4 − ∂4 f e1dxe4))

= 1

4
· ((∂1 f e1 − ∂2 f e2 − ∂3 f e3 − ∂4 f e4) dxe1

+ (−∂1 f e2 − ∂2 f e1 + ∂3 f e4 − ∂4 f e3) dxe2
+ (−∂1 f e3 − ∂2 f e4 − ∂3 f e1 + ∂4 f e2) dxe3
+ (−∂1 f e4 + ∂2 f e3 − ∂3 f e2 − ∂4 f e1) dxe4)

= 1

4
·
(
DF,r [ f ]e1dxe1 − D̂F,r [ f ]e2dxe2

− D̃F,r [ f ]e3dxe3 − ˜̃DF,r [ f ]e4dxe4
)

with

DF,r [ f ] := ∂1 f e1 − ∂2 f e2 − ∂3 f e3 − ∂4 f e4;
D̂F,r [ f ] := ∂1 f − ∂2 f e2 + ∂3 f e3 + ∂4 f e4;
D̃F,r [ f ] := ∂1 f + ∂2 f e2 − ∂3 f e3 + ∂4 f e4;
˜̃DF,r [ f ] := ∂1 f + ∂2 f e2 + ∂3 f e3 − ∂4 f e4.

The theorem is proved. ��
It is worth mentioning that the operator DF,r is the quaternionic conjugate of the

famous (right-hand side) Fueter operator acting on the C1-functions by the formula
DF,r [ f ] := ∂1 f + ∂2 f e2 + ∂3 f e3 + ∂4 f e4; both play a crucial role in quaternionic
analysis, see Sect. 3 in this work. Meanwhile the rest three operators are “partial
quaternionic conjugations” of DF,r playing the role of the hyperderivatives for the
respective classes of hyperholomorphic functions.

Using definition (1.7), we obtain:

f ′
H (x) = 1

4

(
DF,r [ f ] + D̂F,r [ f ] + D̃F,r [ f ] + ˜̃DF,r [ f ]

)
= ∂ f

∂x1
. (1.12)

From Theorem 1.2 the next example follows immediately.

Example Given a quaternionic convergent series

∞∑

n=0

xn an, (1.13)
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then in the domain of its convergence it is an H -analytic function, the same for∑∞
n=0 an x

n . Furthermore, any general convergent quaternionic series of the form

q(x) =
∞∑

k=0

Mk(x), (1.14)

is an H -analytic function in the domain of its convergence.

Now we show that the series (1.13) can be differentiated term-wise in the sense of
Hausdorff.

Theorem 1.3 If a series (1.13) converges in the ball B := {x ∈ H : |x | < R}, then its
sum is an H-analytic function in B and this series can be differentiated term-wise in
the sense of Hausdorff derivative:

( ∞∑

n=0

xn an

)′

H

=
∞∑

n=1

nxn−1 an .

Proof By Theorem 1.2 the series (1.13) is an H -analytic function. It means that the
function (1.13) has a Hausdorff derivative.

The series (1.13) can be represented as

∞∑

n=0

xn an = f1e1 + f2e2 + f3e3 + f4e4, (1.15)

where fk(x1, x2, x3, x4) = ∑∞
m,n,p,q=0 α

(k)
m,n,p,q xm1 xn2 x

p
3 xq4 , k = 1, 2, 3, 4, are

real-analytic functions on the ball B. As a consequence, the series for fk can be
differentiated term-wise by x1 on the interval (−R, R), with x2, x3, x4 restricted in
such a way that x ∈ B. In turn, it means that the left-hand side of the equality (1.15)
can be differentiated term-wise by x1. By formula (1.12) we have

( ∞∑

n=0

xn an

)′

H

= ∂

∂x1

∞∑

n=0

xn an =
∞∑

n=0

∂

∂x1

(
xn an

) =
∞∑

n=1

nxn−1 an .

The theorem is proved. ��

As a consequence, if we introduce the elementary functions cos x , sin x , exp x as
the sums of the respective power series then these functions become H -analytic with

(cos x)′H = − sin x, (sin x)′H = cos x, (exp x)′H = exp x .
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2 A Relation Between H-Analyticity and the “Naive” Quaternionic
Differentiability

By “naive” approach we mean direct analogs of the corresponding definitions for real
and complex functions which are based on the study of the differential quotient of
a given function. The non-commutativity of quaternionic multiplication leads to the
two of them:

h �→ h−1� fx (h), (2.1)

h �→ � fx (h)h−1, (2.2)

where for a given quaternionic function f : � → H one sets

� fx (h) := f (x + h) − f (x).

By the properties of quaternionic conjugation one has also:

h−1� fx (h) = � f x (h)h
−1

. (2.3)

Thus, each of the cases reduces to its counterpart, and we’ll treat mostly one of them.

Definition 2.1 (Quaternionic derivability) Assume that (2.1) has a limit if h → 0,
then we say that f is left-derivable at x and the limit itself is called the left-hand side
derivative of f at x and is denoted as

′ f (x) := lim
h→0

x+h∈�

h−1� fx (h). (2.4)

Similarly for the right-hand side derivative.

Definition 2.2 (Quaternionic differentiability) Let h → 0; if there exists a constant
Bx ∈ H such that

� fx (h) = hBx + o(h), (2.5)

then f is called left-differentiable at x . Similarly for the right-differentiability.

Both definitions hold simultaneously only. Formula (2.3) allows us to relate the
left-hand side and the right-hand side situations. The next observation is worth noting.

The function f : x �→ ax+b(a, b ∈ H) is right-differentiable in thewholeH, while
the function g : x �→ xa + b is left-differentiable which seems to be quite natural.
Recall that as we know these functions are H -analytic also. A quadratic polynomial
is also H -analytic, what about its “naive” differentiability?

Consider α : x �→ x2, then

�αx (h) = xh + hx + h2,
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and for x /∈ R the principal part, xh + hx , is in general neither quaternionic left-, nor
quaternionic right-linear, which means that α is not derivable inH\R! It is instructive
to compare this reasoning with the definition of H -analyticity.

The next theorem describes the general situation.

Theorem 2.3 (See, e.g., [12]) Let f : � → H be quaternionic left-differentiable
throughout the (connected) domain � and let g : � → H be quaternionic right-
differentiable. Then there exist two quaternionic constants, a and b, such that

f (x) = a + xb ∀ x ∈ �,

and there exist two quaternionic constants p and q such that

g(x) = p + qx ∀ x ∈ �.

In [12] one can find more details about the topic.

Corollary 2.4 The set of quaternionic left-differentiable and of quaternionic right-
differentiable functions in � are subsets of the set MH (�). Moreover,

f ′
H (x) = ′ f (x) = b, g′

H (x) = g′(x) = q.

3 A Relation Between H-Analyticity and Fueter-Hyperholomorphy

As “naive” quaternionic differentiability does not produce an interesting theory one
may ask if another approach would lead to a more interesting developments.

It is widely known since 1920s (Gr. K. Moisil, N. Teodorescu, R. Fueter) that a
rich quaternionic function theory arises if one generalizes directly the idea of complex
Cauchy–Riemann operators.

Let � be a domain in R
4, consider C1(�,H) on which the (Fueter) operator

DF := ∑4
�=1 e�

∂
∂x�

is well-defined. Its structure is evidently similar to that of the

complex Cauchy–Riemann operator ∂
∂z . We call the functions in MF (�) := kerDF

hyperholomorphic (other names used are monogenic, regular, hyperanalytic, etc.).
That is, the Fueter hyperholomorphic functions satisfy

DF [ f ](x) :=
4∑

k=1

ek
∂ f

∂xk
= 0. (3.1)

Beginning with the works of Moisil and Teodorescu, then of Fueter, the functions in
MF (�) have been considered to be a good generalization of holomorphic functions in
one complex variable. They possess many properties deeply similar to their complex
one-dimensional antecedents: Cauchy integral theorem; hyperholomorphic Cauchy
kernel generating Cauchy integral representation for hyperholomorphic functions and
hyperholomorphic Cauchy transform; the Taylor and Laurent series, and many oth-
ers. Besides, quaternionic hyperholomorphic functions have found an ample range of
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applications in mathematics, physics, etc. Thus one can hope to have an analogue of
the complex derivative for quaternionic hyperholomorphic functions.

We begin with the equality which plays a crucial role in complex analysis of one
variable:

d fz0 = ∂ f

∂z
(z0) dz + ∂ f

∂z
(z0) dz (3.2)

with

∂ f

∂z
= 1

2

(
∂

∂x
− i

∂

∂ y

)

,
∂ f

∂z
= 1

2

(
∂

∂x
+ i

∂

∂ y

)

.

The equality (3.2) has the two quaternionic analogues, a left-hand side and a right-
hand side ones:

d(σ (2) · f ) = 1

2
(σ (3) · DF [ f ] − σ (3) · DF [ f ]), (3.3)

d(g · σ (2)) = 1

2
(DF,r [g] · σ (3) − DF,r [g] · σ (3)), (3.4)

where f , g ∈ C1(�,H),

σ (2) = idx2 ∧ dx3 + jdx3 ∧ dx1 + kdx1 ∧ dx2,

σ (3) = dx1 ∧ dx2 ∧ dx3 − idx0 ∧ dx2 ∧ dx3
+ jdx0 ∧ dx1 ∧ dx3 − kdx0 ∧ dx1 ∧ dx2,

and DF,r means the action of the operator DF on the right, DF is the quaternionic
conjugate of DF .

The following analogies are clear:

DF ←→ ∂

∂z
; DF ←→ ∂

∂z
;

σ (3) ←→ dz; σ (3) ←→ dz.
(3.5)

A geometric explanation of the meaning of the differential form σ (3) is worth
noting: if 	 is a smooth hypersurface in R

4, τ ∈ 	, n(τ ) = (n0, n1, n2, n3) is the
outward pointing normal vector then σ (3)|	 = n(τ )dS where n(τ ) = ∑4

k=1 ek nk , dS
is the differential form of the hypersurface in R

4. The same happens in the complex
situation: dz = −i d�.

Equation (3.5) hints also at the relation between DF and the future derivative.

Definition 3.1 (Hyperdifferentiability for the Fueter hyperholomorphy) A function
f ∈ C1(�,H) is called hyperdifferentiable if there exists Ax ∈ H such that

d(σ (2) f ) = σ (3) · Ax .
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Thus the idea of a “proportionality coefficient” between the two differential forms
is realized although, of course, in a much more sophisticated mode: now we deal with
differential forms of degree 3. The latter is because of the hyperdimension in R

4,
which gives also a hint on how to define the appropriate “increments of the function
and of its argument”. Given x0 ∈ �, let

� :=
{

x0 +
3∑

k=1

hktk ∈ R
4|(t1, t2, t3) ∈ [0, 1]3

}

be a parallelepiped with vertex x0 and let

∂� :=
{

x0 +
3∑

k=1

hktk ∈ R
4|(t1, t2, t3) ∈ ∂([0, 1]3)

}

be its boundary. In the complex case� = [z0, z], a straight segment, and ∂� = {z0, z},
a set consisting of two points.

Definition 3.2 (Hyperderivability for the Fueter operator)

• Given a parallelepiped � with vertex x0, the integral

∫

∂�

σ (2) f (x)

is called the increment of the function f at x0, and the integral

∫

�

σ(3)

is called the increment of the argument.
• Given a sequence {�n}n∈N of parallelepipeds with vertex x0 and such that
diam�n −→

n→∞0, if there exists

lim
n→∞

((∫

�n

σ (3)
)−1

·
∫

∂�n

σ (2) f (x)

)

then f is called hyperderivable at x0 and the limit itself, denoted by ′ f (x0), is
called the hyperderivative of f at x0.

The relations between the three notions are described as follows.

Theorem 3.3 f ∈ MF (�) if and only if f is hyperdifferentiable. And for such func-
tions

Ax = 1

2
DF [ f ](x).
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Theorem 3.4 If f ∈ M(x0) then f is hyperderivable at x0 and

Ax0 = ′ f (x0) = 1

2
DF (x0).

For a function f ∈ MF (�) the hyperderivative ′ f can be calculated by the formula

′ f (x) = 1

2
DF [ f ](x) = 1

2

(

e1
∂ f

∂x1
−

4∑

k=2

ek
∂ f

∂xk

)

. (3.6)

Since by definition MF (�) ⊂ C1(�), and H−analytic functions have R-
differentiable real-valued components, then itmakes sense to compare the setsMH (�)

and MF (�) under the same smoothness conditions.

Theorem 3.5 On the class C1(�) we have the strict inclusion MF (�) ⊂ MH (�).
Moreover,

′ f (x) = f ′
H (x) = ∂ f

∂x1
. (3.7)

Proof Firstly, byTheorem1.2,C1(�) ⊂ MH (�). But, except the conditionMF (�) ⊂
C1(�), Fueter-hyperholomorphic functions contain an additional condition (3.1).
Therefore, MF (�) ⊂ MH (�).

Now we prove the equality (3.7). Since the condition f ∈ MF (�) is equivalent to∑4
k=1 ek

∂ f
∂xk

= 0, then

− 1

2

4∑

k=1

ek
∂ f

∂xk
= 0. (3.8)

To both sides of the equality (3.8) we add the expression ∂ f
∂x1

:

1

2

(

e1
∂ f

∂x1
−

4∑

k=2

ek
∂ f

∂xk

)

= ∂ f

∂x1
. (3.9)

The left-hand side of (3.9) is equal to ′ f (x), and we have ′ f (x) = ∂ f
∂x1

. Taking into
account Eq. (1.12), we obtain the equality (3.7). ��
Remark 3.6 Wewill have an analogous result if we consider the right-hand side Fueter
operator, i.e.,

4∑

k=1

∂ f

∂xk
ek = 0.

More details, together with proofs and references can be found in [12,16,22].
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4 A Relation Between H-Analyticity andMT-Hyperholomorphy

We have seen that, somewhat paradoxically, the class of quaternionic functions
with real-differentiable components coincides with the class of quaternionic H -
analytic in � ⊂ R

4 functions. Thus, the class of quaternionic functions with
real-differentiable components possesses intrinsically a number of properties, pos-
sesses an additional structure; in particular, such functions have the H -derivative.
This remains true for Fueter-hyperholomorphic functions which is a proper subset of
quaternionic H -analytic functions, but the former has its own intrinsic structure which
is not, generally speaking, a restriction of that of the H -analyticity: there are many
quaternionic C1 functions which are not Fueter-hyperholomorphic. Besides, a Fueter-
hyperholomorphic function has the derivative whose definition is deeply different with
that of the H -analyticity although their values coincide.

In this section we consider another well-known class of H-valued functions which
can be seen as a subclass of Fueter-hyperholomorphic functions.

Definition 4.1 A function f : � ⊂ R
3 → H of class C1(�) is called Moisil–

Teodorescu–hyperholomorphic (MT -hyperholomorphic) if at each point of � the
function f satisfies the equality

DMT [ f ](x) :=
4∑

k=2

ek
∂ f

∂xk
(x) = 0.

Denote byMMT (�) the set of all MT−hyperholomorphic functions in the domain
�.

We can think of DMT as the operator DF but acting on functions which do not
depend on the variable x1; then for f ∈ MMT (�) there holds: f ∈ MF (R × �)

since DF [ f ] = ∂ f
∂x1

+ DMT [ f ] = 0 + 0 = 0. Hence f has the Fueter-derivative

DF [ f ] = ∂ f
∂x1

= 0. Moreover, it is clear that we have the inclusionMMT ⊂ MH and

f ′
MT (x) = f ′

H (x) = 0.

It turns out that the MT -hyperholomorphic functions can be endowed with another
derivative which possesses the same properties as the Fueter one; what is more, there
exist three ways of doing this.

Consider

Di
MT [ f ](x) := e2 DMT [ f ](x) = ∂ f

∂x2
− e4

∂ f

∂x3
+ e3

∂ f

∂x4
= 0. (4.1)

Clearly, the set of solutions of Eq. (4.1) coincides with the setMMT but the structure
of the operator Di

MT is as that of DF and not as that of DMT which allows to repeat
the constructions of the previous Sect. 3 obtaining the definition and the properties of
the new derivative f ′

MT ,i for any MT -hyperholomorphic function f . In particular, we
have the following formula for the i−hyperderivative (see [12, p. 537]):
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f ′
MT ,i = 1

2
Di

MT [ f ](x) = 1

2

(
∂ f

∂x2
+ e4

∂ f

∂x3
− e3

∂ f

∂x4

)

. (4.2)

Consider the variable x := x2e2 + x3e3 + x4e4 = e2(x2 − x3e4 + x4e3). Denote
by x̃ the variable x2 − x3e4 + x4e3.

Nowwewill consider functions of kerDi
MT of the variable x̃ . Let a function f : �̃ =

−e2� −→ H belongs to kerDi
MT (�̃) = MMT (�̃). Note that the i−hyperderivative

of f (̃x) ∈ MMT (�̃) is defined by equality (4.2).
The following relations are easy to verify:

x2 = 1

2
(e1 x̃e1 − e2 x̃e2),

x3 = 1

2
(e4 x̃e1 − e2 x̃e3),

x4 = −1

2
(e3 x̃e1 + e2 x̃e4).

(4.3)

Using the relations (4.3), similarly to the proof of Theorem 1.2 the formula for the
H -derivative can be proved:

f ′
H (̃x) = ∂ f

∂x2
. (4.4)

Theorem 4.2 On the class C1(�̃) we have the inclusionMMT (�̃) ⊂ MH (�̃). More-
over,

f ′
MT ,i (̃x) = f ′

H (̃x) = ∂ f

∂x2
. (4.5)

Proof The inclusion MMT (�̃) ⊂ MH (�̃) is obvious.
Now we prove the equality (4.5). Since

f ∈ MMT (�̃) ⇐⇒ ∂ f

∂x2
− e4

∂ f

∂x3
+ e3

∂ f

∂x4
= 0,

then

− 1

2

(
∂ f

∂x2
− e4

∂ f

∂x3
+ e3

∂ f

∂x4

)

= 0. (4.6)

To both sides of equality (4.6) we add the expression ∂ f
∂x2

:

1

2

(
∂ f

∂x2
+ e4

∂ f

∂x3
− e3

∂ f

∂x4

)

= ∂ f

∂x2
. (4.7)

The left-hand side of (4.7) is equal to f ′
MT ,i (̃x), and we have f ′

MT ,i (̃x) = ∂ f
∂x2

. Taking
into account the equality (4.4), we obtain the equality (4.5). ��

There are two obvious analogues of the formula (4.1):

D j
MT [ f ](x) := e3DMT [ f ](x) = e4

∂ f

∂x2
+ ∂ f

∂x3
− e2

∂ f

∂x4
= 0,

Author's personal copy



On the Hausdorff Analyticity for Quaternion-Valued…

Dk
MT [ f ](x) := e4DMT [ f ](x) = −e3

∂ f

∂x2
+ e2

∂ f

∂x3
+ ∂ f

∂x4
= 0.

They lead to the definitions of the two more derivatives for MT -hyperholomorphic
functions together with analogues of all the conclusions above.

One can find more details about MT -hyperholomorphy in [12,14].

5 A Relation Between H-Analyticity and Clifford Analysis for
Quaternion-Valued Functions

Let C�0,m denote the real Clifford algebra with imaginary units e1, e2, . . . , em and the
real unit e0 = 1. Of course, the parameter m runs over all natural numbers and when
m = 2 one gets C�0,2 = H. In Clifford analysis we have an analogue of the Fueter
operator which is usually called the Cauchy–Riemann operator and it together with
its Clifford conjugate are given by

DCR :=
m∑

�=0

e�

∂

∂x�

, DCR :=
m∑

�=0

e�

∂

∂x�

.

The function theory for kerDCR is Clifford analysis, and since C�0,2 = H then one
can expect that for m = 2 the Cauchy–Riemann operator coincides with the Fueter
operator which is not the case:DCR := ∑2

�=0 e�
∂

∂x�
, that is, we deal with an operator

acting on functions of three real variables. The fine point here is that DCR involves
only the imaginary units e1 = i , e2 = j but not their product k = i j as the Fueter
operator does. For this reason the function theory for DCR and m = 2 is called the
Clifford analysis forH-valued functions. It turns out that the above presented scheme
of constructing the hyper-derivative for the Fueter-hyperholomorphic functions can
be followed here as well if one selects properly the analogues of the differential forms
σ (3) and σ (2). In this case they are:

σx := dx̂0 − e1dx̂1 + e2dx̂2,

τx := −e1dx̂0,1 + e2dx̂0,2 − e2dx̂0,2,

where dx̂k and dx̂0,k are obtained from dV := dx0 ∧ dx1 ∧ dx2 by omitting the
respective factors. An important property of σx is that for its restriction onto a smooth,
2-dimensional surface in R

3 there holds: σx = nxdSx , where �nx = (n0, n1, n2)
is an outward pointing normal vector to the surface, nx := ∑2

k=0 nkek ; dSx is the
differential form of the 2-dimensional surface area in R3.

Now, for f ∈ C1(�, C�0,2 = H) there holds:

d(τx f (x)) = 1

2
σxDCR[ f ](x) − 1

2
σ xDCR[ f ](x), (5.1)

which is again a crucial fact since it allows to introduce the notions of hyper-
differentiability and hyperderivability in the context of Clifford analysis for the
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Cauchy–Riemann operator. One can find a description of the details and fine points in
[2,13,15], see also [9].

There is an analogue of theMoisil–Theodorescu operator inClifford analysis setting
as well which is called the Dirac operator. Let now � be a domain in R

m . On the set
C1(�;C�0,m) the Dirac operator is defined by

DDir :=
m∑

�=1

e�

∂

∂x�

.

Note that for the formal Clifford conjugate of DDir one has that DDir = −DDir .
Thus, inflating � up to a domain �̃ ⊂ R

m+1 we can write

DCR =
m∑

�=0

e�

∂

∂x�

= ∂

∂x0
+ DDir ,

and hence we can identify a function f ∈ kerDDir with the function f̃ ∈ kerDCR

by

f̃ (x0, x1, x2, . . . , xm) := f (x1, x2, . . . , xm) for any x0.

Hence any function in kerDDir has the hyperderivative in the sense of the Cauchy–
Riemann operator but it is identically zero in �:

′ f̃ (x0, x0) = 1

2
DCR[ f̃ ](x0, x0) = −DDir [ f ](x1, x2, . . . , xm) = 0.

What happens for m = 2, i.e., for C�0,2 = H? We have:

DDir =
2∑

�=1

e�

∂

∂x�

= i
∂

∂x1
+ j

∂

∂x2

= i

(
∂

∂x1
− k

∂

∂x2

)

= j

(
∂

∂x2
+ k

∂

∂x1

)

which means that the function theory for the quaternionic Dirac operator reduces to
holomorphic, or anti-holomorphic, functions of one complex variable.

Similarly to the proof of Theorem 3.5 the next result can be proved.

Theorem 5.1 On the class C1(�) we have the inclusion kerDCR(�) ⊂ MH (�).
Moreover,

′ fCR(x) = f ′
H (x) = ∂ f

∂x0
.

Author's personal copy



On the Hausdorff Analyticity for Quaternion-Valued…

6 A Relation Between H-Analyticity and Slice-Regularity

The theory of the so-called slice-regular functions has been introduced by Gentili and
Struppa [6] on the basis of development of Cullen’s idea [4]. The last decade the theory
of slice-regular functions has been very actively developing (see, e.g., [1,3,8]).Wewill
consider quaternionic slice-regular functions in the ball B := {x ∈ H : |x | < R}.

Since the algebra of quaternions is not commutative, it is natural that there exist
left and right slice-regular functions. The class of all left slice-regular functions f :
B → H in the domain B coincides with the convergent in B power series

∑∞
n=0 x

n an ,
an ∈ H (see e.g., Theorem 2.7 in [7], or [8, p. 15], or Theorem 6.1.5 in [1]). Moreover,
the left slice-derivative ′ fs(x) of a power series

∑∞
n=0 x

n an equals
∑∞

n=1 nx
n−1 an .

Analogously, the class of all right slice-regular functions f : B → H in the domain
B coincides with convergent power series of the form

∑∞
n=0 an x

n , an ∈ H, and the
right slice-derivative f ′

s (x) of a power series
∑∞

n=0 an x
n equals

∑∞
n=1 nan x

n−1. We
consider only the case of left slice-regular functions.

Theorem 6.1 The set of (left or right) slice-regular functions f : B → H in B is a
subset of the set MH (B). Moreover,

′ fs(x) = f ′
H (x) = ∂ f

∂x1

for left slice-regular functions and

f ′
s (x) = f ′

H (x) = ∂ f

∂x1

for right slice-regular functions.

Proof Consider the case of left slice-regular functions. In Example 1.5 we show that
every left slice-regular function f (x) = ∑∞

n=0 x
n an is H -analytic in the ball of con-

vergence of this series. Moreover, by Theorem 1.3 the H -derivative f ′
H (x) coincides

with the left slice-derivative ′ fs(x). The case of right slice-regular functions can be
dealt with analogously. The Theorem is proved. ��

At the same time, there exist H -analytic functions that are neither left slice-regular,
nor right slice-regular (see Example 1.4).
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