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1 Monogenic Functions in a Biharmonic Algebra 17

Definition 1.1 An associative commutative two-dimensional algebra B with the 18

unit 1 over the field of complex numbers C is called biharmonic (see [1, 2]) if in B 19

there exists a basis {e1, e2} satisfying the conditions 20

(e2
1 + e2
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2 = 0, e2

1 + e2
2 �= 0 . 21

Such a basis {e1, e2} is also called biharmonic. 22
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In the paper [2] I.P. Mel’nichenko proved that there exists the unique biharmonic 23

algebra B, and he constructed all biharmonic bases in B. Note that the algebra B is 24

isomorphic to four-dimensional over the field of real numbersR algebras considered 25

by A. Douglis [3] and L. Sobrero [4]. 26

In what follows, we consider a biharmonic basis {e1, e2} with the following 27

multiplication table (see [1]): 28

e1 = 1, e2
2 = e1 + 2ie2 , (1.1)

where i is the imaginary complex unit. We consider also a basis {1, ρ} (see [2]), 29

where a nilpotent element 30

ρ = 2e1 + 2ie2 (1.2)

satisfies the equality ρ2 = 0 . 31

We use the Euclidean norm ‖a‖ := √|z1|2 + |z2|2 in the algebra B, where a = 32

z1e1 + z2e2 and z1, z2 ∈ C. 33

Consider a biharmonic plane μe1,e2 := {ζ = x e1 + y e2 : x, y ∈ R} which is a 34

linear span of the elements e1, e2 of the biharmonic basis (1.1) over the field R. 35

With a domain D of the Cartesian plane xOy we associate the congruent domain 36

Dζ := {ζ = xe1 + ye2 ∈ μe1,e2 : (x, y) ∈ D} in the biharmonic plane μe1,e2 and 37

the congruent domain Dz := {z = x + iy : (x, y) ∈ D} in the complex plane C. Its 38

boundaries are denoted by ∂D, ∂Dζ and ∂Dz, respectively. Let Dζ (or Dz, D) be 39

the closure of domain Dζ (or Dz, D, respectively). 40

In what follows, ζ = x e1 + y e2, z = x + iy, where (x, y) ∈ D, and ζ0 = 41

x0 e1 + y0 e2, z0 = x0 + iy0, where (x0, y0) ∈ ∂D. 42

Any function � : Dζ −→ B has an expansion of the type 43

�(ζ ) = U1(x, y) e1 + U2(x, y) ie1 + U3(x, y) e2 + U4(x, y) ie2 , (1.3)

where Ul : D −→ R, l = 1, 2, 3, 4, are real-valued component-functions. We shall 44

use the following notation: Ul [�] := Ul , l = 1, 2, 3, 4. 45

Definition 1.2 A function � : Dζ −→ B is monogenic in a domain Dζ if it has the 46

classical derivative �′(ζ ) at every point ζ ∈ Dζ : 47

�′(ζ ) := lim
h→0, h∈μe1,e2

(
�(ζ + h) − �(ζ )

)
h−1 . 48

It is proved in [1] that a function � : Dζ −→ B is monogenic in Dζ if and only if 49

its each real-valued component-function in (1.3) is real differentiable in D and the 50

following analog of the Cauchy–Riemann condition is fulfilled: 51

∂�(ζ )

∂y
= ∂�(ζ )

∂x
e2. (1.4)
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Rewriting the condition (1.4) in the extended form, we obtain the system of four 52

equations (cf., e.g., [1, 5]) with respect to component-functions Uk , k = 1, 4, in 53

(1.3): 54

∂U1(x, y)

∂y
= ∂U3(x, y)

∂x
, (1.5)

∂U2(x, y)

∂y
= ∂U4(x, y)

∂x
,

∂U3(x, y)

∂y
= ∂U1(x, y)

∂x
− 2

∂U4(x, y)

∂x
,

∂U4(x, y)

∂y
= ∂U2(x, y)

∂x
+ 2

∂U3(x, y)

∂x
.

All component-functions Ul , l = 1, 2, 3, 4, in the expansion (1.3) of any 55

monogenic function � : Dζ −→ B are biharmonic functions (cf., e.g., [5, 6]), i.e., 56

satisfy the biharmonic equation in D: 57

�2U(x, y) ≡ ∂4U(x, y)

∂x4 + 2
∂4U(x, y)

∂x2∂y2 + ∂4U(x, y)

∂y4 = 0. 58

At the same time, every biharmonic in a simply-connected domain D function 59

U(x, y) is the first component U1 ≡ U in the expression (1.3) of a certain function 60

� : Dζ −→ B monogenic in Dζ and, moreover, all such functions � are found in 61

[5, 6] in an explicit form. 62

Every monogenic function � : Dζ −→ B is expressed via two corresponding 63

analytic functions F : Dz −→ C, F0 : Dz −→ C of the complex variable z in the 64

form (cf., e.g., [5, 6]): 65

�(ζ ) = F(z)e1 −
(

iy

2
F ′(z) − F0(z)

)
ρ ∀ ζ ∈ Dζ . (1.6)

The equality (1.6) establishes one-to-one correspondence between monogenic 66

functions � in the domain Dζ and pairs of complex-valued analytic functions F,F0 67

in the domain Dz. 68

Using the equality (1.2), we rewrite the expansion (1.6) for all ζ ∈ Dζ in the 69

basis {e1, e2}: 70

�(ζ ) =
(
F(z) − iyF ′(z) + 2F0(z)

)
e1 + i

(
2F0(z) − iyF ′(z)

)
e2 . (1.7)
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2 Schwartz-Type BVP’s for Monogenic Functions 71

Consider a boundary value problem on finding a function � : Dζ −→ B which is 72

monogenic in a domain Dζ when limiting values of two component-functions in 73

(1.3) are given on the boundary ∂Dζ , i.e., the following boundary conditions are 74

satisfied: 75

Uk(x0, y0) = uk(ζ0) , Um(x0, y0) = um(ζ0) ∀ ζ0 ∈ ∂Dζ 76

for 1 ≤ k < m ≤ 4, where 77

Ul(x0, y0) = lim
ζ→ζ0,ζ∈Dζ

Ul [� (ζ )] , l ∈ {k,m}, 78

and uk , um are given continuous functions. 79

We demand additionally the existence of finite limits 80

lim‖ζ‖→∞, ζ∈Dζ

Ul [�(ζ )] , l ∈ {k,m}, 81

in the case where the domain Dζ is unbounded as well as the assumption that every 82

given function ul , l ∈ {k,m}, has a finite limit 83

ul(∞) := lim‖ζ‖→∞, ζ∈∂Dζ

ul(ζ ) (2.1)

if ∂Dζ is unbounded. 84

We shall call such a problem by the (k-m)-problem. 85

V.F. Kovalev [7] considered (k-m)-problems with additional assumptions that the 86

sought-for function � : Dζ −→ B is continuous in Dζ and has the limit 87

lim‖ζ‖→∞, ζ∈Dζ

�(ζ ) =: �(∞) ∈ B 88

in the case where the domain Dζ is unbounded. He named such problems as 89

biharmonic Schwartz problems owing to their analogy with the classic Schwartz 90

problem on finding an analytic function of a complex variable when values of its 91

real part are given on the boundary of domain. We shall call problems of such a type 92

as (k-m)-problems in the sense of Kovalev. 93

Note, that in previous papers [5, 6, 8–13] we interpret the (k-m)-problem as the 94

(k-m)-problem in the sense of Kovalev. 95

It was established in [7] that all (k-m)-problems are reduced to the main three 96

problems: with k = 1 and m ∈ {2, 3, 4}, respectively. 97

It is shown (see [7–9]) that the main biharmonic problem is reduced to the (1–3)- 98

problem. In [8], we investigated the (1–3)-problem for cases where Dζ is either a 99
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half-plane or a unit disk in the biharmonic plane. Its solutions were found in explicit 100

forms with using of some integrals analogous to the classic Schwartz integral. 101

In [9, 10], using a hypercomplex analog of the Cauchy type integral, we reduced 102

the (1–3)-problem to a system of integral equations and established sufficient 103

conditions under which this system has the Fredholm property. It was made for 104

the case where the boundary of domain belongs to a class being wider than the class 105

of Lyapunov curves that was usually required in the plane elasticity theory (cf., e.g., 106

[14–18]). The similar is done for the (1–4)-problem in [12]. 107

In [12, 13], there is considered a relation between (1–4)-problem and boundary 108

value problems of the plane elasticity theory. Namely, there is considered a problem 109

on finding an elastic equilibrium for isotropic body occupying D with given limiting 110

values of partial derivatives ∂u
∂x

, ∂v
∂y

for displacements u = u(x, y) , v = v(x, y) on 111

the boundary ∂D. In particular, it is shown in [13] that such a problem is reduced to 112

(1–4)-problem. 113

3 (1–3)-Problem and a Biharmonic Problem 114

A biharmonic problem (cf., e.g., [14, p. 13]) is a boundary value problem on finding 115

a biharmonic function V : D −→ R with the following boundary conditions: 116

lim
(x,y)→(x0,y0), (x,y)∈D

∂V (x, y)

∂x
= u1(x0, y0) ,

lim
(x,y)→(x0,y0), (x,y)∈D

∂V (x, y)

∂y
= u3(x0, y0) ∀ (x0, y0) ∈ ∂D .

(3.1)

It is well-known a great importance of the biharmonic problem in the plane 117

elasticity theory (see, e.g., [14, 19]). 118

Let �1 be monogenic in Dζ function having the sought-for function V (x, y) of 119

the problem (3.1) as the first component: 120

�1(ζ ) = V (x, y) e1 + V2(x, y) ie1 + V3(x, y) e2 + V4(x, y) ie2 . 121

Differentiating the previous equality with respect to x and using a condition of 122

the type (1.5) for the monogenic function �1, we obtain 123

�′
1(ζ ) = ∂V (x, y)

∂x
e1 + ∂V2(x, y)

∂x
ie1 + ∂V (x, y)

∂y
e2 + ∂V4(x, y)

∂x
ie2 124

and, as consequence, we conclude that the biharmonic problem with boundary 125

conditions (3.1) is reduced to the (1–3)-problem for monogenic functions with the 126

same boundary data. 127
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In what follows, let us agree to use the same denomination u for functions 128

u : ∂D −→ R, u : ∂Dz −→ R, u : ∂Dζ −→ R taking the same values at 129

corresponding points of boundaries ∂D, ∂Dz, ∂Dζ , respectively, i.e., u(x0, y0) = 130

u(z0) = u(ζ0) for all (x0, y0) ∈ ∂D . 131

A necessary condition of solvability of the (1–3)-problem as well as the 132

biharmonic problem (3.1) is the following (cf., e.g., [9]): 133

∫

∂D

u1(x, y) dx + u3(x, y) dy = 0. (3.2)

Below, we state assumptions, under which the condition (3.2) is also sufficient for 134

the solvability of the (1–3)-problem. 135

4 Boundary Value Problems Associated with a (1–4)-Problem 136

Now, we assume that D is a bounded simply connected domain in the Cartesian 137

plane xOy. For a function u : D −→ R we denote a limiting value at a point 138

(x0, y0) ∈ ∂D by 139

u(x, y)

∣∣∣
(x0,y0)

:= lim
(x,y)∈D,(x,y)→(x0,y0)

u(x, y) ,

if there exists such a finite limit. 140

Consider a boundary value problem: to find in D partial derivatives V1 := ∂u
∂x

, 141

V2 := ∂v
∂y

for displacements u = u(x, y), v = v(x, y) of an elastic isotropic body 142

occupying D, when their limiting values are given on the boundary ∂D: 143

Vk(x, y)

∣∣∣
(x0,y0)

= hk(x0, y0) ∀ (x0, y0) ∈ ∂D, k = 1, 2, (4.1)

where hk : ∂D −→ R, k = 1, 2, are given functions. 144

We shall call this problem as the (ux, vy)-problem. This problem has been posed 145

in [13]. 146

For a biharmonic function W : D −→ R we denote 147

Ck[W ](x, y) := −Wk(x, y) + κ0 W0(x, y) ∀ (x, y) ∈ D, k = 1, 2, 148

where 149

W1(x, y) := ∂2W(x, y)

∂x2 , W2(x, y) := ∂2W(x, y)

∂y2 , 150

151
W0(x, y) := W1(x, y) + W2(x, y) , 152
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κ0 := λ+2μ
2(λ+μ)

, μ and λ are Lamé constants (cf., e.g., [19, p. 2]). 153

The following equalities are valid in D (cf., e.g., [19, pp. 8–9],[14, p. 5]): 154

2μVk(x, y) = Ck[W ](x, y) ∀ (x, y) ∈ D, k = 1, 2. 155

Then solving the (ux, vy)-problem is reduced to finding the functions Ck[W ], 156

k = 1, 2, in D with an unknown biharmonic function W : D −→ R, when their 157

limiting values satisfy the system 158

Ck[W ](x, y)

∣∣∣
(x0,y0)

= 2μ hk(x0, y0) ∀ (x0, y0) ∈ ∂D, k = 1, 2. (4.2)

Consider some auxiliary statements. 159

Lemma 4.1 ([13]) Let W be a biharmonic function in a domain D and �∗ be a 160

monogenic in Dζ function such that U1 [�∗] = W . Then the following equalities 161

are true: 162

∂2W(x, y)

∂x2
= U1 [�(ζ )] ,

∂2W(x, y)

∂y2
= U1 [�(ζ )] − 2U4 [�(ζ )] , (4.3)

for every (x, y) ∈ D, where � := �′′∗ . 163

Lemma 4.2 ([13]) The (ux, vy)-problem is equivalent to a boundary value problem 164

on finding in D the second derivatives ∂2W(x,y)

∂x2 , ∂2W(x,y)

∂y2 of a biharmonic function 165

W , which have limiting values at all (x0, y0) ∈ ∂D and satisfy the boundary data: 166

∂2W(x, y)

∂x2

∣∣∣∣
(x0,y0)

= λh1(x0, y0) + (λ + 2μ) h2(x0, y0),

167

∂2W(x, y)

∂y2

∣∣∣∣
(x0,y0)

= (λ + 2μ) h1(x0, y0) + λh2(x0, y0).

Then the general solution of (ux, vy)-problem is expressed by the formula: 168

Vk(x, y) = 1

2μ
Ck[W ](x, y) ∀(x, y) ∈ D, k = 1, 2. (4.4)

The following theorem establishes relations between solutions of (ux, vy )- 169

problem and corresponding (1–4)-problem. 170

Theorem 4.3 Let W be a biharmonic function satisfying the boundary conditions 171

(4.2). Then W rebuilds the general solution of (ux, vy )-problem with boundary data 172

(4.1) by the formula (4.4). The general solution � of (1–4)-problem with boundary 173

data 174

u1 = λh1 + (λ + 2μ) h2, u4 = −μ h1 + μ h2, 175
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generates the second order derivatives ∂2W

∂x2 , ∂2W

∂y2 in D by the formulas (4.3). The 176

general solution of (ux, vy)-problem is expressed for every (x, y) ∈ D by the 177

equalities 178

2μ
∂u(x, y)

∂x
= μ

λ + μ
U1 [�(ζ )] − λ + 2μ

λ + μ
U4 [�(ζ )] ,

179

2μ
∂v(x, y)

∂y
= μ

λ + μ
U1 [�(ζ )] + λ

λ + μ
U4 [�(ζ )] .

A theorem analogous to Theorem 4.3 is proved in [13, Theorem 4] in assumption 180

that the (1–4)-problem is understood in the sense of Kovalev. But it is still valid with 181

the same proof for the (1–4)-problem formulated in this paper. It happens due to 182

Lemmas 4.1, 4.2 and the fact that the left-hand sides of (4.3) have limiting values 183

on ∂D if and only if U1 [�], U4 [�] have limiting values on ∂Dζ . 184

The elastic equilibrium in terms of displacements and stresses can be found by 185

use of the generalized Hooke’s law and solutions V1, V2 of the (ux, vy)-problem 186

(see [13, sect. 5]). 187

5 Solving Process of (1–4)-Problem via Analytic Functions 188

of a Complex Variable 189

A method for solving the (1–4)-problem by means of its reduction to classic 190

Schwartz boundary value problems for analytic functions of a complex variable is 191

delivered in [11]. Let us formulate some results of such a kind. 192

In what follows, we assume that the domain Dz is simply connected (bounded 193

or unbounded), and in this case we shall say that the domains D and Dζ are also 194

simply connected. 195

For a function F : Dz −→ C we denote its limiting value at a point z0 ∈ ∂Dz by 196

F+(z0) if it exists. 197

The classic Schwartz problem is a problem on finding an analytic function 198

F : Dz −→ C of a complex variable when values of its real part are given on the 199

boundary of domain, i.e., 200

(Re F)+(t) = u(t) ∀ t ∈ ∂Dz, (5.1)

where u : ∂Dz −→ R is a given continuous function. 201

Theorem 5.1 Let ul : ∂Dζ −→ R, l ∈ {1, 4}, be continuous functions and F be a 202

solution of the classic Schwartz problem with boundary condition: 203

(Re F)+(t) = u1(t) − u4(t) ∀ t ∈ ∂Dz. (5.2)
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and, furthermore, the function 204

F̃∗(z) := Re
(−iyF ′(z)

) ∀ z ∈ Dz 205

have continuous limiting values on ∂Dz. Then a solution of the (1–4)-problem is 206

expressed by the formula (1.6) or, the same, by the formula (1.7), where the function 207

F0 is a solution of the classic Schwartz problem with boundary condition: 208

(Re F0)
+(t) = 1

2

(
u4(t) − (

F̃∗
)+

(t)
)

∀ t ∈ ∂Dz. (5.3)

Proof It follows from the expression (1.7) that the (1–4)-problem is reduced to 209

finding a pair of analytic in Dz functions F , F0 satisfying the following boundary 210

conditions: 211

{(
Re

(
F + F̃∗ + 2F0

))+
(t) = u1(t) ∀ t ∈ ∂Dz ,

(
Re

(
F̃∗ + 2F0

))+
(t) = u4(t) ∀ t ∈ ∂Dz .

(5.4)

In the case where the function F̃∗ has continuous limiting values on ∂Dz, the
conditions (5.4) are equivalent to the boundary conditions (5.2), (5.3) of classic
Schwartz problems. �
Theorem 5.2 The general solution of the homogeneous (1–4)-problem for an 212

arbitrary simply connected domain Dζ is expressed by the formula 213

�(ζ ) = a1ie1 + a2e2, (5.5)

where a1, a2 are any real constants 214

Proof By Theorem 5.1, a solving process of the homogeneous (1–4)-problem 215

consists of consecutive finding of solutions of two homogeneous classic Schwartz 216

problems, viz.: 217

a) to find an analytic in Dz function F satisfying the boundary condition 218

(Re F)+(t) = 0 for all t ∈ ∂Dz. As a result, we have F(z) = ai, where a 219

is an arbitrary real constant; 220

b) to find similarly an analytic in Dz function F0 satisfying the boundary condition 221

(Re F0)
+(t) = 0 for all t ∈ ∂Dz. 222

Consequently, getting a general solution of the homogeneous (1–4)-problem in
the form (1.7), we can rewrite it in the form (5.5). �
Remark 5.3 A statement similar to Theorem 5.2 is proved for homogeneous (1–4)- 223

problem in the sense of Kovalev in [11], where the formula of solutions is the same 224

as (5.5). 225
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Remark 5.4 Considering the functions 226

F̃ (z) := −iyF ′(z) ∀ z ∈ Dz, 227

228

�̃(ζ ) := −iy�′(ζ ) ρ ∀ ζ ∈ Dζ 229

and taking into account the equalities (1.6), (1.2), we obtain the relations 230

�̃(ζ ) = −iy
∂�(ζ )

∂x
ρ = −iy

(
F ′(z)e1 −

( iy

2
F ′′(z) − F ′

0(z)
)
ρ

)
ρ = F̃ (z)ρ = 231

232

= 2F̃ (z)e1 + 2iF̃ (z)e2 ∀ ζ ∈ Dζ . 233

Thus, 234

F̃∗(z) = 1

2
U1

[
�̃(ζ )

] ∀ z ∈ Dz, 235

and limiting values (F̃∗)+ exist and continuous on ∂Dz if and only if U1
[
�̃

]
is 236

continuously extended on ∂D . 237

Remark 5.5 Theorem 5.2 shows an example of the (1–4)-problem (with u1 = u4 ≡ 238

0 and with no extra assumptions on a domain Dζ ) when the condition on existence 239

of continuous limiting values
(
F̃∗

)+
is satisfied. Evidently, we have another similar 240

trivial case, where u1 and u4 are real constants. In the next section we consider else 241

a nontrivial case of the (1–4)-problem when the continuous limiting values
(
F̃∗

)+
242

exist. 243

6 (1–4)-Problem for a Half-Plane 244

Consider the (1–4)-problem in the case where the domain Dζ is the half-plane 245

	+ := {ζ = xe1 + ye2 : y > 0}. 246

Consider the biharmonic Schwartz integral for the half-plane 	+: 247

S	+ [u](ζ ) := 1

πi

+∞∫

−∞

u(t)(1 + tζ )

(t2 + 1)
(t − ζ )−1 dt ∀ ζ ∈ 	+ . 248

Here and in what follows, all integrals along the real axis are understood in the 249

sense of their Cauchy principal values, i.e. 250

+∞∫

−∞
g(t, ·) dt := lim

N→+∞

N∫

−N

g(t, ·) dt , 251



UNCORRECTED
PROOF

Schwartz-Type Boundary Value Problems for Monogenic Functions in a. . .

The function S	+[u](ζ ) is the principal extension (see [20, p. 165]) into the half- 252

plane 	+ of the complex Schwartz integral 253

S[u](z) := 1

πi

+∞∫

−∞

u(t)(1 + tz)

(t2 + 1)(t − z)
dt , 254

which determines a holomorphic function in the half-plane 255

{z = x + iy : y > 0} of the complex plane C with the given boundary values 256

u(t) of real part on the real line R. Furthermore, the equality 257

S	+[u](ζ ) = S[u](z)e1 − y

2π
ρ

∞∫

−∞

u(t)

(t − z)2 d t ∀ ζ ∈ 	+ (6.1)

holds. 258

The following relations were proved within the proof of Theorem 1 in [8]: 259

y

∞∫

−∞

u(t)

(t − z)2
d t ≤ 4 ωR(u, 2y) + 2 y

∞∫

2y

ωR(u, η)

η2
dη → 0, z → ξ , ∀ ξ ∈ R ,

(6.2)

where 260

ωR(u, ε) = sup
t1,t2∈R:|t1−t2|≤ε

|u(t1) − u(t2)| 261

is the modulus of continuity of the function u . 262

In addition, 263

y

∞∫

−∞

u(t)

(t − z)2 d t → 0, z → ∞ . (6.3)

It follows from the equality (6.1) and the relations (6.2), (6.3) that 264

U1

[
S	+[u](ζ )

]
→ u(ξ) , z → ξ, ∀ ξ ∈ R ∪ {∞} (6.4)

and 265

(
F̃∗

)+
(ξ) = 0 ∀ ξ ∈ R ∪ {∞} 266

for the function F̃∗ defined in Theorem 5.1. 267
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Theorem 6.1 Let every function ul : R −→ R, l ∈ {1, 4}, have a finite limit of the 268

type (2.1). Then the general solution of the (1–4)-problem for the half-plane 	+ is 269

expressed by the formula 270

�(ζ ) = S	+[u1](ζ ) e1 + S	+[u4](ζ ) ie2 + a1ie1 + a2e2 , (6.5)

where a1, a2 are any real constants. 271

Proof It follows from the relation (6.4) that the function 272

�1,4(ζ ) = S	+ [u1](ζ ) e1 + S	+[u4](ζ ) ie2 (6.6)

is a solution of the (1–4)-problem for the half-plane 	+. 273

The general solution of the (1–4)-problem in the form (6.5) is obtained by
summarizing the particular solution (6.6) of the inhomogeneous (1–4)-problem and
the general solution (5.5) of the homogeneous (1–4)-problem. �
Remark 6.2 In Theorem 3 [11] we obtain the general solution of (1–4)-problem in 274

the sense of Kovalev in the form (6.5) but under complementary assumptions that 275

for every given function ul : R −→ R, l ∈ {1, 4}, its modulus of continuity and 276

the local centered (with respect to the infinitely remote point) modulus of continuity 277

satisfy Dini conditions. 278

7 Solving Process of (1–4)-Problem for Bounded Simply 279

Connected Domain with Use of the Complex Green 280

Function 281

Now, for solving the (1–4)-problem we shall use solutions of the classic Schwartz 282

problem for analytic functions of a complex variable in the form of an appropriate 283

Schwartz operator involving the complex Green function. 284

Here we assume that Dz is a bounded simply connected domain with a smooth 285

boundary ∂Dz. Let g(z, z0) be the Green function of Dz for the Laplace operator 286

(cf, e.g., [21, p. 22]). 287

It is well-known that the general solution of the Schwartz boundary value 288

problem for analytic functions with boundary datum (5.1) is expressed in the form 289

(cf, e.g., [21, p. 52]) 290

F(z) = (Su)(z) + ia0, (7.1)

with an arbitrary real number a0 and the Schwartz operator (Su)(z) having the form 291

(Su)(z) := − 1

2π

∫

∂Dz

u(t)
∂M(t, z)

∂nt

dst ∀z ∈ Dz, (7.2)
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where the complex Green function M (cf, e.g., [21, p. 32]) is of the form M(w, z) = 292

g(w, z)+ ih(w, z), h is a conjugate harmonic function to the Green function g with 293

respect to w ∈ Dz: w �= z, nt is the outward normal unit vector at the point t ∈ ∂Dz, 294

st is an arc coordinate of the point t . 295

Now, the function F̃∗ defined in Theorem 5.1 takes the form 296

F̃∗(z) = Re
(
−iy

(
S(u1 − u4)

)′
(z)

)
∀ z ∈ Dz, (7.3)

where u1 and u4 are given functions of the (1–4) problem. 297

Therefore, using expressions of solutions of the classic Schwartz problems with 298

the boundary conditions (5.2), (5.3) in the form (7.1) via appropriate Schwartz 299

operators of the type (7.2), by Theorem 5.1 we obtain the following statement. 300

Theorem 7.1 Let the function (7.3) have the continuous limiting values
(
F̃∗

)+
on 301

∂Dz. Then the general solution of (1–4)-problem is expressed in the form 302

�(ζ ) =
(
F(z) − iyF ′(z) + 2F0(z)

)
e1 + i

(
2F0(z) − iyF ′(z)

)
e2+ 303

304+a1ie1 + a2e2 ∀ z ∈ Dz , 305

where 306

F(z) = (
S(u1 − u4)

)
(z), F0(z) = 1

2

(
S
(
u4 − (

F̃∗
)+))

(z) 307

and a1, a2 are any real constants. 308

In the next section we develop a method for solving the inhomogeneous (1–4)- 309

problem without an essential in Theorem 5.1 assumption that the function F̃∗ have 310

continuous limiting values on the boundary ∂Dz. 311

8 Solving BVP’s by Means Hypercomplex Cauchy-Type 312

Integrals 313

Let the boundary ∂Dζ of the bounded domain Dζ be a closed smooth Jordan curve. 314

Below, we show a method for reducing (1–3)-problem and (1–4)-problem to 315

systems of the Fredholm integral equations. Such a method was developed in [9, 12]. 316

Obtained results are appreciably similar for the mentioned problems, however, in 317

contrast to (1–3)-problem, which is solvable in a general case if and only if a certain 318

natural condition is satisfied, the (1–4)-problem is solvable unconditionally. 319

We use the modulus of continuity of a continuous function ϕ given on ∂Dζ : 320

ω(ϕ, ε) := sup
τ1,τ2∈∂Dζ : ‖τ1−τ2‖≤ε

‖ϕ(τ1) − ϕ(τ2)‖ . 321
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We assume that ω(ϕ, ε) satisfies the Dini condition: 322

1∫

0

ω(ϕ, η)

η
d η < ∞. (8.1)

Consider the biharmonic Cauchy type integral: 323

B[ϕ](ζ ) := 1

2πi

∫

∂Dζ

ϕ(τ )(τ − ζ )−1dτ ∀ζ ∈ μe1,e2 \ ∂Dζ . (8.2)

It is proved in Theorem 4.2 [9] that the integral (8.2) has limiting values 324

B+[ϕ](ζ0) := lim
ζ→ζ0, ζ∈Dζ

�(ζ ), B−[ϕ](ζ0) := lim
ζ→ζ0, ζ∈μe1,e2 \Dζ

�(ζ ) 325

in every point ζ0 ∈ ∂Dζ that are represented by the Sokhotski–Plemelj formulas: 326

B+[ϕ](ζ0) = 1

2
ϕ(ζ0) + 1

2πi

∫

∂Dζ

ϕ(τ )(τ − ζ0)
−1dτ , (8.3)

327

B−[ϕ](ζ0) = −1

2
ϕ(ζ0) + 1

2πi

∫

∂Dζ

ϕ(τ )(τ − ζ0)
−1dτ ,

where a singular integral is understood in the sense of its Cauchy principal value: 328

∫

∂Dζ

ϕ(τ )(τ − ζ0)
−1dτ := lim

ε→0

∫

{τ∈∂Dζ :‖τ−ζ0‖>ε}
ϕ(τ)(τ − ζ0)

−1dτ. 329

We assume that boundary functions uk, k ∈ {1, 3} or k ∈ {1, 4}, of the (1–3) 330

problem or the (1–4) problem, respectively, satisfy Dini conditions of the type (8.1). 331

We seek solutions in a class of functions represented in the form 332

�(ζ ) = B[ϕ](ζ ) ∀ ζ ∈ Dζ , 333

where 334

ϕ(ζ ) = ϕ1(ζ ) e1 + ϕ3(ζ ) e2 ∀ ζ ∈ ∂Dζ (8.4)

335
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for the (1–3) problem or 336

ϕ(ζ ) = ϕ1(ζ ) e1 + ϕ4(ζ ) ie2 ∀ ζ ∈ ∂Dζ (8.5)

for the (1–4) problem, and every function ϕk : ∂Dζ −→ R, k ∈ {1, 3, 4}, satisfies a 337

Dini condition of the type (8.1). 338

We use a conformal mapping z = τ (t) of the upper half-plane {t ∈ C : Im t > 0} 339

onto the domain Dz. Denote τ1(t) := Re τ (t), τ2(t) := Im τ (t). 340

Inasmuch as the mentioned conformal mapping is continued to a homeomor- 341

phism between the closures of corresponding domains, the function 342

τ̃ (s) := τ1(s)e1 + τ2(s)e2 ∀ s ∈ R 343

generates a homeomorphic mapping of the extended real axis R := R ∪ {∞} onto 344

the curve ∂Dζ . 345

Introducing the function 346

g(s) := ϕ (̃τ (s)) ∀ s ∈ R , 347

we rewrite the equality (8.3) in the form (cf. [9]) 348

B+[ϕ](ζ0) = 1

2
g(t) + 1

2πi

∞∫

−∞
g(s)k(t, s) ds + 1

2πi

∞∫

−∞
g(s)

1 + st

(s − t)(s2 + 1)
ds , 349

where k(t, s) = k1(t, s)e1 + iρ k2(t, s) , 350

k1(t, s) := τ ′(s)
τ (s) − τ (t)

− 1 + st

(s − t)(s2 + 1)
, 351

352

k2(t, s) := τ ′(s)
(
τ2(s) − τ2(t)

)

2
(
τ (s) − τ (t)

)2 − τ ′
2(s)

2
(
τ (s) − τ (t)

) , 353

and a correspondence between the points ζ0 ∈ ∂Dζ \ {̃τ (∞)} and t ∈ R is given by 354

the equality ζ0 = τ̃ (t). 355

Evidently, g(s) = g1(s)e1 + g3(s)e2 for the (1–3) problem and g(s) = 356

g1(s)e1 + g4(s)ie2 for the (1–4) problem, where gl(s) := ϕl (̃τ(s)) for all s ∈ R, 357

l ∈ {1, 3, 4}. 358

Now, in the case of (1–3)-problem, we single out components Ul

[B+[ϕ](ζ0)
]
, 359

l ∈ {1, 3}, and after the substitution them into the boundary conditions of the
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(1–3)-problem, we shall obtain the following system of integral equations for 360

finding the functions g1 and g3: 361

U1
[B+[ϕ](ζ0)

] ≡ 1

2
g1(t) + 1

2π

∞∫

−∞
g1(s)

(
Im k1(t, s) + 2Re k2(t, s)

)
ds−

− 1

π

∞∫

−∞
g3(s)Im k2(t, s) ds = ũ1(t),

U3
[B+[ϕ](ζ0)

] ≡ 1

2
g3(t) + 1

2π

∞∫

−∞
g3(s)

(
Im k1(t, s) − 2Re k2(t, s)

)
ds−

− 1

π

∞∫

−∞
g1(s)Im k2(t, s) ds = ũ3(t) ∀ t ∈ R ,

(8.6)

where ũl(t) := ul

(
τ̃ (t)

)
, l ∈ {1, 3}. 362

Similarly, in the case of (1–4)-problem, we single out components Ul

[B+[ϕ] 363

(ζ0)
]
, l ∈ {1, 4}, and after the substitution them into the boundary conditions of 364

the (1–4)-problem, we shall obtain the following system of integral equations for 365

finding the functions g1 and g4: 366

U1
[B+[ϕ](ζ0)

] ≡ 1

2
g1(t) + 1

2π

∞∫

−∞
g1(s)

(
Im k1(t, s) + 2Re k2(t, s)

)
ds−

− 1

π

∞∫

−∞
g4(s)Re k2(t, s) ds = ũ1(t),

U4
[B+[ϕ](ζ0)

] ≡ 1

2
g4(t) + 1

2π

∞∫

−∞
g4(s)

(
Im k1(t, s) − 2Re k2(t, s)

)
ds+

+ 1

π

∞∫

−∞
g1(s)Re k2(t, s) ds = ũ4(t) ∀ t ∈ R ,

(8.7)

where ũl(t) := ul

(
τ̃ (t)

)
, l ∈ {1, 4}. 367

Let C(R ) denote the Banach space of functions g∗ : R −→ C that are continuous 368

on the extended real axis R with the norm ‖g∗‖C(R ) := sup
t∈R

|g∗(t)|. 369

In Theorem 6.13 [9] there are conditions which are sufficient for compactness of 370

integral operators on the left-hand sides of equations of the systems (8.6), (8.7) in 371

the space C(R ). 372
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To formulate such conditions, consider the conformal mapping σ(T ) of the unit 373

disk {T ∈ C : |T | < 1} onto the domain Dz such that τ (t) = σ
(

t−i
t+i

)
for all 374

t ∈ {t ∈ C : Im t > 0}. 375

Thus, it follows from Theorem 6.13 [9] that if the conformal mapping σ(T ) have 376

the nonvanishing continuous contour derivative σ ′(T ) on the unit circle � := {T ∈ 377

C : |T | = 1}, and its modulus of continuity 378

ω�(σ ′, ε) := sup
T1,T2∈�, |T1−T2|≤ε

|σ ′(T1) − σ ′(T2)| 379

satisfies a condition of the type (8.1), then the integral operators in the systems (8.6), 380

(8.7) are compact in the space C(R ). 381

Let D(R) denote the class of functions g∗ ∈ C(R ) whose the modulus of 382

continuity ωR(g∗, ε) and the local centered (with respect to the infinitely remote 383

point) modulus of continuity 384

ωR,∞(g∗, ε) = sup
τ∈R:|τ |≥1/ε

|g∗(τ ) − g∗(∞)| 385

satisfy the Dini conditions 386

1∫

0

ωR(g∗, η)

η
d η < ∞,

1∫

0

ωR,∞(g∗, η)

η
d η < ∞. 387

Since the sought-for function ϕ in (8.2) has to satisfy the condition (8.1), it is 388

necessary to require that the corresponding functions g1, g3 in (8.4) or g1, g4 in 389

(8.5) should belong to the class D(R). In the next theorems we state a condition on 390

the conformal mapping σ(T ), under which all solutions of the system (8.6), (8.7) 391

satisfy the mentioned requirement. 392

Theorem 8.1 Assume that the functions ul : ∂Dζ −→ R, l ∈ {1, 3}, satisfy 393

conditions of the type (8.1). Also, assume that the conformal mapping σ(T ) has the 394

nonvanishing continuous contour derivative σ ′(T ) on the circle �, and its modulus 395

of continuity ω�(σ ′, ε) satisfies the condition 396

2∫

0

ω�(σ ′, η)

η
ln

3

η
dη < ∞. (8.8)

Then all functions g1, g3 ∈ C( R ) satisfying the system of Fredholm integral 397

equations (8.6) belong to the class D(R), and the corresponding function ϕ in (8.4) 398

satisfies the Dini condition (8.1). 399
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Assume additionally: 400

1) all solutions (g1, g3) ∈ C(R ) × C(R ) of the homogeneous system of equations 401

(8.6) (with ũk ≡ 0 for k ∈ {1, 3}) are differentiable on R; 402

2) for every mentioned solution (g1, g3) of the homogeneous system of equations 403

(8.6), the integral B [
ϕ′] is finite in Dζ and μe1,e2 \ Dζ , and the functions 404

U1
[B [

ϕ′] (ζ )
] − U4

[B [
ϕ′] (ζ )

] ∀ ζ ∈ Dζ , 405

406

U2
[B [

ϕ′] (ζ )
] + U3

[B [
ϕ′] (ζ )

] ∀ ζ ∈ μe1,e2 \ Dζ 407

are bounded, where ϕ′ is the contour derivative of the corresponding function 408

ϕ in (8.4), i.e., ϕ (ζ ) ≡ ϕ(̃τ(s)) := g1(s)e1 + g3(s)e2 for all s ∈ R. 409

Then the following assertions are true: 410

(i) the number of linearly independent solutions of the homogeneous system of 411

equations (8.6) is equal to 1; 412

(ii) the non-homogeneous system of equations (8.6) is solvable if and only if the 413

condition (3.2) is satisfied. 414

Theorem 8.2 Assume that the functions ul : ∂Dζ −→ R, l ∈ {1, 4}, satisfy 415

conditions of the type (8.1). Also, assume that the conformal mapping σ(T ) has the 416

nonvanishing continuous contour derivative σ ′(T ) on the circle �, and its modulus 417

of continuity satisfy the condition (8.8). Then the following assertions are true: 418

(i) the system of Fredholm integral equations (8.7) has the unique solution in 419

C(R ); 420

(ii) all functions g1, g4 ∈ C(R ) satisfying the system (8.7) belong to the class 421

D(R), and the corresponding function ϕ in (8.5) satisfies the Dini condition 422

(8.1). 423

Remark 8.3 Generalizing Theorem 6.13 [9], Theorem 8.1 is proved similarly. 424

Theorem 8.2 is proved in [12] if a (1–4)-problem is understood in the sense of 425

Kovalev but it is still valid for a (1–4)-problem considered in this paper. 426
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