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Generalized integral theorems for
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Abstract. For G-monogenic mappings taking values in the algebra of
complex quaternions we generalize some analogues of classical integral
theorems of the holomorphic function theory of a complex variable (the
surface and the curvilinear Cauchy integral theorems).
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1. Introduction

The Cauchy integral theorems for analytic functions of the complex
variable are fundamental results of the classical complex analysis. Ana-
logues of these results are also important tools in the quaternionic anal-
ysis.

In the papers [1–3], some analogues of classical integral theorems for
G-monogenic mappings taking values in the algebra of complex quater-
nions were established. Namely, in the paper [1] the Stokes formula, a
curvilinear analogue of the Cauchy integral theorem in the case where a
curve of integration lies in a domain of G-monogeneity, the Cauchy in-
tegral formula, the Gauss–Ostrogradsky formula and the surface Cauchy
integral theorem were proved. The analogues of the Cauchy integral the-
orems are of the form ∫

Γ

Φ̂σ = 0,

∫
Γ

σΦ = 0, (1.1)
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where Γ is a closed surface (or a closed curve), σ is a special differential
form, and Φ̂, Φ are left-G-monogenic mapping and right-G-monogenic
mapping, respectively.

In the paper [2], the formulae (1.1) was proved in the case where a
curve of integration lies on the boundary of a domain of G-monogeneity.
In the paper [3], the analogue of the Morera theorem was established.

In the present paper we generalize analogues of the surface and curvi-
linear Cauchy integral theorems for G-monogenic mappings to “two sides”
integrals. Namely, the equality∫

Γ

Φ̂σΦ = 0 (1.2)

will be proved under some assumptions. In the papers [4] and [5] the
formula of the type (1.2) was proved for another class of quaternionic
differentiable functions.

2. G-monogenic mappings in the algebra of complex
quaternions

Let H(C) be the quaternion algebra over the field of complex numbers
C, whose basis consists of the unit 1 of the algebra and of the elements
I, J,K satisfying the multiplication rules:

I2 = J2 = K2 = −1,

IJ = −JI = K, JK = −KJ = I, KI = −IK = J.

In the algebra H(C) there exists another basis {e1, e2, e3, e4} such that
multiplication table in this basis can be represented as

· e1 e2 e3 e4

e1 e1 0 e3 0

e2 0 e2 0 e4
e3 0 e3 0 e1
e4 e4 0 e2 0

.

The unit of the algebra can be decomposed as 1 = e1 + e2.
Let us consider the vectors

i1 = e1 + e2, i2 = a1e1 + a2e2, i3 = b1e1 + b2e2, (2.1)

where ak, bk ∈ C, k = 1, 2, which are linearly independent over the field
of real numbers R. It means that the equality α1i1 + α2i2 + α3i3 = 0 for
α1, α2, α3 ∈ R holds if and only if α1 = α2 = α3 = 0.
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In the algebra H(C) we consider the linear span

E3 := {ζ = xi1 + yi2 + zi3 : x, y, z ∈ R}

generated by the vectors i1, i2, i3 over the field R.
A set S ⊂ R3 is associated with the set Sζ := {ζ = xi1 + yi2 + zi3 :

(x, y, z) ∈ S} in E3. We understand topological properties of the set Sζ
in E3 as the same topological properties of the set S in R3.

In the paper [6] we introduced a new class of quaternionic mappings,
so-called, G-monogenic mappings.

We say that a continuous mapping Φ : Ωζ → H(C)
(
or Φ̂ : Ωζ →

H(C)
)

is right-G-monogenic
(
or left-G-monogenic

)
in a domain Ωζ ⊂ E3 ,

if Φ
(
or Φ̂

)
is differentiable in the sense of the Gâteaux at every point

of Ωζ , i. e. for every ζ ∈ Ωζ there exists an element Φ′(ζ) ∈ H(C)
(
or

Φ̂′(ζ) ∈ H(C)
)

such that

lim
ε→0+0

(
Φ(ζ + εh)− Φ(ζ)

)
ε−1 = hΦ′(ζ) ∀h ∈ E3(

or lim
ε→0+0

(
Φ̂(ζ + εh)− Φ̂(ζ)

)
ε−1 = Φ̂′(ζ)h ∀h ∈ E3

)
.

Consider the decomposition of the mapping Φ : Ωζ → H(C) with
respect to the basis {e1, e2, e3, e4}:

Φ(ζ) =
4∑

k=1

Uk(x, y, z)ek.

In the case where functions Uk : Ω → C are R-differentiable in Ω, i. e.
for every (x, y, z) ∈ Ω

Uk(x+∆x, y +∆y, z +∆z)− Uk(x, y, z)

=
∂Uk

∂x
∆x+

∂Uk

∂y
∆y +

∂Uk

∂z
∆z + o

(√
(∆x)2 + (∆y)2 + (∆z)2

)
,

(∆x)2 + (∆y)2 + (∆z)2 → 0,

the mapping Φ is right-G-monogenic and Φ̂ is left-G-monogenic in the
domain Ωζ if and only if the following analogues of the Cauchy – Riemann
conditions are satisfied in Ωζ :

∂Φ

∂y
= i2

∂Φ

∂x
,

∂Φ

∂z
= i3

∂Φ

∂x
(2.2)

and
∂Φ̂

∂y
=
∂Φ̂

∂x
i2 ,

∂Φ̂

∂z
=
∂Φ̂

∂x
i3 . (2.3)
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3. Cauchy integral theorem for a surface integral

Let Ωζ be a bounded domain in E3. For a continuous mapping φ :
Ωζ → H(C) of the form

φ(ζ) =
4∑

k=1

Uk(x, y, z)ek + i
4∑

k=1

Vk(x, y, z)ek,

where (x, y, z) ∈ Ω and Uk : Ω → R, Vk : Ω → R, we define a volume
integral by the equality

∫
Ωζ

φ(ζ)dxdydz :=

4∑
k=1

ek

∫
Ω

Uk(x, y, z)dxdydz

+i

4∑
k=1

ek

∫
Ω

Vk(x, y, z)dxdydz.

Let Σζ be a piece-smooth surface in E3. For continuous mappings
φ : Ωζ → H(C) and ψ : Ωζ → H(C) of the forms

φ(ζ) =
4∑

k=1

Uk(x, y, z)ek + i
4∑

k=1

Vk(x, y, z)ek, (3.1)

ψ(ζ) =
4∑

m=1

Pm(x, y, z)em + i
4∑

m=1

Qm(x, y, z)em, (3.2)

where (x, y, z) ∈ Σ, Uk : Σ → R, Vk : Σ → R and Pm : Σ → R, Qm :
Σ → R, we define a surface integral on a piece-smooth surface Σζ with
the differential form

σ := dydz + dzdxi2 + dxdyi3

by the equality
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∫
Σζ

φ(ζ)σ ψ(ζ) :=
4∑

k,m=1

ekem

∫
Σ

(
Uk Pm − VkQm

)
dydz

+

4∑
k,m=1

eki2em

∫
Σ

(
Uk Pm − VkQm

)
dzdx

+

4∑
k,m=1

eki3em

∫
Σ

(
Uk Pm − VkQm

)
dxdy

+ i

4∑
k,m=1

ekem

∫
Σ

(
Vk Pm + UkQm

)
dydz

+ i
4∑

k,m=1

eki2em

∫
Σ

(
Vk Pm + UkQm

)
dzdx

+ i
4∑

k,m=1

eki3em

∫
Σ

(
Vk Pm + UkQm

)
dxdy.

If a domain Ω ⊂ R3 has a closed piece-smooth boundary ∂Ω and
mappings φ : Ωζ → H(C) and ψ : Ωζ → H(C) are continuous together
with partial derivatives of the first order up to the boundary ∂Ωζ , then
the following analogues of the Gauss–Ostrogradsky formula is true:∫

∂Ωζ

φ(ζ)σ ψ(ζ)

=

∫
Ωζ

(
∂φ

∂x
ψ + φ

∂ψ

∂x
+
∂φ

∂y
i2 ψ + φ i3

∂ψ

∂y
+
∂φ

∂z
i3 ψ + φ i3

∂ψ

∂z

)
dxdydz.

(3.3)

Using the equality (3.3) and the conditions (2.2), (2.3) we obtain the
following theorem.

Theorem 3.1. Suppose that a domain Ωζ has a closed piece-smooth
boundary ∂Ωζ and Φ : Ωζ → H(C) is a right-G-monogenic mapping in

Ωζ , and Φ̂ : Ωζ → H(C) is a left-G-monogenic in Ωζ and continuous
together with partial derivatives of the first order up to the boundary
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∂Ωζ . Then∫
∂Ωζ

Φ̂(ζ)σΦ(ζ)

=

∫
Ωζ

[
Φ̂′(ζ)(1 + i22 + i23)Φ(ζ) + Φ̂(ζ)(1 + i22 + i23)Φ

′(ζ)
]
dxdydz. (3.4)

Proof. Using the conditions (2.2), (2.3) we have∫
∂Ωζ

Φ̂(ζ)σΦ(ζ)

=

∫
Ωζ

(
Φ̂′Φ+ Φ̂Φ′ + Φ̂′ i22Φ+ Φ̂ i22Φ

′ + Φ̂′ i23Φ+ Φ̂ i23Φ
′
)
dxdydz

=

∫
Ωζ

[
(Φ̂′ + Φ̂′ i22 + Φ̂′ i23)Φ + Φ̂(Φ′ + i22Φ

′ + i23Φ
′)
]
dxdydz

=

∫
Ωζ

[
Φ̂′ (1 + i22 + i23)Φ + Φ̂(1 + i22 + i23)Φ

′
]
dxdydz.

The following statement is a consequence of Theorem 3.1.

Theorem 3.2. Under conditions of Theorem 3.1 with the additional as-
sumption 1 + i22 + i23 = 0, i. e. mappings Φ and Φ̂ are solutions of the
three-dimensional Laplace equation, the equality (3.4) can be rewritten in
the form ∫

∂Ωζ

Φ̂(ζ)σΦ(ζ) = 0.

4. Cauchy integral theorem for a curvilinear integral

Let γζ be a Jordan rectifiable curve in E3. For continuous map-
pings φ : γζ → H(C) and ψ : γζ → H(C) of the forms (3.1) and
(3.2), respectively, where (x, y, z) ∈ γ, Uk : γ → R, Vk : γ → R and
Pm : γ → R, Qm : γ → R, we define a curvilinear integral along a Jordan
rectifiable curve γζ by the equality:
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∫
γζ

φ(ζ) dζ ψ(ζ) :=

4∑
k,m=1

ekem

∫
γ

(
Uk Pm − VkQm

)
dx

+
4∑

k,m=1

eki2em

∫
γ

(
Uk Pm − VkQm

)
dy

+

4∑
k,m=1

eki3em

∫
γ

(
Uk Pm − VkQm

)
dz

+ i

4∑
k,m=1

ekem

∫
γ

(
Vk Pm − UkQm

)
dx

+ i
4∑

k,m=1

eki2em

∫
γ

(
Vk Pm − UkQm

)
dy

+ i

4∑
k,m=1

eki3em

∫
γ

(
Vk Pm − UkQm

)
dz,

where dζ := dx+ i2dy + i3dz.
If mappings φ : Ωζ → H(C) and ψ : Ωζ → H(C) are continuous

together with partial derivatives of the first order in a domain Ωζ and Σζ

is an arbitrary piece-smooth surface in Ωζ with a rectifiable Jordan edge
γζ , then the following analogue of the Stokes formula is true:∫

γζ

φ(ζ) dζ ψ(ζ) =

∫
Σζ

(
∂φ

∂x
i2 ψ + φ i2

∂ψ

∂x
− ∂φ

∂y
ψ − φ ∂ψ

∂y

)
dxdy

+

(
∂φ

∂y
i3 ψ + φ i3

∂ψ

∂y
− ∂φ

∂z
i2 ψ − φ i2

∂ψ

∂z

)
dydz

+

(
∂φ

∂z
ψ + φ

∂ψ

∂z
− ∂φ

∂x
i3 ψ − φ i3

∂ψ

∂x

)
dzdx. (4.1)

In the next theorem we show that the right-hand side of the equality
(4.1) equals zero for the right-G-monogenic mapping Φ : Ωζ → H(C) and
the left-G-monogenic mapping Φ̂ : Ωζ → H(C). Note that the following
theorem is a generalization of Theorem 1 of [1].
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Theorem 4.1. Suppose that Φ : Ωζ → H(C) is a right-G-monogenic

mapping and Φ̂ : Ωζ → H(C) is a left-G-monogenic mapping in a domain
Ωζ , and γζ is a rectifiable Jordan edge of some piece-smooth surface in
Ωζ . Then ∫

γζ

Φ̂(ζ) dζ Φ(ζ) = 0. (4.2)

Proof. Using the formula (4.1) and the conditions (2.2) and (2.3), we
obtain∫

γζ

Φ̂(ζ) dζ Φ(ζ) =

∫
Σζ

(
∂Φ̂

∂x
i2Φ+ Φ̂ i2

∂Φ

∂x
− ∂Φ̂

∂y
Φ− Φ̂

∂Φ

∂y

)
dxdy

+

(
∂Φ̂

∂y
i3Φ+ Φ̂ i3

∂Φ

∂y
− ∂Φ̂

∂z
i2Φ− Φ̂ i2

∂Φ

∂z

)
dydz

+

(
∂Φ̂

∂z
Φ+ Φ̂

∂Φ

∂z
− ∂Φ̂

∂x
i3Φ− Φ̂ i3

∂Φ

∂x

)
dzdx

=

∫
Σζ

(
Φ̂′(ζ) i2Φ(ζ) + Φ̂(ζ) i2Φ

′(ζ)− Φ̂′(ζ) i2Φ(ζ)− Φ̂(ζ) i2Φ
′(ζ)
)
dxdy

+
(
Φ̂′(ζ) i2i3Φ(ζ)+Φ̂(ζ) i3i2Φ

′(ζ)−Φ̂′(ζ) i3i2Φ(ζ)−Φ̂(ζ) i2i3Φ′(ζ)
)
dydz

+
(
Φ̂′(ζ) i3Φ(ζ) + Φ̂(ζ) i3Φ

′(ζ)− Φ̂′(ζ) i3Φ(ζ)− Φ̂(ζ) i3Φ
′(ζ)
)
dzdx = 0.

We understand a triangle △ζ as a plane figure bounded by three line
segments connecting three its vertices. Denote by ∂△ζ the boundary of
the triangle △ζ in the relative topology of its plane. Also we assume that
the triangle △ζ includes the boundary ∂△ζ .

Since every triangle △ζ ⊂ Ωζ can be included into a convex subset of
a domain Ωζ , the following statement is a consequence of Theorem 4.1.

Corollary 4.1. If Ωζ ⊂ E3 is a convex domain, a mapping Φ : Ωζ →
H(C) is right-G-monogenic and a mapping Φ̂ : Ωζ → H(C) is left-G-
monogenic, then for an arbitrary triangle △ζ such that △ζ ⊂ Ωζ , the
following equality is true: ∫

∂△ζ

Φ̂(ζ) dζ Φ(ζ) = 0. (4.3)
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Let us consider the algebra H̃(R) with the basis {ek, iek}4k=1 over the
field R which is isomorphic to the algebra H(C) over the field C. In the
algebra H̃(R) there exist another basis {ik}8k=1, where the vectors i1, i2, i3
are the same as in the equalities (2.1).

For the element a :=
8∑

k=1

akik, ak ∈ R, we define the Euclidian norm

∥a∥ :=

√√√√ 8∑
k=1

a2k .

Accordingly, ∥ζ∥ =
√
x2 + y2 + z2 and ∥i1∥ = ∥i2∥ = ∥i3∥ = 1.

Now we apply a scheme of the proof of the corresponding lemma for
a function given in the complex plane (see, e. g., [7]) to the proof of the
following statement.

Lemma 4.1. Suppose that φ : Ωζ → H(C) and ψ : Ωζ → H(C) are
continuous mappings in a simply connected domain Ωζ , and γζ is a rec-
tifiable curve in Ωζ . Then for an arbitrary ε > 0 there exists a broken
line Λζ ⊂ Ωζ , vertexes of which lie on the curve γζ , and such that∥∥∥∥∥

∫
γζ

φ(ζ) dζ ψ(ζ)−
∫
Λζ

φ(ζ) dζ ψ(ζ)

∥∥∥∥∥ < ε. (4.4)

Proof. Let us consider a closed domain Dζ ⊂ Ωζ , containing inside the
curve γζ . Since φ and ψ are continuous at every point of the domain
Dζ , then it is uniformly continuous in this domain. It means that the
product of these mappings is uniformly continuous too. Thus, for an
arbitrary ε1 > 0 there exists a number δ(ε) > 0 such that

∥φ(ζ ′)ψ(ζ ′)− φ(ζ ′′)ψ(ζ ′′)∥ < ε1, (4.5)

if |ζ ′ − ζ ′′| < δ(ε), where ζ ′, ζ ′′ are any points of the domain Dζ . In
addition, under the same assumptions, the following inequalities are true:

∥φ(ζ ′) i2 ψ(ζ ′)− φ(ζ ′′) i2 ψ(ζ ′′)∥ < ε2, (4.6)

∥φ(ζ ′) i3 ψ(ζ ′)− φ(ζ ′′) i3 ψ(ζ ′′)∥ < ε3. (4.7)

Let us divide the curve γζ into the n arcs Q0
ζ , Q

1
ζ , . . . , Q

n−1
ζ so that

the length of each of them was less than δ and enter the broken curve
Λζ so that their broken links L0

ζ , L
1
ζ , . . . , L

n−1
ζ tied these arcs. By ζ0,

ζ1, . . . , ζn−1, ζn denote the vertexes of the broken curve Λζ . Since the

kts-mini
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length of every arc Qk
ζ is less than δ, the distance between any two

points on the same arc especially less than δ. The same is true for links
Lk
ζ .

We compare the value of integral along the curve γζ with the value of
the same integral along the broken curve Λζ . For this goal we consider
a sum, which is an approximate value of the integral

∫
γζ

φ(ζ) dζ ψ(ζ):

S := φ(ζ0)∆ζ0 ψ(ζ0) + φ(ζ1)∆ζ1 ψ(ζ1) + · · ·+ φ(ζn−1)∆ ζn−1ψ(ζn−1) .
(4.8)

Since ∆ζk =
∫
Qk

ζ

dζ, the equality (4.8) can be represented in the form

S :=

∫
Q0

ζ

φ(ζ0) dζ ψ(ζ0)+

∫
Q1

ζ

φ(ζ1) dζ ψ(ζ1)+ · · ·+
∫

Qn−1
ζ

φ(ζn−1) dζ ψ(ζn−1).

(4.9)
On the other hand, the integral

∫
γζ

φ(ζ) dζ Ψ(ζ) can be represented in the

form of the sum of the integrals along the arcs Qk
ζ :∫

γζ

φ(ζ) dζ ψ(ζ) =

∫
Q0

ζ

φ(ζ) dζ ψ(ζ)

+

∫
Q1

ζ

φ(ζ) dζ ψ(ζ) + · · ·+
∫

Qn−1
ζ

φ(ζ) dζ ψ(ζ). (4.10)

Consider the difference of the equations (4.10) and (4.9):∫
γζ

φ(ζ) dζ ψ(ζ)− S =

∫
Q0

ζ

(
φ(ζ) dζ ψ(ζ)− φ(ζ0) dζ ψ(ζ0)

)

+

∫
Q1

ζ

(
φ(ζ) dζ ψ(ζ)− φ(ζ1) dζ ψ(ζ1)

)

+ · · ·+
∫

Qn−1
ζ

(
φ(ζ) dζ ψ(ζ)− φ(ζn−1) dζ ψ(ζn−1)

)

=

∫
Q0

(
φ(ζ)ψ(ζ)− φ(ζ0)ψ(ζ0)

)
dx+

∫
Q0

(
φ(ζ) i2 ψ(ζ)− φ(ζ0) i2 ψ(ζ0)

)
dy
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+

∫
Q0

(
φ(ζ) i3 ψ(ζ)− φ(ζ0) i3 ψ(ζ0)

)
dz

+ · · ·+
∫

Qn−1

(
φ(ζ)ψ(ζ)− φ(ζ0)ψ(ζ0)

)
dx

+

∫
Qn−1

(
φ(ζ) i2 ψ(ζ)− φ(ζ0) i2 ψ(ζ0)

)
dy

+

∫
Qn−1

(
φ(ζ) i3 ψ(ζ)− φ(ζ0) i3 ψ(ζ0)

)
dz.

Since on the every arc Qk
ζ the inequalities (4.5) – (4.7) are true, we

obtain ∥∥∥∥∥
∫
γζ

φ(ζ) dζ ψ(ζ)− S

∥∥∥∥∥ < (ε1Q0
x + ε2Q

0
y + ε3Q

0
z

)
+ . . .

. . .+
(
ε1 · Qn−1

x +ε2Q
n−1
y +ε3Q

n−1
z

)
< εQ0+ · · ·+εQn−1 < εL, (4.11)

where Qj
x, Q

j
y, Q

j
z are lengths of the projections of the arc Qj into the

axes Ox, Oy, Oz, respectively, ε := max{ε1, ε2, ε3} and L is the length
of the curve γζ .

In the same way we estimate the difference
∫
Λζ

φ(ζ) dζ ψ(ζ) − S and

obtain ∥∥∥∥∥
∫
γζ

φ(ζ) dζ ψ(ζ)− S

∥∥∥∥∥ < εL. (4.12)

Taking into account the inequalities (4.11) and (4.12), we have∥∥∥∥∥
∫
γζ

φ(ζ) dζ ψ(ζ)−
∫
Λζ

φ(ζ) dζ ψ(ζ)

∥∥∥∥∥ ≤
∥∥∥∥∥
∫
γζ

φ(ζ) dζ ψ(ζ)− S

∥∥∥∥∥
+

∥∥∥∥∥S −
∫
Λζ

φ(ζ) dζ ψ(ζ)

∥∥∥∥∥ < 2εL.

Now, using Corollary 4.1 and Lemma 4.1, we prove the following
analogue of the Cauchy theorem for an arbitrary rectifiable curve in a
convex domain.
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Theorem 4.2. Suppose that Φ : Ωζ → H(C) is a right-G-monogenic

mapping and Φ̂ : Ωζ → H(C) is a left-G-monogenic mapping in a convex
domain Ωζ . Then for any closed rectifiable Jordan curve γζ ⊂ Ωζ the
equality (4.2) is true.

Proof. Basing on Lemma 4.1, we inscribe the broken curve Λζ into the
curve γζ so that the inequality (4.4) holds. Then we divide Λζ into
triangles by the diagonals starting from a fixed vertex of Λζ . Since the
domain Ωζ is convex, all obtained triangles contained in Ωζ . By Corollary
4.1, the integral along the every triangle equals to zero. Then the integral
along the broken curve equals to zero too:∫

Λζ

φ(ζ) dζ ψ(ζ) = 0. (4.13)

Now, the equality (4.2) is a consequence of the relations (4.4) and (4.13).

In the case where Ωζ is an arbitrary domain, similarly to the proof of
Theorem 3.2 [8], we can prove the following statement.

Theorem 4.3. Let Φ : Ωζ → H(C) be a right-G-monogenic mapping and

Φ̂ : Ωζ → H(C) be a left-G-monogenic mapping in a domain Ωζ . Then
for every closed Jordan rectifiable curve γζ homotopic to a point in Ωζ ,
the equality (4.2) is true.

Proof. Let a curve γζ be defined by the equality ζ = ϕ(t), 0 ≤ t ≤ 1,
where ϕ(0) = ϕ(1) = ζ0, and let γζ be homotopic to the point ζ0. Then
there exists a continuous on the square Q := [0, 1]×[0, 1] mapping H(s, t)
of two real variables s and t, which takes values in the domain Ωζ and
such that

H(0, t) = ϕ(t), H(1, t) ≡ ζ0 ∀ t ∈ [0, 1],

H(s, 0) = H(s, 1) = ζ0 ∀ s ∈ [0, 1].

Since the mapping H is continuous on a compact set Q, its image
K := {H(s, t) : (s, t) ∈ Q} is a compact set in Ωζ .

Denote by ρ := min
ζ′∈K, ζ′′∈∂Ωζ

||ζ ′ − ζ ′′||.

The mapping H is also uniformly continuous on the set Q. It means
that there exists δ > 0 such that

∀ (s, t), (s′, t′) : |s′−s| < δ, |t′−t| < δ ⇒ ||H(s′, t′)−H(s, t)|| < ρ

2
. (4.14)
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Let us choose a set of numbers 0 = t0 < t1 < . . . < tn = 1, which are
satisfying the inequalities tj − tj−1 < δ, j = 1, 2, . . . , n, and put s1 = t1.
Let ζ0,j := H(0, tj), ζ1,j := H(s1, tj) for j = 1, 2, . . . , n − 1 and denote

by Lj
ζ a segment, beginning at the point ζ0,j and ending at the point ζ1,j.

Also consider a curve γ
[1]
ζ := {H(s1, t) : 0 ≤ t ≤ 1}.

For a Jordan oriented curve γζ , by γζ [ζ1, ζ2] denote the arc beginning
at the point ζ1 and ending at the point ζ2.

Since of the inequality (4.14), the arcs γζ [ζ0, ζ01], γ
[1]
ζ [ζ0, ζ11] and the

segment L1
ζ are contained in the ball S(ζ0) := {ζ ∈ E3 : ||ζ − ζ0|| <

ρ}. Since S(ζ0) is a convex set and is contained in the domain Ωζ , the
following equality is a consequence of Theorem 4.2∫
γζ [ζ0,ζ01]

Φ̂(ζ) dζ Φ(ζ) +

∫
L1
ζ

Φ̂(ζ) dζ Φ(ζ) =

∫
γ
[1]
ζ [ζ0,ζ11]

Φ̂(ζ) dζ Φ(ζ). (4.15)

The next inequalities follows from the inequalities (4.14):

||ζ − ζ0,j || <
ρ

2
∀ ζ ∈ γζ [ζ0,j , ζ0,j+1],

||ζ − ζ1,j || <
ρ

2
∀ ζ ∈ γ[1]ζ [ζ1,j , ζ1,j+1], ||ζ1,j − ζ0,j || <

ρ

2

for j = 1, 2, . . . , n− 2. Then the arcs γζ [ζ0,j , ζ0,j+1], γ
[1]
ζ [ζ1,j , ζ1,j+1] and

the segments L1
ζ , L

j+1
ζ are contained in the ball S(ζ0,j) := {ζ ∈ E3 :

||ζ − ζ0,j || < ρ} for j = 1, 2, . . . , n − 2. Since S(ζ0,j) is a convex set and
is contained in Ωζ , the next equalities follows from the Theorem 4.2

−
∫
Lj
ζ

Φ̂(ζ) dζ Φ(ζ) +

∫
γζ [ζ0,j ,ζ0,j+1]

Φ̂(ζ) dζ Φ(ζ)+

+

∫
Lj+1
ζ

Φ̂(ζ) dζ Φ(ζ) =

∫
γ
[1]
ζ [ζ1,j ,ζ1,j+1]

Φ̂(ζ) dζ Φ(ζ) (4.16)

for j = 1, 2, . . . , n− 2.

Finally, similarly to the equality (4.15) we obtain the equality

−
∫

Ln−1
ζ

Φ̂(ζ) dζ Φ(ζ) +

∫
γζ [ζ0,n−1,ζ0]

Φ̂(ζ) dζ Φ(ζ) =

∫
γ
[1]
ζ [ζ1,n−1,ζ0]

Φ̂(ζ) dζ Φ(ζ).

(4.17)
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Adding all the equalities (4.15)–(4.17), we obtain the equality∫
γζ

Φ̂(ζ) dζ Φ(ζ) =

∫
γ
[1]
ζ

Φ̂(ζ) dζ Φ(ζ) (4.18)

Then we put sj = tj and consider the curve γ
[j]
ζ := {H(sj , t) : 0 ≤

t ≤ 1} for j = 1, 2, . . . , n. Similarly to the equality (4.18), we obtain the
equalities∫

γ
[1]
ζ

Φ̂(ζ) dζ Φ(ζ) =

∫
γ
[2]
ζ

Φ̂(ζ) dζ Φ(ζ) = . . . =

∫
γ
[n]
ζ

Φ̂(ζ) dζ Φ(ζ).

Hence, we have∫
γζ

Φ̂(ζ) dζ Φ(ζ) =

∫
γ
[n]
ζ

Φ̂(ζ) dζ Φ(ζ),

where the curve γ
[n]
ζ degenerates to the point, because H(1, t) ≡ ζ0. Now,

taking into account the equality∫
γ
[n]
ζ

Φ̂(ζ) dζ Φ(ζ) = 0,

we complete the proof of the theorem.

Now, let us consider a curvilinear Cauchy integral theorem for G-
monogenic mappings in the case where a curve of integration lies on the
boundary of a domain of G-monogeneity.

Let a closed Jordan rectifiable curve γζ ≡ γζ(t), where 0 ≤ t ≤ 1,
which is homotopic to an interior point ζ0 ∈ Ωζ , be given on the boundary
∂Ωζ of the domain Ωζ . It means that there exists a mapping H(s, t),
which is continuous on the square [0, 1]× [0, 1], and such that H(0, t) =
γζ(t), H(1, t) ≡ ζ0, and all curves γsζ ≡ γsζ (t) := {ζ = H(s, t) : 0 ≤ t ≤ 1}
for 0 < s < 1 are contained in the domain Ωζ .

Consider also the curves Γt
ζ ≡ Γt

ζ(s) := {ζ = H(s, t) : 0 ≤ s ≤ 1}. By
mes denote the linear Lebesque measure of a rectifiable curve.

The following theorem can be proved similarly to the proof of Theo-
rem 2 in [2] and Theorem 4 in [9].
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Theorem 4.4. Suppose that Φ : Ωζ → H(C) and Φ̂ : Ωζ → H(C) are
continuous mapping in the closure Ωζ of a domain Ωζ , Φ is right-G-

monogenic and Φ̂ is left-G-monogenic mapping in Ωζ . Suppose also that
γζ ⊂ ∂Ωζ is any closed Jordan rectifiable curve homotopic to a point
ζ0 ∈ Ωζ such that the curves of the family {Γt

ζ : 0 ≤ t ≤ 1} are rectifiable
and the set {mes γsζ : 0 ≤ s ≤ 1} is bounded. Then the equality (4.2), is
true.
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