On equicontinuity of generalized quasiisometries on Riemannian manifolds

E. SEVOST’YANOV, S. SKVORTSOV
Zhitomir Ivan Franko State University, Zhitomir
esevostyanov2009@mail.ru, serezha.skv@yandex.ru

Everywhere further D is a domain on a Riemannian manifold (\mathbb{M}^n, g), $n \geq 2$, g is a Riemannian metric on \mathbb{M}^n and v is a volume on \mathbb{M}^n, as well. Let (X, μ) be a metric measure space and let $1 \leq p < \infty$. We say that X admits a $(1;p)$-Poincare inequality if there is a constant $C > 1$ such that

$$
\frac{1}{\mu(B)} \int_B |u - u_B| d\mu(x) \leq C \cdot (\text{diam } B) \left(\frac{1}{\mu(B)} \int_B \rho^p d\mu(x) \right)^{1/p}
$$

for all balls B in X, for all bounded continuous functions u on B, and for all upper gradients ρ of u, $u_B := \frac{1}{\mu(B)} \int_B u d\mu(x)$. Metric measure spaces where the inequalities $\frac{1}{R^n} \leq \mu(B(x_0, R)) \leq CR^n$ hold for a constant $C \geq 1$, every $x_0 \in X$ and all $R < \text{diam } X$, are called Ahlfors n-regular. We write $\varphi \in FMO(x_0)$, if $\lim_{\varepsilon \to 0} \int_{B(x_0, \varepsilon)} \frac{1}{v(B(x_0, \varepsilon))} \int_{B(x_0, \varepsilon)} |\varphi(x) - \varphi_x| dv(x) < \infty$,

$$
\varphi_x := \frac{1}{v(B(x_0, \varepsilon))} \int_{B(x_0, \varepsilon)} \varphi(x) \ dv(x).
$$

Theorem. Let $p \in [n - 1, n]$ and $\delta > 0$, and let a Riemannian manifold \mathbb{M}^n be a connected Ahlfors n-regular space. Assume that \mathbb{M}^n supports $(1;p)$-Poincare inequality. Let $B_R \subset \mathbb{M}^n$ be a fixed ball of a radius R, and let $Q: D \to [0, \infty]$ be a measurable function. Denote $\mathfrak{R}_{x_0, Q, B_R, \delta, p}(D)$ a family of all open discrete (p,Q)-mappings $f: D \to B_R$ at $x_0 \in D$, for which there exists a continuum $K_f \subset B_R$ such that $f(x) \notin K_f$ for all $x \in D$ and, besides that, $\text{diam } K_f \geq \delta$. Then $\mathfrak{R}_{x_0, Q, B_R, \delta, p}(D)$ is equicontinuous at $x_0 \in D$ whenever $Q \in FMO(x_0)$.