СИСТЕМА Gd-Mn-Ge ПРИ 800° С

<u>Коник М. Б.,</u> Ромака Л. П., Стадник Ю. В. Львівський національний університет імені Івана Франка, <u>mariya.konyk@lnu.edu.ua</u>

Наша робота є продовженням систематичних досліджень потрійних систем за участю рідкісноземельних металів (R), перехідних металів (V, Cr, Mn, Fe, Co, Ni, Cu) і германію, які проводяться на кафедрі неорганічної хімії Львівського національного університету.

Проведений аналіз вивченості потрійних систем R-Мп-Ge (R = Ce, Nd, Gd, Y, Tb, Er, Yb), для яких побудовано ізотермічні перерізи діаграм фазових рівноваг, засвідчив що досліджені системи характеризуються утворенням переважно 3-4 тернарних сполук за винятком системи Gd-Mn-Ge [1-4]. У системі Gd-Mn-Ge за температури відпалювання 700° C встановлено існування дев'яти тернарних сполук [3]. Кристалографічні характеристики приведено для семи тернарних германідів, які належать до відомих структурних типів: GdMn₆Ge₆ (CT MgFe₆Ge₆), GdMn₄Ge₂ (CT ZrFe₄Si₂), GdMn₂Ge₂ (CT CeGa₂Al₂), GdMn_{1-x}Ge₂ (CT CeNiSi₂), Gd₆Mn₈Ge₈ (CT Gd₆Cu₈Ge₈), GdMnGe (CT TiNiSi), GdMn_{0,64}Ge₇ (CT SmCo_{0,64}Ge₇). Кристалічна структура двох тернарних сполук ~ GdMn₆Ge₃ i ~ Gd₃Mn₂Ge₃ не була встановлена, у зв'язку із чим окремі фазові поля потребують уточнення.

Також зазначається, що для окремих сполук гомогенізація сплавів проводилась за вищих температур, зокрема сполуку $GdMn_6Ge_6$ (СТ $MgFe_6Ge_6$) підтверджено при 800° C, $GdMn_{1-x}Ge_2$ (СТ CeNiSi₂) – при 900° C. Враховуючи літературні дані, наша мета – дослідити взаємодію компонентів і побудувати ізотермічний переріз діаграми стану системи Gd–Mn–Ge в повному інтервалі концентрацій при 800° C.

Для побудови діаграми фазових рівноваг потрійної системи Gd-Mn-Ge виготовлено 44 потрійних і подвійних сплавів, гомогенізованих при температурі 800° С впродовж 700 годин. Контроль сплавів після відпалювання проводили методами рентгенівського фазового (ДРОН-2.0М, FeKa – випромінювання) та рентгеноспектрального (електронний мікроскоп TESKAN VEGA 3 LMU, оснащений рентгенівським аналізатором з енергодисперсійною спектроскопією) аналізів.

У подвійних системах Gd–Mn і Mn–Ge згідно з діаграмами стану [5] підтверджено існування шести бінарних сполук за температури відпалювання: GdMn₂ (CT MgCu₂), Gd₆Mn₂₃ (CT Th₆Mn₂₃), GdMn₁₂ (CT ThMn₁₂), Mn₅Ge₃ (CT Mn₅Si₃), Mn₅Ge₂ (CT Mg₅Ge₂), Mn₃Ge (CT Mg₃Cd). Подвійна система Gd–Ge за використаної температури відпалювання характеризується утворенням семи бінарних германідів гадолінію. Згідно із наведеною діаграмою стану підтверджено існування п'яти бінарних сполук Gd₅Ge₃ (CT Mn₅Si₃), Gd₅Ge₄ (CT Sm₅Ge₄), GdGe (CT TII), GdGe_{1,5} (CT AlB₂), GdGe_{1,63} (CT ThSi₂) [5]. Оскільки в літературних джерелах містяться відомості про сполуки Gd₃Ge₄ і Gd₁₁Ge₁₀ [6, 7], які відсутні на діаграмі стану системи Gd–Ge, в ході дослідження були додатково виготовлені зразки відповідних стехіометричних складів. Рентгенофазовий та рентгеноспектральний аналізи виготовлених та відпалених при 800°С сплавів засвідчили утворення сполук Gd₃Ge₄ (CT Er₃Ge₄) та Gd₁₁Ge₁₀ (CT Ho₁₁Ge₁₀) за вибраної температури дослідження.

Кристалографічні характеристики шести тернарних сполук системи Gd–Mn–Ge наведено в табл. 2. За температури 800° С не було підтверджено утворення трьох сполук: ~ GdMn₆Ge₃, ~ Gd₃Mn₂Ge₃, для яких кристалічна структура не встановлена, і GdMn_{0,64}Ge₇ (CT SmCo_{0,64}Ge₇).

Таблиця 1

		CTDURTUD						
Номінальний	Фаза	структур- ний	Періоди гратки, нм			Дані ЕДРС, ат. %		
склад, а1. 70		ТИП	а	b	С	Gd	Mn	Ge
Gd ₆₂ Mn ₃₃ Ge ₅	Gd ₅ Ge ₃	Mn_5Si_3	0.8542(3)		0.6436(4)	65.52		34.48
	GdMn ₂	MgCu ₂	0.7770(2)			32.54	67.46	
	(Gd)	Mg	0.3559(3)		0.5696(3)	100.0		
Gd ₆₀ Mn ₁₃ Ge ₂₇	Gd ₅ Ge ₃	Mn ₅ Si ₃	0.8567(9)		0.6442(2)	66.52	0.35	33.13
	GdMn ₂	MgCu ₂	0.7769(2)			31.98	68.02	
	(Gd)	Mg	0.3568(3)		0.5774(5)	100.0		
Gd ₁₅ Mn ₅₅ Ge ₃₀	GdMn ₂ Ge	CeAl ₂ Ga ₂	0.4029(2)		1.0885(3)			
	GdMn ₄ Ge	ZrFe ₄ Si ₂	0.7643(3)		0.3958(4)			
	Gd ₃ Mn ₄ Ge	$Gd_3Cu_4Ge_4$	1.4017(7)	0.7121(4)	0.4209(4)			
Gd ₁₃ Mn ₅₄ Ge ₃₃	GdMn ₂ Ge	CeAl ₂ Ga ₂	0.4030(3)		1.0883(4)	20.28	40.77	38.95
	$GdMn_4Ge_2 \\$	ZrFe ₄ Si ₂	0.7686(4)		0.3957(4)	14.08	57.97	27.95
	Mn ₅ Ge ₂	Mn ₅ Ge ₂	0.7195(4)		1.3073(5)	1.34	68.95	29.71
$Gd_{50}Mn_{15}Ge_{35}$	Gd ₅ Ge ₃	Mn_5Si_3	0.8567(6)		0.6443(3)	64.91		35.09
	GdMnGe	TiNiSi	0.7124(4)	0.4166(3)	0.8188(4)	32.44	33.29	34.27
$Gd_{45}Mn_{15}Ge_{40}$	GdMnGe	TiNiSi	0.7121(4)	0.4168(3)	0.8188(5)	32.59	32.92	34.49
	$Gd_{11}Ge_{10}$	Ho ₁₁ Ge ₁₀	1.0964(5)		1.6675(6)	53.53		46.47
$Gd_{30}Mn_{25}Ge_{45}$	GdMn ₂ Ge	CeAl ₂ Ga ₂	0.4030(3)		1.0885(4)	19.82	40.57	39.61
	GdGe	TlI	0.4328(3)	1.0781(6)	0.3976(4)	49.34		50.66
	Gd ₃ Ge ₄	Er ₃ Ge ₄	0.4102(2)	1.0741(5)	1.4343(5)	41.68	1.30	57.02

Фазовий склад окремих сплавів системи Gd-Mn-Ge при 800°C (дані РФА та ЕДРС аналізу)

Таблиця 2

К	ристалог	рафічн	i xapa	ктеристики	сполук	системи	Gd-Mn-0	Ge
					2			

Сполука	Просторова	Структурний	Періоди гратки, нм		
	група	ТИП	а	b	С
GdMn ₆ Ge ₆	P6/mmm	MgFe ₆ Ge ₆	0,5240(1)	—	0,8186(2)
GdMn ₄ Ge ₂	P4 ₂ /mnm	ZrFe ₄ Si ₂	0,7644(4)	_	0,3957(3)
GdMnGe	Pnma	TiNiSi	0,7123(3)	0,4169(2)	0,8202(3)
Gd ₃ Mn ₄ Ge ₄	Immm	$Gd_3Cu_4Ge_4$	0,4474(2)	_	0,7155(3)
GdMn ₂ Ge ₂	I4/mmm	CeAl ₂ Ga ₂	1,4017(7)	0,7121(4)	0,4209(4)
GdMn _{1-x} Ge ₂	Стст	CeNiSi ₂	0,4165(2)	1,6220(3)	0,4035(3)

1. Salamakha P. S., Sologub O. L., Bodak O. I. In: Cschneidner K. A. et al (Eds.) – Handbook on the Physics and Chemistry of Rare Earths. – Amsterdam. – The Nederlands // Elsevier. – 1999. – Vol. 27. - P. 1-223.

2. Konyk M. B., Bodak O. I. Isothermal section of the Ce–Mn–Ge ternary system at 670 K // J. Alloys Compd. – 2005. – Vol. 387. – P. 243–245.

3. Коник М., Ромака Л., Горинь А., Герман Н., Серкіз Р. Система Ү–Мп–Ge при 870 К // Вісник Львів. ун-ту. Серія хім. – 2015. – Вип. 56. – С. 25–

4. Коник М. Б., Ромака Л. П., Ромака В. В. Взаємодія компонентів у потрійній системі Ег-Мп-Ge при 870 К // Фіз. хім. тверд. тіла – 2012. – Т. 13, № 4. – С. 956 – 963.

5. Massalski T. B. Binary Alloys Phase Diagrams / T. B. Massalski // ASM International, Metals Park, Ohio, 1990.

6. Pukas S. Y., Gladyshevskii R. E. Novel compound with Er_3Ge_4 crystal structure in the Gd–Ge system // Phys. Chem. Solid State. – 2007. – Vol. 8. – P. 347–351.

7. Tharp A. G., Smith G. S., Johnson Q. Structure of the rare earth germanides at or near equiatomic proportions // Acta Crystallogr. – 1966. – Vol. 20. – P. 583–585.