EXPERIMENTAL STUDY OF THE Tb-Cu-Sn TERNARY SYSTEM

<u>Romaka L.</u>, Konyk M., Stadnyk Yu. Ivan Franko L'viv National University, <u>lyubov.romaka@gmail.com</u>

Study of the metallic systems by isothermal sections at selected temperatures reveals information on the formation, stability, homogeneity range and crystal structure of the intermetallics. The R-Cu-Sn (R- rare earths) systems were studied for the most rare earths [1,2] except Eu, Tb, and Tm. The phase relations in the Tb-Cu-Sn system were studied at 670 K using X-ray diffractometry and Scanning Electron Microscopy. According to performed X-ray and EPM analyses the Tb-Cu-Sn system at 670 K is characterized by formation of five ternary compounds (Fig. 1, Table). SEM-pictures of some alloys are shown in Fig. 2. The interstitial-type of the solid solution TbCu_xSn₂ based on the TbSn₂ (ZrSi₂-type) binary was observed up to 4 at.% Cu (a = 0.4397(4), b = 1.6211(2), c = 0.4326(3) nm for Tb₃₂Cu₄Sn₆₄). Solubility of Sn in the TbCu₅ binary (AuBe₅-type) extends up to 5 at.%. Significant solubility of the third component in the other binaries was not observed under used conditions.

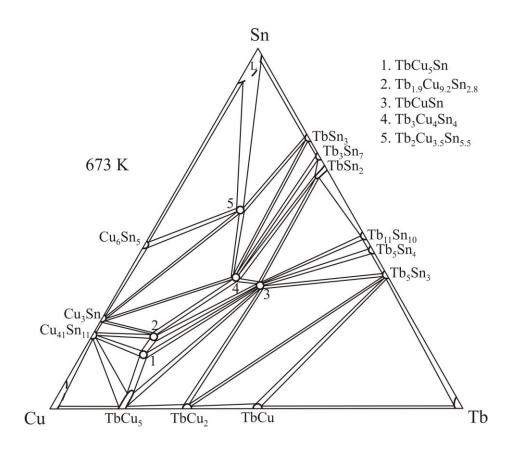
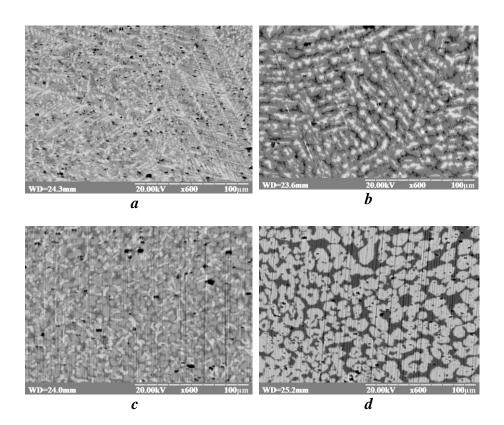



Fig. 1 Isothermal section of the Tb-Cu-Sn system at 670 K

Fig. 2 SEM pictures of the Tb-Cu-Sn alloys: *a*) Tb₅₀Cu₄₀Sn₁₀ (TbCu–grey phase, TbCu₂–dark phase, Tb₅Sn₃-light phase); *b*) Tb₁₇Cu₆₆Sn₁₇ (TbCu₅Sn–grey phase, TbCuSn–light phase, Tb_{1.9}Cu_{9.2}Sn_{2.8}– dark phase); *c*) Tb₃₅Cu₄₅Sn₂₀ (TbCuSn– grey phase, Tb₅Sn₃– light phase, TbCu₂–dark phase); *d*) Tb₁₃Cu₅₇Sn₃₀ (Tb₃Cu₄Sn₄– light phase, Cu₃Sn – dark phase).

Table Crystallographic characteristics of the ternary compounds in the Tb-Cu-Sn system

Compounds	Structure type	Lattice parameters, nm		
		а	b	c
TbCu ₅ Sn	CeCu ₅ Au	0.82205(1)	0.4978(3)	1.0576(6)
$Tb_{1.9}Cu_{9.2}Sn_{2.8}$	$Dy_{1.9}Cu_{9.2}Sn_{2.8}$	0.50355(9)	-	2.0414(6)
TbCuSn	LiGaGe	0.4517(2)	-	0.7272(3)
Tb ₃ Cu ₄ Sn ₄	Gd ₃ Cu ₄ Ge ₄	0.4421(3)	0.6939(3)	1.4547(5)
Tb ₂ Cu _{3.5} Sn _{5.5}	Sm ₂ Cu ₄ Sn ₅	0.4404(4)	-	2.5854(3)

The investigated Tb-Cu-Sn and previously studied R-Cu-Sn systems with heavy rare earths showed a close analogy in stoichiometry and crystal structure of the most formed ternary compounds (except Yb-Cu-Sn system). Similarity of the all systems is demonstrated by the formation of the compounds RCuSn, $R_3Cu_4Sn_4$, $R_{1.9}Cu_{9.2}Sn_{2.8}$ and RCu_5Sn . The stannides with $Sm_2Cu_4Sn_5$ structure type realize in the systems with Gd, Tb and Dy.

- 1. Skolozdra R.V.: in: K.A. Gschneidner, Jr. and L. Eyring (Eds.), Handbook on the Physics and Chemistry of Rare Earths. 1997. 24
- 2. Romaka V.V., Romaka L.P., Krajovskyj V.Ya., Stadnyk Yu.V. Stannides of rare earth and transition metals. Lviv Polytech. Univ. 2015, 221 p.