$Gd_5Ge_4$  утворюються обмежені тверді розчини заміщення протяжністю 6 і 10 ат.% Sb, відповідно, а на основі бінарних стибідів GdSb і  $Gd_4Sb_3$  – протяжністю 6 і 28 ат.% Ge, відповідно. Розчинність третього компонента в інших бінарних сполуках не перевищує 1 ат.%.

У системі Gd–Ge–Sb при 600°С підтверджено існування двох відомих з літератури тернарних сполук – Gd<sub>6</sub>Ge<sub>4,3</sub>Sb<sub>11,7</sub> (власний CT) [2] і Gd<sub>5</sub>Ge<sub>2</sub>Sb<sub>2</sub> (CT Eu<sub>5</sub>As<sub>4</sub>) [3], а також синтезовано нову сполуку Gd<sub>2</sub>Ge<sub>2,88</sub>Sb<sub>0,65</sub> (CT Gd<sub>2</sub>Ge<sub>2,94</sub>Sn<sub>0,82</sub>). Встановлено, що при 600°С Gd<sub>5</sub>Ge<sub>2</sub>Sb<sub>2</sub> характеризується протяжною областю гомогенності (12 ат.% Ge/Sb) вздовж ізоконцентрати 55,5 ат.% Gd. Для всіх трьох тернарних сполук визначено параметри кристалічної структури (табл.).

Таблиця

| Сполука                                               | CT                                                   | СП           | ПГ   | Параметр   | и елементарно | ої комірки, Å |
|-------------------------------------------------------|------------------------------------------------------|--------------|------|------------|---------------|---------------|
| Gd <sub>6</sub> Ge <sub>4,3</sub> Sb <sub>11,7</sub>  | Gd <sub>6</sub> Ge <sub>4,3</sub> Sb <sub>11,7</sub> | <i>oI</i> 46 | Immm | 4,1420(4)  | 10,4411(9)    | 26,228(2)     |
| Gd <sub>2</sub> Ge <sub>2,88</sub> Sb <sub>0,65</sub> | $Gd_2Ge_{2,94}Sn_{0,82}$                             | oS32         | Cmcm | 4,0198(2)  | 30,3729(18)   | 4,1340(2)     |
| Cd Co Sh                                              | En Ac                                                | a\$26        | Cmaa | 15,169(7)- | 7,980(4)-     | 7,977(4)-     |
| Gu5Ge2,0-0,9SU2,0-3,1                                 | Eu5AS4                                               | 0550         | Cmce | 15,240(7)  | 8,025(4)      | 8,039(3)      |

| TC       | 1 • •    |                |           |        |         | $\alpha$ 1             | 0      | 01      | (0000 |
|----------|----------|----------------|-----------|--------|---------|------------------------|--------|---------|-------|
| Кристало | графічні | характеристики | тернарних | сполук | системи | $(\dot{\mathbf{t}}d -$ | -( ie- | -Sb при | 600°C |

1. Rodríguez-Carvajal J. Recent developments of the Program FULLPROF // Commission on Powder Diffraction (IUCr), Newsletter. – 2001. – 26. – P. 12–19.

2. Lam R., McDonald R., Mar A. Rare-earth germanium antimonides  $RE_6Ge_{5-x}Sb_{11+x}$  (RE = La-Nd, Sm, Gd-Dy). I. Syntheses and structures // Inorg. Chem. – 2001. – 40. – P. 952–959.

3. Yao J., Zhang Y., Wang P.L., Lutz L., Miller G.J., Mozharivskyj Y.A. Electronically induced ferromagnetic transitions in  $Sm_5Ge_4$ -type magnetoresponsive phases // Phys. Rev. Lett. – 2013. – 110. – 077204.

## КРИСТАЛІЧНА СТРУКТУРА СПОЛУКИ CeNiIn<sub>0.57</sub>Sn<sub>0.43</sub>

<u>Домінюк Н.,</u> Горяча С., <u>Ничипорук Г., Муць І., Заремба В.</u>

Львівський національний університет імені Івана Франка, <u>nataliia.dominiuk@lnu.edu.ua</u>

Серед значної кількості тернарних інтерметалідів рідкісноземельних металів сполуки еквіатомного складу Се*TX* (*T* – *d*-метал, *X* – *p*-елемент III-V груп періодичної системи) привертають увагу своїми структурними особливостями та різноманіттям фізичних властивостей. Значний вплив має заміщення атомів *d*-металу *p*-елементом (Ge) у сполуках СеRhIn та CePdIn на їхні структурні характеристики та магнітні властивості. Під час взаємного заміщення *p*-елементів у системах CeNiIn<sub>1-x</sub> $M_x$  (*M* = Al, Ga, Ge, Sb) формуються тверді розчини різної протяжності. Утворення монокристалів та уточнення їх кристалічної структури підтверджують розчинність четвертого компонента у вихідних сполуках. Дослідження кристалічної структури сполуки CeNiIn<sub>0,57</sub>Sn<sub>0,43</sub>, що є частиною робіт по вивченню взаємодії компонентів у системі CeNiIn<sub>1-x</sub>Sn<sub>x</sub> при 873 K, є предметом нашої роботи.

Синтез монокристалів для структурних досліджень проведено зі сплаву складу Се<sub>0.333</sub>Ni<sub>0.333</sub>In<sub>0.186</sub>Sn<sub>0.148</sub> за спеціальною методикою. Попередньо сплавлений зразок запаяли в танталовий контейнер, помістили у вакуумовану кварцову ампулу і піддавали спеціальній термічній обробці в муфельній печі з автоматичним контролем температури нагрівання і охолодження. Взаємодії сплаву з матеріалом контейнера не спостерігали. Отримані монокристали неправильної форми протестували методом Лауе для подальших структурних експериментальних одержали лослілжень. Масив даних на монокристальному дифрактометрі Stoe IPDS-II (Мо Кα-випромінювання). Структуру розв'язано та уточнено в рамках просторової групи P-62m з використанням комплексу програм SHELXL-97 [1]. Сполука CeNiIn<sub>0.57</sub>Sn<sub>0.43</sub> кристалізується в структурному типі ZrNiAl [2]: a = 0,74213(10); c = 0,40825(8) нм;  $R_1 = 0,0155$ ;  $wR_2 = 0,0303$ ; 282 незалежних відбиття *hkl*, 15 уточнюваних параметрів. Атоми індію та стануму утворюють статистичну суміш, склад якої під час розрахунків фіксували згідно вихідного складу зразка та результатів EDX аналізу монокристала (електронний скануючий мікроскоп Leica 420*i*): 33(1) ат. % Се, 33(1) ат. % Ni, 19(1) ат.% In, 15(1) ат. % Sn, оскільки розділити ці два елементи ренгенівськими методами неможливо через їхню близьку електронну будову.

У табл. 1 наведено уточнені координати та параметри теплового коливання атомів у структурі сполуки CeNiIn<sub>0,57</sub>Sn<sub>0,43</sub>, а на рис. 1 зображено проекцію її кристалічної структури на площину XY.

## Таблиця 1

| 1''                 | 1 1         |            |     |     | <b>,</b>                       |
|---------------------|-------------|------------|-----|-----|--------------------------------|
| Атом                | ПСТ         | x          | у   | Z.  | $U_{ekb.} \cdot 10^2$ , $hm^2$ |
| Ce                  | 3f          | 0,58536(6) | 0   | 0   | 0,0106(1)                      |
| *М                  | 3 <i>g</i>  | 0,24557(7) | 0   | 1/2 | 0,0098(1)                      |
| Ni1                 | 2d          | 1/3        | 2/3 | 1/2 | 0,0119(2)                      |
| Ni2                 | 1 <i>a</i>  | 0          | 0   | 0   | 0,0127(3)                      |
| * <i>M</i> = 0,57 I | n + 0,43 Sn |            |     |     |                                |

Координати та параметри теплового коливання атомів у структурі сполуки CeNiIn<sub>0,57</sub>Sn<sub>0,43</sub>

Координаційними многогранниками для атомів Се є сімнадцятивершинники. Координаційне число для атомів статистичної суміші індію та стануму становить 12, а координаційними многогранниками є деформовані тетрагональні призми з центрованими бічними гранями. Атоми найменшого розміру (нікелю) розміщені в центрах тригональних призм з центрованими бічними гранями (КЧ = 9). Найкоротші віддалі в структурі цієї сполуки між атомами Ni2–M ( $\delta = 0,2736$  нм) та Ni1–M ( $\delta = 0,2855$  нм) є більшими від суми ковалентних радіусів, яка становить 0,2607 нм [3].



**Рис. 1** Проекція кристалічної структури сполуки CeNiIn<sub>0,57</sub>Sn<sub>0,43</sub> на площину *XY* та координаційні многогранники атомів

Частина роботи виконана в рамках дослідницької стипендії фонду ДААД (Німеччина).

1. Sheldrick G.M. SHELX–97: Program for Crystal Structure Refinement. University of Göttingen, Germany, 1997.

2. Крип'якевич П.І., Марків В.Я., Мельник Е.В. Кристалічні структури сполук ZrNiAl, ZrCuGa і їх аналогів // Доп. АН УРСР. Сер. А. 1967. № 8. С. 750–753.

3. Emsley J. The Elements. Oxford University Press. Oxford, U.K. 1999.