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AN ALGEBRAIC APPROACH FOR SOLVING FOURTH-ORDER

PARTIAL DIFFERENTIAL EQUATIONS

A. POGORUI1, T. KOLOMIIETS2 AND R. M. RODRÍGUEZ-DAGNINO3

Abstract. It is well-known that any solution of the Laplace equation is a real or imag-
inary part of a complex holomorphic function. In this paper, in some sense, we extend

this property into four order hyperbolic and elliptic type PDEs. To be more specific,
the extension is for a c-biwave PDE with constant coefficients, and we show that the

components of a differentiable function on the associated hypercomplex algebras provide

solutions for the equation.

1. Introduction

In this paper we are interested in finding the solution of the following equation(
∂4

∂x4
− 2c

∂4

∂x2∂y2
+

∂4

∂y4

)
u (x, y) = 0, c > 0. (1.1)

Depending on the value of c we may consider three cases. Namely, the case where 0 < c < 1
and we call it as the c-biwave equation of the elliptic type, the case where c > 1 and we
call it as the c-biwave equation of hyperbolic type, and in the case where c = 1 Eq.(1.1) is
the well-known biwave equation. The biwave equation has been used in modeling of d-wave
superconductors (see for instance [1], and references therein) or in probability theory [2, 3].
In [4] the author studied Eq.(1.1) in the case where c < −1 and considered its application
to theory of plain orthotropy.

It is easily verified that any equation of the form(
A
∂4

∂x4
+ 2B

∂4

∂x2∂y2
+ C

∂4

∂y4

)
u (x, y) = 0,

where AC > 0 and AB < 0 can be reduced to Eq.(1.1) by changing variables. To obtain all
solutions of Eq. (1.1) for 1 6= c > 0 we will use the method developed in [7]. According to
such approach we need a commutative algebra with basis containing e1, e2 such that

e4
1 − 2c e2

1e
2
2 + e4

2 = 0. (1.2)

Then, we study monogenic functions on the subspace of this algebra containing e1, e2

and show that any solution of Eq. (1.1) can be obtained as a component of such monogenic
functions.
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2. Hyperbolic case

Firstly we study Eq. (1.1) in the case where c > 1, which is said to be hyperbolic. Let
us consider an associative commutative algebra over the real field R

Ac = {xu + yf + ze + vfe : x, y, z, v ∈ R}

with a basis u, f , e, fe, where u is the identity element of Ac and the following Cayley table
holds fe = ef , f2 = u, e2 = u−mfe, where m =

√
2(c− 1).

The basis elements u, e satisfy Eq. (1.2).
It is easily verified that for c > 1 algebra Ac has the following idempotents

i1 =
k1

k1 + k2
u− f

√
2

k1 + k2
e,

i2 =
k2

k1 + k2
u +

f
√

2

k1 + k2
e, (2.1)

where k1 =
√
c+ 1−

√
c− 1, k2 =

√
c+ 1 +

√
c− 1.

Therefore, we have

i1 + i2 = u

and

i1 i2 =
k1k2

(k1 + k2)
2 u−

√
2k2

(k1 + k2)
2 fe +

√
2k1

(k1 + k2)
2 fe

− 2

(k1 + k2)
2 u +

2m

(k1 + k2)
2 fe = 0.

It is easily seen that

e = f
k1√

2
i2 − f

k2√
2
i1. (2.2)

Consider a subspace Bc of algebra Ac of the following form

Bc = {xu + ye | x, y ∈ R} .

Definition 2.1. A function g : Bc → Ac is called differentiable (or monogenic) on
Bc if for any Bc 3 w = xu + ye there exists a unique element g′ (w) such that for any
h ∈ Bc

lim
R3ε→0

g (w + εh)− g (w)

ε
= hg′ (w) ,

where hg′ (w) is the product of h and g′ (w) as elements of Ac.

It follows from [7] that a function g (w) = uu1 (x, y)+ f u2 (x, y)+eu3 (x, y)+ f eu4 (x, y)

is monogenic if and only if there exist continuous partial derivatives ∂ui(x,y)
∂x , ∂ui(x,y)

∂y , i =

1, 2, 3, 4 and it satisfies the following Cauchy-Riemann type conditions

e
∂

∂x
g (w) = u

∂

∂y
g (w) , ∀w ∈ Bc,

or
∂u1 (x, y)

∂y
=
∂u3 (x, y)

∂x
,

∂u2 (x, y)

∂y
=
∂u4 (x, y)

∂x
,
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∂u3 (x, y)

∂y
=
∂u1 (x, y)

∂x
−m∂u4 (x, y)

∂x
,

∂u4 (x, y)

∂y
=
∂u2 (x, y)

∂x
−m∂u3 (x, y)

∂x
.

It is also proved in [7] that if g is monogenic then its components ui (x, y) satisfies Eq.
(1.1).

By passing in Bc from the basis u, e to the basis i1, i2, we have

w = xu + y e =

(
x− f

k2√
2
y

)
i1 +

(
x+ f

k1√
2
y

)
i2.

Lemma 2.1. A function g : Bc → Ac, where c > 1, is differentiable if and only if it can
be represented as follows

g (w) = α (w1) i1 + β (w2) i2, (2.3)

where w1 = x−f k2√
2
y, w2 = x+f k1√

2
y and α (w1), β (w2) have continuous partial derivatives

∂
∂xα (w1) , ∂

∂yα (w1) , ∂
∂xβ (w2) , ∂

∂yβ (w2) satisfying

∂

∂y
α (w1) = −f

k2√
2

∂

∂x
α (w1) ,

∂

∂y
β (w2) = f

k1√
2

∂

∂x
β (w2) .

Proof. Sufficiency can be verified directly. Indeed,

∂

∂y
g (w) =

∂

∂y
α (w1) i1 +

∂

∂y
β (w2) i2

= −f
k2√

2

∂

∂x
α (w1) i1 + f

k1√
2

∂

∂x
β (w2) i2

On the other hand, taking into account Eqs. (2.1), (2.2), we have

e
∂

∂x
g (w) =

(
f
k1√

2
i2 − f

k2√
2
i1

)(
∂

∂x
α (w1) i1 +

∂

∂x
β (w2) i2

)
= −f

k2√
2

∂

∂x
α (w1) i1 + f

k1√
2

∂

∂x
β (w2) i2.

Hence,

e
∂

∂x
g (w) = u

∂

∂y
g (w) .

Now let us prove necessity. Suppose that a function

g (w) = uu1 (x, y) + f u2 (x, y) + eu3 (x, y) + f eu4 (x, y)

is monogenic on Bc. Let us define

α (w1) = u

(
u1 (x, y)− k2√

2
u4 (x, y)

)
+ f

(
u2 (x, y)− k2√

2
u3 (x, y)

)
,

β (w2) = u

(
u1 (x, y) +

k1√
2
u4 (x, y)

)
+ f

(
u2 (x, y) +

k1√
2
u3 (x, y)

)
.

Thus, we have

∂

∂y
α (w1) = u

(
∂u3 (x, y)

∂x
− k2√

2

(
∂u2 (x, y)

∂x
−m∂u3 (x, y)

∂x

))
+f

(
∂u4 (x, y)

∂x
− k2√

2

(
∂u1 (x, y)

∂x
−m∂u4 (x, y)

∂x

))
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= −f
k2√

2

∂u1 (x, y)

∂x
− u

k2√
2

∂u2 (x, y)

∂x
+ u

(
k2√

2
m+ 1

)
∂u3 (x, y)

∂x

+f

(
k2√

2
m+ 1

)
∂u4 (x, y)

∂x
.

Taking into account that

k2√
2
m+ 1 =

√
c2 − 1 + c =

k2
2

2
,

we have ∂
∂yα (w1) = −f k2√

2
∂
∂xα (w1).

Much in the same manner, it can be shown that ∂
∂yβ (w2) = f k1√

2
∂
∂xβ (w2). �

Remark 2.1. Considering variables x, y1 = − k2√
2
y and x, y2 = k1√

2
y, we have

∂

∂y1
α = f

∂

∂x
α, (2.4)

∂

∂y2
β = f

∂

∂x
β.

Hence, it is easily verified that if the components α1, α2 of α (w1) = α1 (w1) + fα2 (w1)

have continuous partial derivatives ∂2

∂x2αk (w1) and ∂2

∂y2
1
αk (w1), k = 1, 2 then they satisfy

the wave equation (
∂2

∂x2
− ∂2

∂y2
1

)
u (x, y1) = 0.

Similarly, the components β1, β2 of β (w2) = β1 (w2) + fβ2 (w2) satisfy the wave equation(
∂2

∂x2
− ∂2

∂y2
2

)
u (x, y2) = 0.

Theorem 2.2. u (x, y) is a solution of Eq. (1.1) for c > 1 if and only if for some
i, j ∈ {1, 2} it can be represented as follows

u (x, y) = αi (ω1) + βj (ω2) ,

where αi (ω1) , βj (ω2) are four times continuous differentiable components of α (ω1) and
β (ω2) of monogenic function g (ω) in the decomposition (2.3) i.e.,

g (ω) = α (ω1) i1 + β (ω2) i2,

where α (ω1) = α1 (ω1) + fα2 (ω1), β (ω2) = β1 (ω2) + fβ2 (ω2) satisfy Eq. (2.4).

Proof. As it was mentioned above u (x, y) = αi (ω1) + βj (ω2) is a solution for c > 1 of Eq.
(1.1).

Now suppose that u (x, y) is a solution of Eq. (1.1). It is easily verified that(
∂4

∂x4
− 2c

∂4

∂x2∂y2
+

∂4

∂y4

)
u (x, y) =

(
∂2

∂x2
− ∂2

∂y2
1

)(
∂2

∂x2
− ∂2

∂y2
2

)
u (x, y) = 0. (2.5)

It is easily seen that Eq. (2.5) is equivalent to the set of the following systems
(

∂2

∂x2 − ∂2

∂y2
2

)
u (x, y) = v1 (x, y) ,(

∂2

∂x2 − ∂2

∂y2
1

)
v1 (x, y) = 0

or
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(

∂2

∂x2 − ∂2

∂y2
1

)
u (x, y) = v2 (x, y) ,(

∂2

∂x2 − ∂2

∂y2
2

)
v2 (x, y) = 0.

Let us consider the first system. Since any solution of
(

∂2

∂x2 − ∂2

∂y2
k

)
vk (x, y) = 0 is of the

form vk (x, y) = f1 (x+ yk) +f2 (x− yk), where fi, i = 1, 2 are arbitrary twice differentiable
functions it follows from the second equation of the system that

v1 (x, y) = f1 (x+ y1) + f2 (x− y1) .

Thus, the first equation of the system is(
∂2

∂x2
− ∂2

∂y2
2

)
u (x, y) = f1 (x+ y1) + f2 (x− y1) . (2.6)

It is easily seen that a partial solution of Eq. (2.6) is

U (x, y) =
k2

1

k2
1 − k2

2

(
F1

(
x− k2√

2
y

)
+ F2

(
x+

k2√
2
y

))
=

k2
1

k2
1 − k2

2

(F1 (x+ y1) + F2 (x− y1)) ,

where F
′′

k = fk, k = 1, 2.
Thus, the general solution of the system is as follows

u (x, y) = g1 (x+ y2) + g2 (x− y2) +
k2

1

k2
1 − k2

2

(F1 (x+ y1) + F2 (x− y1))

Let us put α1 (ω1) =
k2
1

k2
1−k2

2
(F1 (x+ y1) + F2 (x− y1)) and β2 (ω2) = g1 (x+ y2)+g2 (x− y2).

Taking into account that
(

∂2

∂x2 − ∂2

∂y2
1

) [
k2
1

k2
1−k2

2
(F1 (x+ y1) + F2 (x− y1))

]
= 0 and(

∂2

∂x2 − ∂2

∂y2
2

)
[g1 (x+ y2) + g2 (x− y2)] = 0 we conclude the proof for the first system.

The case of the second system can be proved similarly. �

3. Elliptic case

Now we consider an associative commutative algebra Ac, where 0 < c < 1, over the
complex field C with a basis u, e and the following Cayley table u e = e u = e, e2 = u+ iµe,
where µ =

√
2(1− c). The matrix representations of u and e are

u =

(
1 0
0 1

)
, e =

(
0 1
1 iµ

)
.

Hence, we have the following traces of these representations

tr (uu) = 2, tr (ue) = iµ, tr (ee) = 2− µ2.

Since

det

(
tr (uu) tr (ue)
tr (ue) tr (ee)

)
= 2(1 + c) 6= 0,

then, Ac is a semi-simple algebra [8].
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By following similar steps as in Eq. (2.1) we can show that for 0 < c < 1 algebra Ac has
the following idempotents

I− =
k1

k1 + k2
u +

√
2

k1 + k2
e, I+ =

k2

k1 + k2
u−

√
2

k1 + k2
e, (3.1)

where k1 =
√
c+ 1− i

√
1− c, k2 =

√
c+ 1 + i

√
1− c.

It is also easily verified that these idempotents also satisfy

I− + I+ = u

and
I− I+ = 0.

It is straightforward to see that

e =
k2√

2
I− −

k1√
2
I+. (3.2)

Lemma 3.1. All non-zero elements of subspace Bc = {xu + y e | x, y ∈ R} of algebra
Ac are invertible, that is, if 0 6= w ∈ Bc then there exists w−1 ∈ Bc.

Proof. Suppose w = su + t e ∈ Bc. Let us show that there exists w−1 = xu + y e, x, y ∈ R
such that ww−1 = 1. Indeed, the equation

(su + t e) (xu + y e) = u

has a unique solution since the determinant of the system

sx+ ty = 1,
tx+ (s+ iµt) y = 0,

where x, y are unknown, is ∆ = s2− t2 + iµts and ∆ = 0 if and only if s = t = 0. A function
f (w), w ∈ Bc is said to be differentiable if it is differentiable in the common sense, i.e., for
all w ∈ Bc there exists the following limit

lim
Bc3∆w→0

f (w + ∆w)− f (w)

∆w
= f ′ (w) .

It is easily seen that if f is differentiable then it is monogenic and hence, it satisfies the
following Cauchy-Riemann type of conditions [7]

e
∂

∂x
f (w) = u

∂

∂y
f (w)

or in this case we have

∂u1 (x, y)

∂y
=
∂u3 (x, y)

∂x
,

∂u2 (x, y)

∂y
=
∂u4 (x, y)

∂x
,

∂u3 (x, y)

∂y
=
∂u1 (x, y)

∂x
− µ∂u4 (x, y)

∂x
,

∂u4 (x, y)

∂y
=
∂u2 (x, y)

∂x
+ µ

∂u3 (x, y)

∂x
.

In [7] it is also proved that if a function f (x, y) = uu1 (x, y) + iu2 (x, y) + eu3 (x, y) +
i eu4 (x, y) is monogenic then ui (x, y) satisfies Eq. (1.1). We should mention that a con-
structive description of monogenic functions in a three-dimensional harmonic algebra was
studied in [5, 6].

By passing from the basis u, e to the basis I−, I+ we have

w = xu + y e =

(
x+

k2√
2
y

)
I− +

(
x− k1√

2
y

)
I+.
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�

Lemma 3.2. A function f : Bc → Ac, 0 < c < 1, is differentiable if and only if it can
be represented as follows

f (w) = α (w1) I− + β (w2) I+,

where w1 = x1 + i y1, x1 = x, y1 = −i k2√
2
y, w2 = x2 + i y2, x2 = x, y2 = i k1√

2
y and α (w1),

β (w2) are analytical functions of variables w1, w2, respectively, as follows

∂

∂y1
α (w1) = i

∂

∂x
α (w1) ,

∂

∂y2
β (w2) = i

∂

∂x
β (w2) .

Proof. The sufficiency can be verified directly. Indeed,

∂

∂y
f (w) =

∂

∂y1
α (w1)

∂y1

∂y
I− +

∂

∂y2
β (w2)

∂y2

∂y
I+

= −i
k2√

2

∂

∂y1
α (w1) I− + i

k1√
2

∂

∂y2
β (w2) I+

=
k2√

2

∂

∂x
α (w1) I− −

k1√
2

∂

∂x
β (w2) I+.

On the other hand, taking into account Eqs. (2.4), (3.1), we have

e
∂

∂x
f (w) =

(
k2√

2
I− −

k1√
2
I+

)(
∂

∂x
α (w1) I− +

∂

∂x
β (w2) I+

)
=

k2√
2

∂

∂x
α (w1) I− −

k1√
2

∂

∂x
β (w2) I+.

Hence,

e
∂

∂x
f (w) =

∂

∂y
f (w) .

Now let us prove necessity. Suppose that a function

f (w) = u1 (x, y) + iu2 (x, y) + eu3 (x, y) + i eu4 (x, y)

is monogenic on Bc, i.e., e ∂
∂xf (w) = ∂

∂yf (w).

By using Eq. (3.1) we can represent f (w) in the following manner

f (w) = α (w1) I− + β (w2) I+,

where

α (w1) = u1 (x, y) +
k2√

2
u3 (x, y) + i

(
u2 (x, y) +

k2√
2
u4 (x, y)

)
,

β (w2) = u1 (x, y)− k1√
2
u3 (x, y) + i

(
u2 (x, y)− k1√

2
u4 (x, y)

)
.

Consider

u
∂

∂y
f =

∂

∂y1
α (w1)

∂y1

∂y
I− +

∂

∂y2
β (w2)

∂y2

∂y
I+

= − i k2√
2

∂α

∂y1
I− +

i k1√
2

∂β

∂y2
I+.

Then, taking into account Eq. (3.1), we have

e
∂

∂x
f (w) =

(
k2√

2
I− −

k1√
2
I+

)(
∂α

∂x
I− +

∂β

∂x
I+

)
=

k2√
2

∂α

∂x
I− −

k1√
2

∂β

∂x
I+.
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Therefore,
∂

∂y1
α (w1) = i

∂

∂x
α (w1) ,

∂

∂y2
β (w2) = i

∂

∂x
β (w2) .

Suppose α (ω1) = α1 (ω1) + iα2 (ω1) and β (ω2) = β1 (ω2) + iβ2 (ω2). It follows from
the proof of Lemma 3.2 that αi (ω1) + βj (ω2), i, j ∈ {1, 2} are solutions of Eq. (1.1) for
0 < c < 1. �

Theorem 3.3. u (x, y) is a solution of Eq. (1.1) for 0 < c < 1 if and only if for some
i, j ∈ {1, 2} it can be represented as follows

u (x, y) = αi (ω1) + βj (ω2) ,

where αi (ω1) , βj (ω2) are components of α (ω1) and β (ω2) of monogenic function g (ω)
in the decomposition (2.3) i.e.,

f (ω) = α (ω1) I− + β (ω2) I+,

where α (ω1), β (ω2) are complex analytical functions of respective variables.

Proof. As mentioned above αi (ω1) + βj (ω2), i, j ∈ {1, 2} are solutions of Eq. (1.1) for
0 < c < 1.

If u (x, y) is a solution of Eq. (1.1) for 0 < c < 1 much in the same way as in proving
Theorem 2.2 we can show that u (x, y) = αi (ω1) + βj (ω2). �
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