AN ALGEBRAIC APPROACH FOR SOLVING FOURTH-ORDER PARTIAL DIFFERENTIAL EQUATIONS

A. POGORUI ${ }^{1}$, T. KOLOMIIETS ${ }^{2}$ AND R. M. RODRÍGUEZ-DAGNINO ${ }^{3}$

Abstract

It is well-known that any solution of the Laplace equation is a real or imaginary part of a complex holomorphic function. In this paper, in some sense, we extend this property into four order hyperbolic and elliptic type PDEs. To be more specific, the extension is for a c-biwave PDE with constant coefficients, and we show that the components of a differentiable function on the associated hypercomplex algebras provide solutions for the equation.

1. Introduction

In this paper we are interested in finding the solution of the following equation

$$
\begin{equation*}
\left(\frac{\partial^{4}}{\partial x^{4}}-2 c \frac{\partial^{4}}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4}}{\partial y^{4}}\right) u(x, y)=0, c>0 \tag{1.1}
\end{equation*}
$$

Depending on the value of c we may consider three cases. Namely, the case where $0<c<1$ and we call it as the c-biwave equation of the elliptic type, the case where $c>1$ and we call it as the c-biwave equation of hyperbolic type, and in the case where $c=1 \mathrm{Eq} .(1.1)$ is the well-known biwave equation. The biwave equation has been used in modeling of d-wave superconductors (see for instance [1], and references therein) or in probability theory [2, 3]. In [4] the author studied Eq.(1.1) in the case where $c<-1$ and considered its application to theory of plain orthotropy.

It is easily verified that any equation of the form

$$
\left(A \frac{\partial^{4}}{\partial x^{4}}+2 B \frac{\partial^{4}}{\partial x^{2} \partial y^{2}}+C \frac{\partial^{4}}{\partial y^{4}}\right) u(x, y)=0
$$

where $A C>0$ and $A B<0$ can be reduced to Eq.(1.1) by changing variables. To obtain all solutions of Eq. (1.1) for $1 \neq c>0$ we will use the method developed in [7]. According to such approach we need a commutative algebra with basis containing e_{1}, e_{2} such that

$$
\begin{equation*}
e_{1}^{4}-2 c e_{1}^{2} e_{2}^{2}+e_{2}^{4}=0 \tag{1.2}
\end{equation*}
$$

Then, we study monogenic functions on the subspace of this algebra containing e_{1}, e_{2} and show that any solution of Eq. (1.1) can be obtained as a component of such monogenic functions.

[^0]
2. Hyperbolic case

Firstly we study Eq. (1.1) in the case where $c>1$, which is said to be hyperbolic. Let us consider an associative commutative algebra over the real field \mathbb{R}

$$
A_{c}=\{x \mathbf{u}+y \mathbf{f}+z \mathbf{e}+v \mathbf{f e}: x, y, z, v \in \mathbb{R}\}
$$

with a basis $\mathbf{u}, \mathbf{f}, \mathbf{e}, \mathbf{f e}$, where \mathbf{u} is the identity element of A_{c} and the following Cayley table holds $\mathbf{f e}=\mathbf{e f}, \mathbf{f}^{2}=\mathbf{u}, \mathbf{e}^{2}=\mathbf{u}-m \mathbf{f e}$, where $m=\sqrt{2(c-1)}$.

The basis elements u, e satisfy Eq. (1.2).
It is easily verified that for $c>1$ algebra A_{c} has the following idempotents

$$
\begin{align*}
i_{1} & =\frac{k_{1}}{k_{1}+k_{2}} \mathbf{u}-\frac{\mathbf{f} \sqrt{2}}{k_{1}+k_{2}} \mathbf{e} \\
i_{2} & =\frac{k_{2}}{k_{1}+k_{2}} \mathbf{u}+\frac{\mathbf{f} \sqrt{2}}{k_{1}+k_{2}} \mathbf{e} \tag{2.1}
\end{align*}
$$

where $k_{1}=\sqrt{c+1}-\sqrt{c-1}, k_{2}=\sqrt{c+1}+\sqrt{c-1}$.
Therefore, we have

$$
i_{1}+i_{2}=\mathbf{u}
$$

and

$$
\begin{array}{r}
i_{1} i_{2}=\frac{k_{1} k_{2}}{\left(k_{1}+k_{2}\right)^{2}} \mathbf{u}-\frac{\sqrt{2} k_{2}}{\left(k_{1}+k_{2}\right)^{2}} \mathbf{f e}+\frac{\sqrt{2} k_{1}}{\left(k_{1}+k_{2}\right)^{2}} \mathbf{f e} \\
-\frac{2}{\left(k_{1}+k_{2}\right)^{2}} \mathbf{u}+\frac{2 m}{\left(k_{1}+k_{2}\right)^{2}} \mathbf{f e}=0 .
\end{array}
$$

It is easily seen that

$$
\begin{equation*}
\mathbf{e}=\mathbf{f} \frac{k_{1}}{\sqrt{2}} i_{2}-\mathbf{f} \frac{k_{2}}{\sqrt{2}} i_{1} . \tag{2.2}
\end{equation*}
$$

Consider a subspace B_{c} of algebra A_{c} of the following form

$$
B_{c}=\{x \mathbf{u}+y \mathbf{e} \mid x, y \in \mathbb{R}\} .
$$

Definition 2.1. A function $g: B_{c} \rightarrow A_{c}$ is called differentiable (or monogenic) on B_{c} if for any $B_{c} \ni w=x \mathbf{u}+y \mathbf{e}$ there exists a unique element $g^{\prime}(w)$ such that for any $h \in B_{c}$

$$
\lim _{\mathbb{R} \ni \varepsilon \rightarrow 0} \frac{g(w+\varepsilon h)-g(w)}{\varepsilon}=h g^{\prime}(w),
$$

where $h g^{\prime}(w)$ is the product of h and $g^{\prime}(w)$ as elements of A_{c}.
It follows from [7] that a function $g(w)=\mathbf{u} u_{1}(x, y)+\mathbf{f} u_{2}(x, y)+\mathbf{e} u_{3}(x, y)+\mathbf{f} \mathbf{e} u_{4}(x, y)$ is monogenic if and only if there exist continuous partial derivatives $\frac{\partial u_{i}(x, y)}{\partial x}, \frac{\partial u_{i}(x, y)}{\partial y}, i=$ $1,2,3,4$ and it satisfies the following Cauchy-Riemann type conditions

$$
\mathbf{e} \frac{\partial}{\partial x} g(w)=\mathbf{u} \frac{\partial}{\partial y} g(w), \forall w \in B_{c}
$$

or

$$
\begin{aligned}
& \frac{\partial u_{1}(x, y)}{\partial y}=\frac{\partial u_{3}(x, y)}{\partial x} \\
& \frac{\partial u_{2}(x, y)}{\partial y}=\frac{\partial u_{4}(x, y)}{\partial x}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial u_{3}(x, y)}{\partial y}=\frac{\partial u_{1}(x, y)}{\partial x}-m \frac{\partial u_{4}(x, y)}{\partial x} \\
& \frac{\partial u_{4}(x, y)}{\partial y}=\frac{\partial u_{2}(x, y)}{\partial x}-m \frac{\partial u_{3}(x, y)}{\partial x}
\end{aligned}
$$

It is also proved in [7] that if g is monogenic then its components $u_{i}(x, y)$ satisfies Eq. (1.1).

By passing in B_{c} from the basis \mathbf{u}, e to the basis i_{1}, i_{2}, we have

$$
w=x \mathbf{u}+y \mathbf{e}=\left(x-\mathbf{f} \frac{k_{2}}{\sqrt{2}} y\right) i_{1}+\left(x+\mathbf{f} \frac{k_{1}}{\sqrt{2}} y\right) i_{2}
$$

Lemma 2.1. A function $g: B_{c} \rightarrow A_{c}$, where $c>1$, is differentiable if and only if it can be represented as follows

$$
\begin{equation*}
g(w)=\alpha\left(w_{1}\right) i_{1}+\beta\left(w_{2}\right) i_{2}, \tag{2.3}
\end{equation*}
$$

where $w_{1}=x-\mathbf{f} \frac{k_{2}}{\sqrt{2}} y, w_{2}=x+\mathbf{f} \frac{k_{1}}{\sqrt{2}} y$ and $\alpha\left(w_{1}\right), \beta\left(w_{2}\right)$ have continuous partial derivatives $\frac{\partial}{\partial x} \alpha\left(w_{1}\right), \frac{\partial}{\partial y} \alpha\left(w_{1}\right), \frac{\partial}{\partial x} \beta\left(w_{2}\right), \frac{\partial}{\partial y} \beta\left(w_{2}\right)$ satisfying

$$
\begin{aligned}
\frac{\partial}{\partial y} \alpha\left(w_{1}\right) & =-\mathbf{f} \frac{k_{2}}{\sqrt{2}} \frac{\partial}{\partial x} \alpha\left(w_{1}\right), \\
\frac{\partial}{\partial y} \beta\left(w_{2}\right) & =\mathbf{f} \frac{k_{1}}{\sqrt{2}} \frac{\partial}{\partial x} \beta\left(w_{2}\right) .
\end{aligned}
$$

Proof. Sufficiency can be verified directly. Indeed,

$$
\begin{gathered}
\frac{\partial}{\partial y} g(w)=\frac{\partial}{\partial y} \alpha\left(w_{1}\right) i_{1}+\frac{\partial}{\partial y} \beta\left(w_{2}\right) i_{2} \\
=-\mathbf{f} \frac{k_{2}}{\sqrt{2}} \frac{\partial}{\partial x} \alpha\left(w_{1}\right) i_{1}+\mathbf{f} \frac{k_{1}}{\sqrt{2}} \frac{\partial}{\partial x} \beta\left(w_{2}\right) i_{2}
\end{gathered}
$$

On the other hand, taking into account Eqs. (2.1), (2.2), we have

$$
\begin{aligned}
\mathbf{e} \frac{\partial}{\partial x} g(w) & =\left(\mathbf{f} \frac{k_{1}}{\sqrt{2}} i_{2}-\mathbf{f} \frac{k_{2}}{\sqrt{2}} i_{1}\right)\left(\frac{\partial}{\partial x} \alpha\left(w_{1}\right) i_{1}+\frac{\partial}{\partial x} \beta\left(w_{2}\right) i_{2}\right) \\
& =-\mathbf{f} \frac{k_{2}}{\sqrt{2}} \frac{\partial}{\partial x} \alpha\left(w_{1}\right) i_{1}+\mathbf{f} \frac{k_{1}}{\sqrt{2}} \frac{\partial}{\partial x} \beta\left(w_{2}\right) i_{2} .
\end{aligned}
$$

Hence,

$$
\mathbf{e} \frac{\partial}{\partial x} g(w)=\mathbf{u} \frac{\partial}{\partial y} g(w) .
$$

Now let us prove necessity. Suppose that a function

$$
g(w)=\mathbf{u} u_{1}(x, y)+\mathbf{f} u_{2}(x, y)+\mathbf{e} u_{3}(x, y)+\mathbf{f} \mathbf{e} u_{4}(x, y)
$$

is monogenic on B_{c}. Let us define

$$
\begin{aligned}
& \alpha\left(w_{1}\right)=\mathbf{u}\left(u_{1}(x, y)-\frac{k_{2}}{\sqrt{2}} u_{4}(x, y)\right)+\mathbf{f}\left(u_{2}(x, y)-\frac{k_{2}}{\sqrt{2}} u_{3}(x, y)\right), \\
& \beta\left(w_{2}\right)=\mathbf{u}\left(u_{1}(x, y)+\frac{k_{1}}{\sqrt{2}} u_{4}(x, y)\right)+\mathbf{f}\left(u_{2}(x, y)+\frac{k_{1}}{\sqrt{2}} u_{3}(x, y)\right) .
\end{aligned}
$$

Thus, we have

$$
\begin{gathered}
\frac{\partial}{\partial y} \alpha\left(w_{1}\right)=\mathbf{u}\left(\frac{\partial u_{3}(x, y)}{\partial x}-\frac{k_{2}}{\sqrt{2}}\left(\frac{\partial u_{2}(x, y)}{\partial x}-m \frac{\partial u_{3}(x, y)}{\partial x}\right)\right) \\
+\mathbf{f}\left(\frac{\partial u_{4}(x, y)}{\partial x}-\frac{k_{2}}{\sqrt{2}}\left(\frac{\partial u_{1}(x, y)}{\partial x}-m \frac{\partial u_{4}(x, y)}{\partial x}\right)\right)
\end{gathered}
$$

$$
\begin{aligned}
=-\mathbf{f} \frac{k_{2}}{\sqrt{2}} \frac{\partial u_{1}(x, y)}{\partial x}- & \mathbf{u} \frac{k_{2}}{\sqrt{2}} \frac{\partial u_{2}(x, y)}{\partial x}+\mathbf{u}\left(\frac{k_{2}}{\sqrt{2}} m+1\right) \frac{\partial u_{3}(x, y)}{\partial x} \\
& +\mathbf{f}\left(\frac{k_{2}}{\sqrt{2}} m+1\right) \frac{\partial u_{4}(x, y)}{\partial x} .
\end{aligned}
$$

Taking into account that

$$
\frac{k_{2}}{\sqrt{2}} m+1=\sqrt{c^{2}-1}+c=\frac{k_{2}^{2}}{2},
$$

we have $\frac{\partial}{\partial y} \alpha\left(w_{1}\right)=-\mathbf{f} \frac{k_{2}}{\sqrt{2}} \frac{\partial}{\partial x} \alpha\left(w_{1}\right)$.
Much in the same manner, it can be shown that $\frac{\partial}{\partial y} \beta\left(w_{2}\right)=\mathbf{f} \frac{k_{1}}{\sqrt{2}} \frac{\partial}{\partial x} \beta\left(w_{2}\right)$.
Remark 2.1. Considering variables $x, y_{1}=-\frac{k_{2}}{\sqrt{2}} y$ and $x, y_{2}=\frac{k_{1}}{\sqrt{2}} y$, we have

$$
\begin{align*}
\frac{\partial}{\partial y_{1}} \alpha & =\mathbf{f} \frac{\partial}{\partial x} \alpha \tag{2.4}\\
\frac{\partial}{\partial y_{2}} \beta & =\mathbf{f} \frac{\partial}{\partial x} \beta
\end{align*}
$$

Hence, it is easily verified that if the components α_{1}, α_{2} of $\alpha\left(w_{1}\right)=\alpha_{1}\left(w_{1}\right)+\mathbf{f} \alpha_{2}\left(w_{1}\right)$ have continuous partial derivatives $\frac{\partial^{2}}{\partial x^{2}} \alpha_{k}\left(w_{1}\right)$ and $\frac{\partial^{2}}{\partial y_{1}^{2}} \alpha_{k}\left(w_{1}\right), k=1,2$ then they satisfy the wave equation

$$
\left(\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y_{1}^{2}}\right) u\left(x, y_{1}\right)=0 .
$$

Similarly, the components β_{1}, β_{2} of $\beta\left(w_{2}\right)=\beta_{1}\left(w_{2}\right)+\mathbf{f} \beta_{2}\left(w_{2}\right)$ satisfy the wave equation

$$
\left(\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y_{2}^{2}}\right) u\left(x, y_{2}\right)=0
$$

Theorem 2.2. $u(x, y)$ is a solution of Eq. (1.1) for $c>1$ if and only if for some $i, j \in\{1,2\}$ it can be represented as follows

$$
u(x, y)=\alpha_{i}\left(\omega_{1}\right)+\beta_{j}\left(\omega_{2}\right),
$$

where $\alpha_{i}\left(\omega_{1}\right), \beta_{j}\left(\omega_{2}\right)$ are four times continuous differentiable components of $\alpha\left(\omega_{1}\right)$ and $\beta\left(\omega_{2}\right)$ of monogenic function $g(\omega)$ in the decomposition (2.3) i.e.,

$$
g(\omega)=\alpha\left(\omega_{1}\right) i_{1}+\beta\left(\omega_{2}\right) i_{2},
$$

where $\alpha\left(\omega_{1}\right)=\alpha_{1}\left(\omega_{1}\right)+\mathbf{f} \alpha_{2}\left(\omega_{1}\right), \beta\left(\omega_{2}\right)=\beta_{1}\left(\omega_{2}\right)+\mathbf{f} \beta_{2}\left(\omega_{2}\right)$ satisfy Eq. (2.4).
Proof. As it was mentioned above $u(x, y)=\alpha_{i}\left(\omega_{1}\right)+\beta_{j}\left(\omega_{2}\right)$ is a solution for $c>1$ of Eq. (1.1).

Now suppose that $u(x, y)$ is a solution of Eq. (1.1). It is easily verified that

$$
\begin{equation*}
\left(\frac{\partial^{4}}{\partial x^{4}}-2 c \frac{\partial^{4}}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4}}{\partial y^{4}}\right) u(x, y)=\left(\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y_{1}^{2}}\right)\left(\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y_{2}^{2}}\right) u(x, y)=0 . \tag{2.5}
\end{equation*}
$$

It is easily seen that Eq. (2.5) is equivalent to the set of the following systems

$$
\left\{\begin{array}{c}
\left(\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y_{2}^{2}}\right) u(x, y)=v_{1}(x, y), \\
\left(\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y_{1}^{2}}\right) v_{1}(x, y)=0
\end{array}\right.
$$

or

$$
\left\{\begin{array}{c}
\left(\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y_{1}^{2}}\right) u(x, y)=v_{2}(x, y), \\
\left(\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y_{2}^{2}}\right) v_{2}(x, y)=0 .
\end{array}\right.
$$

Let us consider the first system. Since any solution of $\left(\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y_{k}^{2}}\right) v_{k}(x, y)=0$ is of the form $v_{k}(x, y)=f_{1}\left(x+y_{k}\right)+f_{2}\left(x-y_{k}\right)$, where $f_{i}, i=1,2$ are arbitrary twice differentiable functions it follows from the second equation of the system that

$$
v_{1}(x, y)=f_{1}\left(x+y_{1}\right)+f_{2}\left(x-y_{1}\right)
$$

Thus, the first equation of the system is

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y_{2}^{2}}\right) u(x, y)=f_{1}\left(x+y_{1}\right)+f_{2}\left(x-y_{1}\right) \tag{2.6}
\end{equation*}
$$

It is easily seen that a partial solution of Eq. (2.6) is

$$
\begin{array}{r}
U(x, y)=\frac{k_{1}^{2}}{k_{1}^{2}-k_{2}^{2}}\left(F_{1}\left(x-\frac{k_{2}}{\sqrt{2}} y\right)+F_{2}\left(x+\frac{k_{2}}{\sqrt{2}} y\right)\right) \\
=\frac{k_{1}^{2}}{k_{1}^{2}-k_{2}^{2}}\left(F_{1}\left(x+y_{1}\right)+F_{2}\left(x-y_{1}\right)\right)
\end{array}
$$

where $F_{k}^{\prime \prime}=f_{k}, k=1,2$.
Thus, the general solution of the system is as follows

$$
u(x, y)=g_{1}\left(x+y_{2}\right)+g_{2}\left(x-y_{2}\right)+\frac{k_{1}^{2}}{k_{1}^{2}-k_{2}^{2}}\left(F_{1}\left(x+y_{1}\right)+F_{2}\left(x-y_{1}\right)\right)
$$

Let us put $\alpha_{1}\left(\omega_{1}\right)=\frac{k_{1}^{2}}{k_{1}^{2}-k_{2}^{2}}\left(F_{1}\left(x+y_{1}\right)+F_{2}\left(x-y_{1}\right)\right)$ and $\beta_{2}\left(\omega_{2}\right)=g_{1}\left(x+y_{2}\right)+g_{2}\left(x-y_{2}\right)$.
Taking into account that $\left(\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y_{1}^{2}}\right)\left[\frac{k_{1}^{2}}{k_{1}^{2}-k_{2}^{2}}\left(F_{1}\left(x+y_{1}\right)+F_{2}\left(x-y_{1}\right)\right)\right]=0$ and $\left(\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y_{2}^{2}}\right)\left[g_{1}\left(x+y_{2}\right)+g_{2}\left(x-y_{2}\right)\right]=0$ we conclude the proof for the first system.

The case of the second system can be proved similarly.

3. Elliptic case

Now we consider an associative commutative algebra A_{c}, where $0<c<1$, over the complex field \mathbb{C} with a basis \mathbf{u}, \mathbf{e} and the following Cayley table $\mathbf{u e}=\mathbf{e} \mathbf{u}=\mathbf{e}, \mathbf{e}^{2}=\mathbf{u}+\mathbf{i} \mu \mathbf{e}$, where $\mu=\sqrt{2(1-c)}$. The matrix representations of \mathbf{u} and \mathbf{e} are

$$
\mathbf{u}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \mathbf{e}=\left(\begin{array}{cc}
0 & 1 \\
1 & \mathbf{i} \mu
\end{array}\right)
$$

Hence, we have the following traces of these representations

$$
\operatorname{tr}(\mathbf{u u})=2, \quad \operatorname{tr}(\mathbf{u e})=\mathbf{i} \mu, \quad \operatorname{tr}(\mathbf{e e})=2-\mu^{2} .
$$

Since

$$
\operatorname{det}\left(\begin{array}{cc}
\operatorname{tr}(\mathbf{u u}) & \operatorname{tr}(\mathbf{u e}) \\
\operatorname{tr}(\mathbf{u e}) & \operatorname{tr}(\mathbf{e e})
\end{array}\right)=2(1+c) \neq 0
$$

then, A_{c} is a semi-simple algebra [8].

By following similar steps as in Eq. (2.1) we can show that for $0<c<1$ algebra A_{c} has the following idempotents

$$
\begin{equation*}
I_{-}=\frac{k_{1}}{k_{1}+k_{2}} \mathbf{u}+\frac{\sqrt{2}}{k_{1}+k_{2}} \mathbf{e}, \quad I_{+}=\frac{k_{2}}{k_{1}+k_{2}} \mathbf{u}-\frac{\sqrt{2}}{k_{1}+k_{2}} \mathbf{e} \tag{3.1}
\end{equation*}
$$

where $k_{1}=\sqrt{c+1}-\mathbf{i} \sqrt{1-c}, k_{2}=\sqrt{c+1}+\mathbf{i} \sqrt{1-c}$.
It is also easily verified that these idempotents also satisfy

$$
I_{-}+I_{+}=\mathbf{u}
$$

and

$$
I_{-} I_{+}=0 .
$$

It is straightforward to see that

$$
\begin{equation*}
\mathbf{e}=\frac{k_{2}}{\sqrt{2}} I_{-}-\frac{k_{1}}{\sqrt{2}} I_{+} . \tag{3.2}
\end{equation*}
$$

Lemma 3.1. All non-zero elements of subspace $B_{c}=\{x \mathbf{u}+y \mathbf{e} \mid x, y \in \mathbb{R}\}$ of algebra A_{c} are invertible, that is, if $0 \neq w \in B_{c}$ then there exists $w^{-1} \in B_{c}$.

Proof. Suppose $w=s \mathbf{u}+t \mathbf{e} \in B_{c}$. Let us show that there exists $w^{-1}=x \mathbf{u}+y \mathbf{e}, x, y \in \mathbb{R}$ such that $w w^{-1}=1$. Indeed, the equation

$$
(s \mathbf{u}+t \mathbf{e})(x \mathbf{u}+y \mathbf{e})=\mathbf{u}
$$

has a unique solution since the determinant of the system

$$
\begin{gathered}
s x+t y=1 \\
t x+(s+\mathbf{i} \mu t) y=0
\end{gathered}
$$

where x, y are unknown, is $\Delta=s^{2}-t^{2}+\mathbf{i} \mu t s$ and $\Delta=0$ if and only if $s=t=0$. A function $f(w), w \in B_{c}$ is said to be differentiable if it is differentiable in the common sense, i.e., for all $w \in B_{c}$ there exists the following limit

$$
\lim _{B_{c} \ni \Delta w \rightarrow 0} \frac{f(w+\Delta w)-f(w)}{\Delta w}=f^{\prime}(w) .
$$

It is easily seen that if f is differentiable then it is monogenic and hence, it satisfies the following Cauchy-Riemann type of conditions [7]

$$
\mathbf{e} \frac{\partial}{\partial x} f(w)=\mathbf{u} \frac{\partial}{\partial y} f(w)
$$

or in this case we have

$$
\begin{gathered}
\frac{\partial u_{1}(x, y)}{\partial y}=\frac{\partial u_{3}(x, y)}{\partial x}, \quad \frac{\partial u_{2}(x, y)}{\partial y}=\frac{\partial u_{4}(x, y)}{\partial x}, \\
\frac{\partial u_{3}(x, y)}{\partial y}=\frac{\partial u_{1}(x, y)}{\partial x}-\mu \frac{\partial u_{4}(x, y)}{\partial x}, \\
\frac{\partial u_{4}(x, y)}{\partial y}=\frac{\partial u_{2}(x, y)}{\partial x}+\mu \frac{\partial u_{3}(x, y)}{\partial x} .
\end{gathered}
$$

In [7] it is also proved that if a function $f(x, y)=\mathbf{u} u_{1}(x, y)+\mathbf{i} u_{2}(x, y)+\mathbf{e} u_{3}(x, y)+$ ie $u_{4}(x, y)$ is monogenic then $u_{i}(x, y)$ satisfies Eq. (1.1). We should mention that a constructive description of monogenic functions in a three-dimensional harmonic algebra was studied in [5, 6].

By passing from the basis \mathbf{u}, \mathbf{e} to the basis I_{-}, I_{+}we have

$$
w=x \mathbf{u}+y \mathbf{e}=\left(x+\frac{k_{2}}{\sqrt{2}} y\right) I_{-}+\left(x-\frac{k_{1}}{\sqrt{2}} y\right) I_{+} .
$$

Lemma 3.2. A function $f: B_{c} \rightarrow A_{c}, 0<c<1$, is differentiable if and only if it can be represented as follows

$$
f(w)=\alpha\left(w_{1}\right) I_{-}+\beta\left(w_{2}\right) I_{+},
$$

where $w_{1}=x_{1}+\mathbf{i} y_{1}, x_{1}=x, y_{1}=-\mathbf{i} \frac{k_{2}}{\sqrt{2}} y, w_{2}=x_{2}+\mathbf{i} y_{2}, x_{2}=x, y_{2}=\mathbf{i} \frac{k_{1}}{\sqrt{2}} y$ and $\alpha\left(w_{1}\right)$, $\beta\left(w_{2}\right)$ are analytical functions of variables w_{1}, w_{2}, respectively, as follows

$$
\frac{\partial}{\partial y_{1}} \alpha\left(w_{1}\right)=\mathbf{i} \frac{\partial}{\partial x} \alpha\left(w_{1}\right), \quad \frac{\partial}{\partial y_{2}} \beta\left(w_{2}\right)=\mathbf{i} \frac{\partial}{\partial x} \beta\left(w_{2}\right) .
$$

Proof. The sufficiency can be verified directly. Indeed,

$$
\begin{aligned}
\frac{\partial}{\partial y} f(w) & =\frac{\partial}{\partial y_{1}} \alpha\left(w_{1}\right) \frac{\partial y_{1}}{\partial y} I_{-}+\frac{\partial}{\partial y_{2}} \beta\left(w_{2}\right) \frac{\partial y_{2}}{\partial y} I_{+} \\
= & -\mathbf{i} \frac{k_{2}}{\sqrt{2}} \frac{\partial}{\partial y_{1}} \alpha\left(w_{1}\right) I_{-}+\mathbf{i} \frac{k_{1}}{\sqrt{2}} \frac{\partial}{\partial y_{2}} \beta\left(w_{2}\right) I_{+} \\
= & \frac{k_{2}}{\sqrt{2}} \frac{\partial}{\partial x} \alpha\left(w_{1}\right) I_{-}-\frac{k_{1}}{\sqrt{2}} \frac{\partial}{\partial x} \beta\left(w_{2}\right) I_{+} .
\end{aligned}
$$

On the other hand, taking into account Eqs. (2.4), (3.1), we have

$$
\begin{aligned}
\mathbf{e} \frac{\partial}{\partial x} f(w)= & \left(\frac{k_{2}}{\sqrt{2}} I_{-}-\frac{k_{1}}{\sqrt{2}} I_{+}\right)\left(\frac{\partial}{\partial x} \alpha\left(w_{1}\right) I_{-}+\frac{\partial}{\partial x} \beta\left(w_{2}\right) I_{+}\right) \\
& =\frac{k_{2}}{\sqrt{2}} \frac{\partial}{\partial x} \alpha\left(w_{1}\right) I_{-}-\frac{k_{1}}{\sqrt{2}} \frac{\partial}{\partial x} \beta\left(w_{2}\right) I_{+} .
\end{aligned}
$$

Hence,

$$
\mathbf{e} \frac{\partial}{\partial x} f(w)=\frac{\partial}{\partial y} f(w) .
$$

Now let us prove necessity. Suppose that a function

$$
f(w)=u_{1}(x, y)+\mathbf{i} u_{2}(x, y)+\mathbf{e} u_{3}(x, y)+\mathbf{i} \mathbf{e} u_{4}(x, y)
$$

is monogenic on B_{c}, i.e., $\mathbf{e} \frac{\partial}{\partial x} f(w)=\frac{\partial}{\partial y} f(w)$.
By using Eq. (3.1) we can represent $f(w)$ in the following manner

$$
f(w)=\alpha\left(w_{1}\right) I_{-}+\beta\left(w_{2}\right) I_{+},
$$

where

$$
\begin{aligned}
& \alpha\left(w_{1}\right)=u_{1}(x, y)+\frac{k_{2}}{\sqrt{2}} u_{3}(x, y)+\mathbf{i}\left(u_{2}(x, y)+\frac{k_{2}}{\sqrt{2}} u_{4}(x, y)\right), \\
& \beta\left(w_{2}\right)=u_{1}(x, y)-\frac{k_{1}}{\sqrt{2}} u_{3}(x, y)+\mathbf{i}\left(u_{2}(x, y)-\frac{k_{1}}{\sqrt{2}} u_{4}(x, y)\right) .
\end{aligned}
$$

Consider

$$
\begin{gathered}
\mathbf{u} \frac{\partial}{\partial y} f=\frac{\partial}{\partial y_{1}} \alpha\left(w_{1}\right) \frac{\partial y_{1}}{\partial y} I_{-}+\frac{\partial}{\partial y_{2}} \beta\left(w_{2}\right) \frac{\partial y_{2}}{\partial y} I_{+} \\
=-\frac{\mathbf{i} k_{2}}{\sqrt{2}} \frac{\partial \alpha}{\partial y_{1}} I_{-}+\frac{\mathbf{i} k_{1}}{\sqrt{2}} \frac{\partial \beta}{\partial y_{2}} I_{+} .
\end{gathered}
$$

Then, taking into account Eq. (3.1), we have

$$
\begin{aligned}
\mathbf{e} \frac{\partial}{\partial x} f(w)= & \left(\frac{k_{2}}{\sqrt{2}} I_{-}-\frac{k_{1}}{\sqrt{2}} I_{+}\right)\left(\frac{\partial \alpha}{\partial x} I_{-}+\frac{\partial \beta}{\partial x} I_{+}\right) \\
& =\frac{k_{2}}{\sqrt{2}} \frac{\partial \alpha}{\partial x} I_{-}-\frac{k_{1}}{\sqrt{2}} \frac{\partial \beta}{\partial x} I_{+} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\frac{\partial}{\partial y_{1}} \alpha\left(w_{1}\right) & =\mathbf{i} \frac{\partial}{\partial x} \alpha\left(w_{1}\right), \\
\frac{\partial}{\partial y_{2}} \beta\left(w_{2}\right) & =\mathbf{i} \frac{\partial}{\partial x} \beta\left(w_{2}\right) .
\end{aligned}
$$

Suppose $\alpha\left(\omega_{1}\right)=\alpha_{1}\left(\omega_{1}\right)+\mathbf{i} \alpha_{2}\left(\omega_{1}\right)$ and $\beta\left(\omega_{2}\right)=\beta_{1}\left(\omega_{2}\right)+\mathbf{i} \beta_{2}\left(\omega_{2}\right)$. It follows from the proof of Lemma 3.2 that $\alpha_{i}\left(\omega_{1}\right)+\beta_{j}\left(\omega_{2}\right), i, j \in\{1,2\}$ are solutions of Eq. (1.1) for $0<c<1$.

Theorem 3.3. $u(x, y)$ is a solution of Eq. (1.1) for $0<c<1$ if and only if for some $i, j \in\{1,2\}$ it can be represented as follows

$$
u(x, y)=\alpha_{i}\left(\omega_{1}\right)+\beta_{j}\left(\omega_{2}\right),
$$

where $\alpha_{i}\left(\omega_{1}\right), \beta_{j}\left(\omega_{2}\right)$ are components of $\alpha\left(\omega_{1}\right)$ and $\beta\left(\omega_{2}\right)$ of monogenic function $g(\omega)$ in the decomposition (2.3) i.e.,

$$
f(\omega)=\alpha\left(\omega_{1}\right) I_{-}+\beta\left(\omega_{2}\right) I_{+},
$$

where $\alpha\left(\omega_{1}\right)$, $\beta\left(\omega_{2}\right)$ are complex analytical functions of respective variables.
Proof. As mentioned above $\alpha_{i}\left(\omega_{1}\right)+\beta_{j}\left(\omega_{2}\right), i, j \in\{1,2\}$ are solutions of Eq. (1.1) for $0<c<1$.

If $u(x, y)$ is a solution of Eq. (1.1) for $0<c<1$ much in the same way as in proving Theorem 2.2 we can show that $u(x, y)=\alpha_{i}\left(\omega_{1}\right)+\beta_{j}\left(\omega_{2}\right)$.

References

[1] Feng X, Michael Neilan M, Discontinuous finite element methods for a bi-wave equation modeling d-wave superconductors, Math. Comp., 2011;80(275):1303-1333.
[2] Pogorui AA, Rodríguez-Dagnino RM, One-dimensional semi-Markov evolution with general Erlang sojourn times, Random Oper. Stochastic Equations, 2005;13(4):399-405.
[3] Kolomiiets T, Pogorui AA, Rodríguez-Dagnino RM, The distribution of random motion with 3-Erlang sojourn times, Random Oper. Stochastic Equations. 2015;23(2):69-79.
[4] Gryshchuk SV, Commutative complex algedras of the second range with identity element and some cases of plain orthotropy, Ukrainian Math. J., 2018; vol.70, no. 8, 1058-1071 (in Ukrainian).
[5] Plaksa SA, Shpakovskii VS, Constructive description of monogenic functions in a harmonic algebra of the third rank, Ukrainian Math. J. 2010;62(08):1078-1091.
[6] Plaksa SA, Pukhtaevich RP, Constructive description of monogenic functions in a three-dimensional harmonic algebra with one-dimensional radical, Ukrainian Math. J. 2013;65(5):740-751.
[7] Pogorui AA, Rodríguez-Dagnino RM, Shapiro M, Solutions for PDEs with constant coefficients and derivability of functions ranged in commutative algebras, Math. Methods Appl. Sci. 2014;37(17):27992810.
[8] Van der Waerden BL, Algebra, 4th ed., Berlin Heidelberg (Springer Verlag); 1959.

Received 22 December 2018

[^1]
[^0]: 2010 Mathematics Subject Classification. Primary 32W50; Secondary 30C45, 35C99.
 Key words and phrases. Monogenic function; commutative algebra; partial differential equations; biwave equation.

[^1]: 1,2 Department of Algebra and Geometry, Zhytomyr Ivan Franko State University, Zhytomyr 10008, Ukraine
 ${ }^{3}$ School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, N.L., México

 E-mail address: ${ }^{1}$ pogor@zu.edu.ua, ${ }^{2}$ tamila.kolomiiets@gmail.com, ${ }^{3}$ rmrodrig@tec.mx

