LIMIT-ILL-POSED EQUATIONS IN A HILBERT SPACE

A. A. Pogorui UDC.517.983:517.968

The behavior of the solution of a limit-ill-posed problem on fixed compacta
is investigated for integral operators, acting in a Hilbert space.

In the investigation of the problem of the time of reaching the "receding" boundary
of the domain of the state space of a Markov process [l, 2] there often appear equations,
which are called limit-ill-posed equations in [3]. There, a method for the investigation
of these equations is described and an analysis of the limit-ill-posed equations for the
spaces, in which the operators under consideration admit matrix representation, is carried
out. In the sequel we consider limit-ill-posed equations in general setting.

Let us consider an invertibly reducible bounded operator A, {3] of the following form
on the space L,[0, «):

Ag=gm—{kx ey

0

Let N(A,) be the kernel of the operator and dimN(A,) = r 2 1. Let fi(x), ¢;(x), 1 =

T,r, denote bases of the spaces N{A,) and N(A,*) respectively. Since the oeprator A, is
invertibly reducible without loss of generality we can assume that

Ti: (x) @ (x)dx = 8, ij=T, 7.
0

We introduce the operator

o, — {f(x), x€10,T],
0, x>T, f(x)EL,O, co).

Let At = TtA,lT, and AT be the restriction of Ap to L,[0, T] and suppose that

4T, > 0 such that % T € (T,, =) there exists in the space L,[0, T] a unique solution of
the equation '

:erg (x) = hy (x)’ (1)

where hp(x) = h(x), x € [0, T].

To this end, e.g., it is sufficient to demand that Ik(x, Y)“Lz[o,T] <1 ¥T,Te€e(T,,
)}, although this condition is not necessary.

Let us consider an h(x) € L,[0, »), for which i € {1, ..., 1} such that (@i, h) # 0.
Then the equation Ay,g = h is unsolvable.

Using the method, set forth in [1-3], we investigate the behavior of the solution of
Eq. (1) as T = =.

We fix a certain positive T, < T. Then L,[0, «) = L,[0, To[ ® L,(T,, T] e L,(T, =).
We introduce the operators
Ao Lo 10, ToJ— L, [0, Tl

Ty
Apg =g W) — [ k. g dy, €10, Ty,
0

Mathematics Institute, Academy of Sciences of the Ukrainian, SSR, Kiev. Translated from
Ukrainskii Matematicheskii Zhurnal, vol. 43, No. 2, pp. 241-247, Pebruary, 1991. Original
article submitted July 26, 1989.

0041-5995/91/4302-0212$12.50 © 1991 Plenum Publishing Corporation 212



AOI : L2 (Toy T] - L2 [O’ To],
T
Ang=—[ k(x ) g dy, x€[0, Ty,

To
Ay Ly [0, Tyl = Ly (T,T),
To
Aog=— [k, p)gW)dy, x€(T, T,
]

An:Ly(Ty, T1— L, (T, T,

T
Ang=g@~ [ k(x, ) g)dy, x€(Ty, T).

Ty

We set gr®(x) = g(x), x € [0, T,], hp®(x) = h(x), x € [0, T,]; gp'(x) = g(x), hy'(x) =

h(X), X € (To’ T]
(Aoo Aol) (@}) - h?-
Ay An/ gy b ' (2)

We write Eq. (1) in the form
We will suppose that the operator A;, is invertible ¥ T € (T,, «). Then, from
(2) we get the equation

(Aoo —onAﬁlAm) g(} = Zg, (3)

where zp° = hp® = Ay,A;, " *hyt.

To investigate (3) we consider the functions

@)= — [ kx Dh©G)dy. €0, Ty i =T
T

aff (x) = — ?k(x- 9 dy, x€(T, Tl, i=17,
T

af) () = ?k(x,y)cp,-(X)dx, yeQ, Ty, i=T,r,
T 3

a @) = — | kx )@ds, yET, Tl i=T7,
T

and the quantities
af'? = [ o0 ;) de — { [ ke ) 9: 00 ; (v) dxdy.
T rr

We introduce the vector-valued functions

aor ={af? (), i=T,7), ar={@@E, i=IL7),
an={afl(y), i=1,7r} arn={aR(), i=T17}
and the matrix
ar = {a(t l)’ l ]-‘-——T;-I'}

Let g4, i = 1,r, be the solution of the equation A,,g; = alT(l) Let us consider the matrix
ar — ar,A,, ta;T = {aT(l’J) - aTl(l) gj> i,j = 1,r}, where

o T

o g; = [ k(x, 9) g; () @i (x) dxdy.
TO
-1

We suppose that (ap — ay,A;; ‘a;T) exists ¥ T > 0 and consider the following operator

on L,[0, T,]
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ugﬁ = Ay — AolAﬁlAlo — (aor — A01Aﬁlal 1) X
X {ar — aTIAHlalT)_l (@aro — aTlAi-ll 10)

While prov1ng the fact that f;°(x) = f3(x), x € [0, T,], i = 1,4, belong to the
space N( U,,7), we will show how the operator Noo! acts.

Let us set f;'(x) = £f(x), x € (T, T]. Since A,f; = 0, i = 1,r, we have

Amf?"*‘Anﬂ"i‘al(P:O’ i=r;', (4)
whence it follows that
(Agy — A AT Asg) [ = Aol + At + Ay Apal? . (5)
By virtue of (4) we have
larg — arrAT;lAm) f? = arof(:) -+ (ln/‘gE + anAH'a{?. (6)

Since ap,f:° + ap,f:! + a (1) = 0, where a (1) is the i-th column of the matrix aT, we have
Toli Tili T T T
(aro— anAn'A) i = — (ar — anAn'ar) 1,, (7

where !, is the column vector of order r whose i-th component is 1 and all the remaining
components are zero.

By virtue of (4)-(7), we have whoff =0, i =1,r. It is analogously verified that
U, x99 =0, i=1,r.

Adding and subtracting the operator U,,T, in the expression within brackets in (3),
we get the equation

(W5 — Br) g7 = 2, (8)

where

Br = — (aor — ApAt'air) (ar — anAi'air) ™ (aro — anATi' Ay).

(9)

The eigenprojection P, of the operator W,, has the form

r

P0=Zchfg®cpgv

=1
where cp = (Py°, fx°)~!; whence
' r
P,BrP, = E coveife ® Of 5
ko i=1
where 7y = ¢, @F " — aATa{?), kI=T1 1.

We know that the operators A,;, A;;, and A;, depend on T. In the sequel, let the follow-
ing condition be fulfilled:

A,) The limit lim  AgyAyyTAg, = Ag1Ay, 'K, ,, where Ag,, Ay;, Ay are Agq, Ayp, and

A,, respectively for T = «», exists.

THEOREM 1. Suppose that the following conditons, besides condtion A,, are fulfilled:
A sup A, < oo
2) T>TP: 11 0L, (T,,T] 3

SN 0 1/2
A;) There exist i, j € {1, ..., r} such that e;3(T) = L(fi(x) dx x gm;(x)dx >
7 i
0 for VT > 0.
A,) The limit Ckg(i’j) 11m €4 1(T)Yk , k, I =1,r, exists and the matrix c(i,j) =

(cx (83), kx, 1=T,7) has the Trverse (c(i,1)-1 _ (e (LD, x, 1=Tn

214



Then

T+o0

lim e;; (T)gr (v) = ‘\: et P (@ by Fr (%), X €10, Tl
k.=t

Proof. It follows from conditions A,) and A,) that
sup #5;' (T)|| Br || = S{"" < oo (10)
7>T,
and, therefore, IByl - 0 as T + «=. Using this fact and condition A;), we have U T » Uy =
Ago — AgiA, Ay, as T > o,
It is immediately verified that U,/? = 0 and H&Q? =0, i=1,4, and f;° and @,
i = 1,r, form bases in N( U ,,) and N(U ;,*) respectively, i.e., p, is the eigenprojection of
the oeprator 1l,,. Hence R = (Ul ;4 + Py)~?! exists. Since RT = (U T + Py)"! exists ¥'T e

(Ty, =), it follows by virtue of a well-known result from functional analysis [4] that
a1, > T,

r
!
AR IR < oo (11)

whence sup || Ri || < o,
T™>T,
(12)
where ROT = (u DQT + Po)—l - PO'

Let ﬁij = gij-l(T) B, HBij be the generalized inverse operator of the operator

(i'j) == -— ~~ :3 r -—~—~ ~
TH? = (1 —Tg By Ro (I — Bully ).
We show that
sup || TH " || = S5 < oo.
T>T,

(13)
By virtue of (12) and (13), to this end it is sufficient to show that sup Hnﬁivﬂ < e,
but this follows from condition A,). Therefore, d7: > T,: £55(T) < (Si(i’j)s2girj))’l
VT >T,. Applying [3, Lemma 3.1], for T > T, we can write
W — e (7) By = — &7 (1) T3+ Tu(l — ey (T) ByTw)™
Hence, by virtue of (12) and (13) we have
(W — &, (T) By~ = —&' (T) I +o &7 (T). (14)
Taking (14) into account, from (8) we get
gr () =¥ e 7 (@1 20 fi0 + o(ei (T, x€10, Tol. (15)
Since Apgl = — Angl —al’, [ = 1,7,
(% 21) = (@0 h7) + (9}, hr) + f AiT'ht
Since aT(’) >0asT>w, I=1,r from condition A,) we have
lim (¢4, 27) = (@, h). (16)

T oo

Multiplying both sides of (15) by €13(T) and passing to limit as T » =, by virtue of
A,) and (16) we get the assertion of the theorem.

Let us consider a generalization of the above result. Let Ap og = Arg — olitg, where
Ap = IpA 0p, T > 0, and A, being an invertibly reducible bounded operator on L,[0, =):
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00

Aog = g(x) — § k(x, y)gly) x dy, dimN(A,) =r 2 1, f5 ¢, i = T,r are bases in N(A,), N(A,*)

respectively and (f;, o) = éij, i,j = 1,r, h = L,[0, =), Hp = NpH, Ny, T > 0, where H, is a

-]

bounded operator on L,[0, =), H,g = g(x) — S h(x, y)g(y)dy, o is a small parameter, d i €

(=]

{1, ..., r}:(9» h) # 0.
Let AT,a be the restriction of the operator At o to L,[0, T]. Suppose that there
exists a T, such that ¥T € (T,, =) the equation

Arog =hr, hr(x)=h(x), x€[0, T] (17)
has a unique solution in L,[0, T].
In the same way as from (1) to (3), we pass from (17) to
(AR — AR AP AR g% =2, (18)
where zp° = hp? - Alo(“)All(“)'lth, Aij(a) = Ajy — oHjy, i, j = 0,1. Adding and subtract-

ing the operator Ao, — A,;A,; 'A,,, obtained from A,, in the expression within the brackets
in (18), we have

(Aoo - A(],AﬁlAm — LT.a) = Zg, (19)

where Ly o = Agq — Ag1Ay 7ML, - (Aoo(a) - All(a)All(a)—lAlo(a))' Let o, B, VkRT’
k, /=1, r, be defined from the operator A, in the same manner as earlier [see (9)].
Adding and subtracting the operator g, in the expression within the brackets in
(19), we get
(Mo — (Br + Lr.q) g7 = 27 . (20)

THEOREM 2. Let conditions A;)-A;) of Theorem 1 and the following condition A,') be
fulfilled: T » «, a > 0 such that the limits

1

y=lime; Ma, i’ =lime vk ki=T7

a-0
exist and the matrix C(i,3) = (Ekl(i’j) +  Li(pn Hof ), k, !=1,r) has the inverse
E(i,j)-l = (Ekl(l,J)(_l)’ k, L l=rf) Then

lim e;(T)gr() =\ el Y (@ B 2 (1), X €0, Tl.
Haty ko=l
Proof. We show that
lim o (¢ L1,af) = (@n Hof)y ki=T,T. (21)
o0
Tooo

Indeed,
(@8 Lr,af1) = (b, (Ao — A D) + (9, (AT — A) AP AufD +
+ (gh A AP THAR — A D + (0k Agy (AP — AiT) Ayof).
By virtue of the boundedness of the operator H, and condition A,), we have
A@= AT — (A, —aflyy) T — AT = aAT HpAn' 4 o (@).
Hence
(o Lz,afD) = a1y HoolD) — (@ HorAi Asofl — (@i Ay AT Hiof ) +
+ (¢ A AT H AT Ay D) + 0(@). (22)

With regard for condition A,) and the fact that f; € N(4,), @« N(A*), (=T, r, (21)
follows from (22).
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The further proof of Theorem 2 is analogous to the proof of Theorem 1.

Example. Let

Ag =g x)— [ gy dy,

P38

1
()t (b )]

Hyg = \A e d(y) dy.
0

Let us set a = e”L, It is easily verified that dT, > 0: the equation
; —(x+5)/2 -7 A —lzl+y=)+-é—(x+y)-4
g — (e gdy—e (e g dy = hr (23)
] 0

has a unique solution for ¥ T € (T,, «») and h(x) € L,[0, «). We can immediately verify

that f(x) = e X/? e N(A,), and dimN(A,) = 1. Since A, is self-adjoint, it follows that
P(x) = e¥/2 e N(A *).

In order to apply Theorem 2, we compute

14
460

(@ Hpy = ¢~ \n (e“wﬂn dxdy =
00

e(T) = D{: J? (x) dx ==o€e“"dx =e7,
T T

. 1 e 7 1
— Tirm e—1 T _ —
c ~Tl_‘21 e (T)y], = 71_’_].730 T— =7 (l [—e-To & o7 ‘) [ 7. "

Hence, applying Theorem 2, we see that the solution g7°(x) of Eq. (23), considered on the
segment {0, T,], behaves in the following manner as T - o:

) T _ 4e—x/2+4 o 2 0 T
171_{7305 gr(x)—-mb(e h(yydy, h(y)€L;[0, ), x€[0, Ty}
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