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The behavior of the solution of a limit-ill-posed problem on fixed compacta 
is investigated for integral operators, acting in a Hilbert space. 

In the investigation of the problem of the time of reaching the "receding" boundary 
of the domain of the state space of a Markov process [i, 2] there often appear equations, 
which are called limit-ill-posed equations in [3]. There, a method for the investigation 
of these equations is described and an analysis of the limit-ill-posed equations for the 
spaces, in which the operators under consideration admit matrix representation, is carried 
out. In the sequel we consider limit-ill-posed equations in general setting. 

Let us consider an invertibly reducible bounded operator A 0 [3] of the following form 
on the space L2[0, ~): 

Aog = g (x) -- ~ k (x, y) g (g) d v 
6 

Le t  N(Ao) be t h e  k e r n e l  o f  t h e  o p e r a t o r  and dimN(A o) = r a 1. Le t  f i ( x ) ,  ~ ( x ) ,  i = 

1 , r ,  d e n o t e  bases  o f  t h e  spaces  N(A o) and N(Ao*) r e s p e c t i v e l y .  S ince  t h e  o e p r a t o r  A o i s  
invertibly reducible without loss of generality we can assume that 

~/i(x) w,(x)dx=6 u, i,]= l,r. 
0 

We introduce the operator 

Fir = / [ (x), x 6 [0,TI, 
[0, x > T ,  /(x)6L~[0, oo). 

Let A T = HTAoHT, and AT be the restriction of A T to L2[0, T] and suppose that 

H T l > 0 such that ~T �9 (TI, =) there exists in the space L2[0, T] a unique solution of 
the equation 

Arg (x) = hr (x), 
(1) 

where hT(x) = h(x), x �9 [0, T]. 

To this end, e.g., it is sufficient to demand that Ilk(x, y)iIL2[0,T ] < i ~T, T �9 (T I, 
~), although this condition is not necessary. 

Let us consider an h(x) �9 L2[0, =), for which ~i �9 {I, .... T} such that (~i, h) # 0. 
Then the equation A0g = h is unsolvable. 

Using the method, set forth in [i-3], we investigate the behavior of the solution of 
Eq. (i) as T ~ =. 

We fix a certain positive T o < T. Then L2[0, =) = L2[0, To[ �9 L2(T0, T] | L2(T, =). 

We introduce the operators 

Aoo : L210, To] -+ L2 [0, To], 
To 

Aoog = g (x) -- I k (x, V) g (Y) dy, x C 10, Tel, 
6 
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Aol : L 2 (T o, T] --~ L 2 [0, To], 
7" 

A~ = - -  .I k (x, y) g (y) @, x ~ [0, To], 
To 

Ajo" Ls [0, To] --* L~ (ToT 1, 
7" o 

A~~ = - -  S k (x '  Y) g ( y ) d y '  x 6  (To, r], 
0 

A n  : L2 (To, T] --+ L~ (T o, TI, 
T 

A n g  = g ( x ) - - . f  k (x ,  y ) g ( y ) d y ,  xE(7" o, r] .  
T ,  

We set gT~ = g(x), x e [0, 

h(x), x e (To, T]. 

We write Eq. (I) in the form 

To], hT~ = h(x), x e [0, To]; gT1(X) = g(x), hT!(X) = 

\e~/ \h~)" (2) 

We will suppose that the operator At1 is invertible ~T e (To, ~). 
(2) we get the equation 

--I o 
(Aoo - -  Ao~AH Ale) gr = z~, 

Then ,  from 

(3) 
where ZT ~ = hT ~ - A01AII-IhT I. 

To investigate (3) we consider the functions 

and the quantities 

co 

ar (x) = - -  .f k (x, y ) / ,  (y) dy, x ( 10, Tol, i = 1,--7, 
r 

a[~) (x) = - -  ~ k (x, y) f, (y) dy, x C (To, TI, i = ~,r ,  
T 

oo 

a ~  (y) = - -  .f k (x, y) g)i (x) dx, yE[O, To], i =  1 , r ,  
T 

a ~ r ~ ( y ) = - -  k(x,y)~p~(x)dx,  y6 (To ,  Tl, i =  1, r ,  
T 

T F T  

We introduce the vector-valued functions 

and the matrix 

a o r = t , . o r ( x ) ,  i---- 1, r}, 

a ~  = { ~ ~  (y), i = l,--Y}, (r 
are = {aTe (y), i = 1----.7} 

aT = {aP "j', i,  i = 1; ~}. 
Let gi, i = 1, r, be the solution of the equation Allg i = afT (i). Let us consider the matrix 

a T - aTIAl1-1aiT = {aT(i,J) - aT1 (i) gj, i,j = l,--r}, where 

~T 

TO 

We suppose that (a T - aT!A11-1aiT )-l exists ~T > 0 and consider the following operator 
on Li[0 , To] 
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llroo = Aoo - -  AolA' j IAlo - -  (aor - -  AolA-~la, r) X 

x (aT - -  ar ,A ' j la , r )  -1 (aro - -  arlA'HtAlo). 

While proving the fact that fi~ = fi(x), x e [0, To] , 
space N( N 00T), we will show how the operator I100 T acts. 

Let us set fit(x) = f(x), x e (To, T]. Since A0f i = 0, 

A,o~ + An1~ + a[~ -) = O, i = 1,--}, 

whence it follows that 

i = 1,4, belong to the 

i = l,r, we have 

(4) 

(Aoo _ -~ o I (o AolAu A,o) [i = Aoo~ + Ao,f~ + Ao I Ana l r  �9 ( 5 )  

By virtue of (4) we have 

(aro - -  ar,AT~'A,o) f i  = aro~ + ar,f[ + ar,A~'a(~.  (6) 

Since aTofi ~ + aTzfi z + aT(i) = 0, where aT (i) is the i-th column of the matrix aT, we have 

( a r o  - -  ar ,A '~ 'Alo  ) ~ = - -  (a t  - -  arlA'61alr)  l i, ( 7 ) 

where Ii is the column vector of order r whose i-th component is 1 and all the remaining 
components are zero. 

By virtue of (4)-(7), we have U~ = 0, 

U 00 T* r ~ = 0, i = l ' , r .  

Adding and subtracting the operator U00T, 
we get the equation 

where 

i = l,r. It is analogously verified that 

in the expression within brackets in (3), 

B r  = - -  ( ~ r  - -  AolA~ 'a , r )  (at  - -  a n A ~ l  alr) - '  (aro - -  ar tA~l  Alo). 

The eigenprojection P0 of the operator I I oo  has the form 

k=l 

where c k = (~k ~ fk~ whence 

PoBrPo = 
k , l=l  

where y~/ ck (a(zk.O ^(*)A-I#O, = - -  - r ,  ~,, -lrp, k ,  l = i',' 'r. 

T 0 c,~,~d~ | m~, 

We know that the operators A0z, Azl , and Azo depend on T. 
ing condition be fulfilled: 

A I) The limit lim AoIAII-IAz0 = AoIAII-IAIo, where Aol, A11, A1o are A01, A11, and 

At0 respectively for T = ~, exists. 

THEOREM i. Suppose that the following conditons, besides condtion At, are fulfilled: 

A 2) sup IIAzz-IIIL2(T0,T] < =; 
T>T~ 

A 3) There exist i, j e {1 ..... r} such that eij(T) = 

(s) 

(9) 

0 for ~ T > 0. 

The limit cks ) = lim eij-1(T)Yk T, 

, k ,  l =  1, r) h a s  t h e  I n v e r s e  ( c ( i , j ) - I  

In the sequel, let the follow- 

(Ck 

A~) 
(i,j) 

i/2 
/3 (x) dx • [~ ~ (x)dx 

k, ! = i',r, exists and the matrix c(i,J ) = 

= (c k (i,j)(-1), k, l= l,---r). 
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Then 
r 

lira e~j (T)g~ (x) = ~,~ c,c~i '/)(-]~ (% h) f~ (x), x 6 [0, Tol. 
k,t=l 

Proof. It follows from conditions A 2) and A t) that 

sup t.~l (T)[I Br [I = Sf;'/ '  < ~ (10)  
T>T~, 

and, therefore, IIBTll ~ 0 as T ~ ~. Using this fact and condition At), we have llooT ~ 11oo = 

Ao0 - A01A11-1A1o as T ~ ~. 

It is immediately verified that 1Ioo ~ = 0 and H0o~ = 0, i = 1,4, and fi ~ and ~ , 

i = l,r, form bases in N(I/oo) and N(H 0o*) respectively, i.e., P0 is the eigenprojection of 

the oeprator II,~. Hence R = (If oo + Po) -~ exists. Since R T = ([Io0 T + Po) "~ exists ~'T e 

(T O , ~ ) ,  
~T I > To: 

whence 

it follows by virtue of a well-known result from functional analysis [4] that 

sup I lRrll  < ~ ,  
T>T, 

sup II/?o r tl < ~o, 
r>r, 

Let Bij = gij 

PoBijPo [3], 

where Ro T = (N 00 T + p0) -I - Po. 

-I(T) BT' N~ij be the generalized inverse operator of the operator 

We show that 

(11) 

(12) 

sup II T ~  ':) tl = S~ ''t) < oo. 
r>r,  (13) 

By virtue of (12) and (13), to this end it is sufficient to show that sup liH~ioli3 < ~, 

but this follows from condition At). Therefore, ~T~ > Ti: Eij(T ) < (si(i,j)s2(i,j))-1 

~T > T~. Applying [3, Lemma 3.1], for T > T 2 we can write 

t (UoTo - -  %~ (T) Bu) = --  ~*  (T) H~] -T TH (I - -  ~u (T) BuTu) -l .  

Hence ,  by v i r t u e  o f  (12)  and (13)  we h a v e  

( ltoro - -  ~u (r)  Bu)- '  -- - -  sT/(T) I I~ j  + o (s~ l (T)). (14)  

T a k i n g  (14)  i n t o  a c c o u n t ,  f rom (8)  we g e t  

gO (X) = ~ Cl•k(7 ])'T (qD 0, Z O) f0 (X) J[- O (St'~ 1 (r)), x E [0, To]. ( 1 5 )  

* o �9 1 S i n c e  Amq)t = --Antp~ --act O, l = I-~,  

(o ,  zo) (o ,  Ao) + ( , ,  h~)-- ")~-'~' 
--~OT ~ l l  I~T. 

Since aT (/) + 0 as T * ~, i--l,-~, from condition A 2) we have 

tim ( o, z o) = (% h). ( 1 6 )  

Multiplying both sides of (15) by eij(T) and passing to limit as T ~ ~, by virtue of 
A t) and (16) we get the assertion of the theorem. 

Let us consider a generalization of the above result. Let AT,~g = ATg - ~HTg , where 

A T = HTAoHT, T > 0, and A 0 being an invertibly reducible bounded operator on L2[0, ~): 
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Aog = g(x) - ,I k(x, y)g(y) • dy, dimN(Ao) = r a 1, fi ~, i = ];r are bases in N(A0), N(Ao*) 
0 

respectively and (fi, ~) = 6ij, i,j = l,r, h = L2[0, ~), H T = HTHoHT, T > 0, where H o is a 

bounded operator on L=[0, ~), Hog = g(x) - f h(x, y)g(y)dy, ~ is a small parameter, H i e 
0 

{i . . . . .  r}: (~, h) $ 0. 
^ 

Let AT, ~ be the restriction of the operator AT, a to L210 , T]. Suppose that there 

exists a T~ such that ~T �9 (T~, ~) the equation 

Ar.=g=hr, h r ( x )=h~) ,  x6[0,  TI (17) 

has a unique solution in L=[0, T]. 

In the same way as from (i) to (3), we pass from (17) to 

.*(~) AI~)A(a)--IA(a)\ 
(~00 - - ~ 0 1  ~11 ~10 1 ~  = 2~ 

where ZT ~ = hT ~ - Al0(a)Axl(a)-XhT ~, Aij(a) = Aij - aHij , i, j = 0, 1. 
ing the operator A0o 
in (18), we have 

(18) 

Adding and subtract- 

- A0~A~-XAx0, obtained from A 0, in the expression within the brackets 

(Aoo -- Ao,A~'A,o -- Lr.=) = ~ ,  
(19)  

where LT, ~ = A00 - AoIAII-IAI0 - (A00 (~) - A11(~)A11(a)-iA10(~)). Let H~, B T, ~ks T, 

k, l=l-~, be defined from the operator A 0 in the same manner as earlier [see (9)]. 

Adding and subtracting the operator H~, in the expression within the brackets in 
(19), we get 

( H ~ - - ( B r  § Lr.~))g~= z~. (20)  

THEOREM 2. Let conditions Ax)-A a) of Theorem 1 and the following condition A4') be 
fulfilled: T ~ =, ~ ~ 0 such that the limits 

l~i = lim e~q' (T)a, c~ '0 = lim e~' (T) V~l, k, I = I,--7, 
=~0 

exist and the matrix ~(i,j) = (~ks + lu(%, Hof ), k, I = i-~) has the inverse 

~(i,j)-1 = (~ks k, s l= l, r). Then 

t 

~,~ (%, h) fi (x), x 6 [0, To]. 
~ 0  k , l = l  

Proof. We show that 

Indeed, 

lim a-~ (cp ~ Lr.a[ ~ ---- (%, Ho[O, k , l =  1,"-~. (21)  
ct - -  O 
T ~ o o  

( r  r .dO = ( r  (Aoo - -  Aoo ) fi) + (q~. ~t,o,'~'~ - -  Ao,)A,,'~)-'A,oh)~ + 

+ (q o, Ao ' AI~'-'  "~'~' t - ,o  - -  A,o) [o) + (qDO. Ao ' (A[~O-, _ A . ' )  Alo[~ 

By virtue of the boundedness of the operator H 0 and condition A2), we have 

AI~ ~-' -- A~ I = (A~I -- ann)-' -- A~' = =AF,'I-IuA[I ~ + o (a). 

Hence 
L 0 I) --I 0 ( r  r . J , )  = cz [(qk, Hoof?)- (r Ho,A,, A,oI, -- (r  Ao~A~' Hlof ~ + 

A A - ' n  A- 'A ;o.. + (cp~, ~o1~,1 ' i n  ,1 lO/.)] + o(a). 

With regard for condition A 2) and the fact that fs e N(A0) , ~te N(A0*), 
follows from (22). 

l=C-r, (21) 

(22)  
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The further proof of Theorem 2 is analogous to the proof of Theorem i. 

Example. Let 

Let us set ~ = e -T. 

co 

Aog = g (x) - -  ~ e -(~+u)/~ g (y) dy, 
0 

oo ! 

i -~*'+'u')+7r d (y) @. Hog = e 
0 

It is easily verified that HT I > 0: the equation 

T T 

0 0 

h a s  a u n i q u e  s o l u t i o n  f o r  ~ T e (T1 ,  =)  and  h ( x )  e L 2 [ 0  , ~ ) .  We c a n  i m m e d i a t e l y  v e r i f y  

t h a t  f ( x )  . e - x / 2  e .N(A0) , and  d imN(A a)  = 1. S i n c e  A 0 i s  s e l f - a d j o i n t ,  i t  f o l l o w s  t h a t  
r0(x ) = e - X / 2  e N(A0* ) .  

I n  o r d e r  t o  a p p l y  T h e o r e m  2,  we c o m p u t e  
ooeo  ~ 

(% Hop) = .i .I" d ey = , 
0 0 

~ (T) = [2 (x) dx = e-Xdx = e - r  , 

c =  lirn ~ - '  (T)?r, = lirn 1 ( e - r  ) 1 
r~oo r ~  l - - e  - r .  1 1 - - e - r o + e  - r  " = t - - e  - to  " 

\ 

(23) 

Hence, applying Theorem 2, we see that the solution gT~ of Eq~ (23), considered on the 
segment [0, To], behaves in the following manner as T ~ =: 

lira e - r g ~  = 4e-X/2+4 I e - Y / 2 h ( y ) d y ,  a ( y ) 6 L 2 [ O ,  oo), x6[0 ,  To]. 
r ~  (40 + •) 6 
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