A. A. Pogorui

UDC. 517.983:517.968

The behavior of the solution of a limit-ill-posed problem on fixed compacta is investigated for integral operators, acting in a Hilbert space.

In the investigation of the problem of the time of reaching the "receding" boundary of the domain of the state space of a Markov process [1, 2] there often appear equations, which are called limit-ill-posed equations in [3]. There, a method for the investigation of these equations is described and an analysis of the limit-ill-posed equations for the spaces, in which the operators under consideration admit matrix representation, is carried out. In the sequel we consider limit-ill-posed equations in general setting.

Let us consider an invertibly reducible bounded operator A_{0} [3] of the following form on the space $L_{2}[0, \infty)$:

$$
A_{0} g=g(x)-\int_{\dot{0}}^{\infty} k(x, y) g(y) d y
$$

Let $N\left(A_{0}\right)$ be the kernel of the operator and $\operatorname{dim} N\left(A_{0}\right)=r \geq 1$. Let $f_{i}(x), \varphi_{i}(x)$, $i=$ Γ, r, denote bases of the spaces $N\left(A_{0}\right)$ and $N\left(A_{0} *\right)$ respectively. Since the oeprator A_{0} is invertibly reducible without loss of generality we can assume that

$$
\int_{i}^{\infty} f_{i}(x) \varphi_{j}(x) d x=\delta_{i j}, \quad i, j=\overline{1, r}
$$

We introduce the operator

$$
\Pi_{T}=\left\{\begin{array}{l}
f(x), \quad x \in[0, T] \\
0, \quad x>T, \quad f(x) \in L_{2}[0, \infty)
\end{array}\right.
$$

Let $A_{T}=\Pi_{T} A_{0} \Pi_{T}$, and \hat{A}_{T} be the restriction of A_{T} to $L_{2}[0, T]$ and suppose that $\exists T_{1}>0$ such that $\forall T \in\left(T_{1}, \infty\right)$ there exists in the space $L_{2}[0, T]$ a unique solution of the equation

$$
\begin{equation*}
\hat{A}_{T} g(x)=h_{T}(x) \tag{1}
\end{equation*}
$$

where $h_{T}(x)=h(x), x \in[0, T]$.
To this end, e.g., it is sufficient to demand that $\|k(x, y)\|_{L_{2}}[0, T]<1 \quad \forall T, T \in\left(T_{1}\right.$, ∞), although this condition is not necessary.

Let us consider an $h(x) \in L_{2}[0, \infty)$, for which $\exists i \in\{1, \ldots, \tau\}$ such that $\left(\varphi_{i}, h\right) \neq 0$. Then the equation $A_{0} g=h$ is unsolvable.

Using the method, set forth in [1-3], we investigate the behavior of the solution of Eq. (1) as $\mathrm{T} \rightarrow \infty$.

We fix a certain positive $\mathrm{T}_{0}<\mathrm{T}$. Then $\mathrm{L}_{2}[0, \infty)=\mathrm{L}_{2}\left[0, \mathrm{~T}_{0}\left[\oplus \mathrm{~L}_{2}\left(\mathrm{~T}_{0}, \mathrm{~T}\right] \oplus \mathrm{L}_{2}(\mathrm{~T}, \infty)\right.\right.$. We introduce the operators

$$
\begin{gathered}
A_{00}: L_{2}\left[0, T_{0}\right] \rightarrow L_{2}\left[0, T_{0}\right], \\
A_{00} g=g(x)-\int_{0}^{T_{0}} k(x, y) g(y) d y, \quad x \in\left[0, T_{0}\right],
\end{gathered}
$$

Mathematics Institute, Academy of Sciences of the Ukrainian, SSR, Kiev. Translated from Ukrainskii Matematicheskii Zhurnal, vol. 43, No. 2, pp. 241-247, February, 1991. Original article submitted July 26, 1989.

$$
\begin{gathered}
A_{01}: L_{2}\left(T_{0}, T\right] \rightarrow L_{2}\left[0, T_{0}\right], \\
A_{01} g=-\int_{\dot{T}_{0}}^{T} k(x, y) g(y) d y, \quad x \in\left[0, T_{0}\right] \\
A_{10}: L_{2}\left[0, T_{0}\right] \rightarrow L_{2}\left(T_{0} T\right], \\
A_{10} g=-\int_{0}^{T_{0}} k(x, y) g(y) d y, \quad x \in\left(T_{0}, T\right], \\
A_{11}: L_{2}\left(T_{0}, T\right] \rightarrow L_{2}\left(T_{0}, T\right] \\
A_{11} g=g(x)-\int_{T_{0}}^{T} k(x, y) g(y) d y, \quad x \in\left(T_{0}, T\right] .
\end{gathered}
$$

We set $g_{T}{ }^{0}(x)=g(x), x \in\left[0, T_{0}\right], h_{T}{ }^{0}(x)=h(x), x \in\left[0, T_{0}\right] ; g_{T}^{1}(x)=g(x), h_{T}^{1}(x)=$ $h(x), x \in\left(T_{0}, T\right]$.

We write Eq. (1) in the form

$$
\left(\begin{array}{ll}
A_{00} & A_{01} \tag{2}\\
A_{10} & A_{11}
\end{array}\right)\binom{g_{T}^{0}}{g_{T}^{1}}=\binom{h_{T}^{0}}{h_{T}^{1}}
$$

We will suppose that the operator A_{11} is invertible $\forall T \in\left(T_{0}, \infty\right)$. Then, from (2) we get the equation

$$
\begin{equation*}
\left(A_{00}-A_{01} A_{11}^{-1} A_{10}\right) g_{T}^{0}=z_{T}^{0} \tag{3}
\end{equation*}
$$

where $z_{T}{ }^{0}=h_{T}{ }^{0}-A_{01} A_{11}{ }^{-1} h_{T}{ }^{1}$.
To investigate (3) we consider the functions

$$
\begin{gathered}
a_{0 T}^{(i)}(x)=-\int_{i}^{\infty} k(x, y) f_{i}(y) d y, \quad x \in\left[0, T_{0}\right], \quad i=\overline{1, r}, \\
a_{1 T}^{(i)}(x)=-\int_{i}^{\infty} k(x, y) f_{i}(y) d y, \quad x \in\left(T_{0}, T\right], \quad i=\overline{1, r}, \\
a_{T 0}^{(i)}(y)=-\int_{T}^{\infty} k(x, y) \varphi_{i}(x) d x, \quad y \in\left[0, T_{0}\right], \quad i=\overline{1, r}, \\
a_{T 1}^{(i)}(y)=-\int_{T}^{\infty} k(x, y) \varphi_{i}(x) d x, \quad y \in\left(T_{0}, T\right], \quad i=\overline{1, r},
\end{gathered}
$$

and the quantities

$$
a_{T}^{(i, j)}=\int_{T}^{\infty} \varphi_{i}(x) f_{j}(x) d x-\int_{T}^{\infty} \int_{T}^{\infty} k(x, y) \varphi_{i}(x) f_{j}(y) d x d y .
$$

We introduce the vector-valued functions

$$
\begin{array}{cl}
a_{0 T}=\left\{a_{0 T}^{(i)}(x),\right. & i=\overline{1, r}\}, \quad a_{1 T}=\left\{a_{1 T}^{(i)}(x), \quad i=\overline{1, r}\right\} \\
a_{T 1}=\left\{a_{T 1}^{(i)}(y), \quad i=\overline{1, r}\right\}, \quad a_{T 0}=\left\{a_{T 0}^{(i)}(y), \quad i=\overline{1, r}\right\}
\end{array}
$$

and the matrix

$$
a_{T}=\left\{a_{T}^{(i, i)}, i, j=\overline{1, r}\right\}
$$

Let $g_{i}, i=\overline{1, r}$, be the solution of the equation $\left.A_{11} g_{i}=a_{1}{ }^{(}{ }^{i}\right)$. Let us consider the matrix $a_{T}-a_{T 1} A_{11}-1 a_{1 T}=\left\{a_{T}(i, j)-a_{T 1}(i) g_{j}, i, j=\overline{1, I}\right\}$, where

$$
a_{T I}^{(i)} g_{j}=\int_{T}^{\infty} \int_{0}^{T} k(x, y) g_{j}(y) \varphi_{i}(x) d x d y
$$

We suppose that $\left(a_{T}-a_{T 1} A_{11}{ }^{-1} a_{1 T}\right)^{-1}$ exists $\forall T>0$ and consider the following operator on $L_{2}\left[0, T_{0}\right]$

$$
\begin{aligned}
\mathfrak{U}_{00}^{\tau} & =A_{00}-A_{01} A_{11}^{-1} A_{10}-\left(a_{0 T}-A_{01} A_{11}^{-1} a_{1 T}\right) \times \\
& \times\left(a_{T}-a_{T 1} A_{11}^{-1} a_{1 T}\right)^{-1}\left(a_{T 0}-a_{T 1} A_{11}^{-1} A_{10}\right)
\end{aligned}
$$

While proving the fact that $f_{i}{ }^{0}(x)=f_{i}(x), x_{i} \in\left[0, T_{0}\right], i=1,4$, belong to the space $N\left(\mathfrak{u}_{00} T\right)$, we will show how the operator $l_{00} T$ acts.

Let us set $f_{i}{ }^{1}(x)=f(x), x \in\left(T_{0}, T\right]$. Since $A_{0} f_{i}=0, i=\overline{1, r}$, we have

$$
\begin{equation*}
A_{10} f_{i}^{0}+A_{11} f_{i}^{1}+a_{I T}^{(i)}=0, \quad i=\overline{1, r} \tag{4}
\end{equation*}
$$

whence it follows that

$$
\begin{equation*}
\left(A_{00}-A_{01} A_{11}^{-1} A_{10}\right) f_{i}^{0}=A_{00} f_{i}^{0}+A_{01} f_{i}^{1}+A_{01} A_{11} a_{1 T}^{(i)} \tag{5}
\end{equation*}
$$

By virtue of (4) we have

$$
\begin{equation*}
\left(a_{T 0}-a_{T 1} A_{11}^{-1} A_{10}\right) f_{i}^{0}=a_{T 0} f_{i}^{0}+a_{T 1} f_{i}^{1}+a_{T 1} A_{11}^{-1} a_{1 T}^{(l)} \tag{6}
\end{equation*}
$$

Since $a_{T o} f_{i}{ }^{0}+a_{T} f_{i}{ }^{1}+a_{T}(i)=0$, where $a_{T}(i)$ is the $i-t h$ column of the matrix a_{T}, we have

$$
\begin{equation*}
\left(a_{T 0}-a_{T 1} A_{11}^{-1} A_{10}\right) f_{i}^{0}=-\left(a_{T}-a_{T 1} A_{11}^{-1} a_{1 T}\right) 1_{i} \tag{7}
\end{equation*}
$$

where $\boldsymbol{1}_{\boldsymbol{l}}$ is the column vector of order r whose i-th component is 1 and all the remaining
components are zero. components are zero.

By virtue of (4)-(7), we have $\quad \mathfrak{u}_{00}^{T} f_{i}^{0}=0, i=\overline{1, r}$. It is analogously verified that $\mathfrak{u}_{00} \mathrm{~T} * \varphi_{i}{ }^{0}=0, i=\overline{1, r}$.

Adding and subtracting the operator $\mathfrak{U}_{00} T$, in the expression within brackets in (3), we get the equation

$$
\begin{equation*}
\left(\mathfrak{U}_{00}^{T}-B_{T}\right) g_{T}^{0}=z_{T}^{0} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{T}=-\left(a_{0 T}-A_{01} A_{11}^{-1} a_{1 T}\right)\left(a_{T}-a_{T 1} A_{11}^{-1} a_{1 T}\right)^{-1}\left(a_{T 0}-a_{T 1} A_{11}^{-1} A_{10}\right) \tag{9}
\end{equation*}
$$

The eigenprojection P_{0} of the operator \mathfrak{U}_{00} has the form

$$
P_{0}=\sum_{k=1}^{r} c_{k} f_{k}^{0} \otimes \varphi_{k}^{0}
$$

where $c_{k}=\left(\varphi_{k}{ }^{0}, f_{k}{ }^{0}\right)^{-1}$; whence
where $\gamma_{k l}^{T}=c_{k}\left(a_{T}^{(k, l)}-a_{T 1}^{(k)} A_{11}^{-1} a_{1 T}^{(l)}\right), \quad k, l=\overline{1, r}$.
We know that the operators A_{01}, A_{11}, and A_{10} depend on T. In the sequel, let the following condition be fulfilled:
A_{1}) The limit $\lim _{T \rightarrow \infty} A_{01} A_{11}{ }^{-1} A_{10}=\bar{A}_{01} \bar{A}_{11}{ }^{-1} \bar{A}_{10}$, where $\bar{A}_{01}, \bar{A}_{11}, \bar{A}_{10}$ are A_{01}, A_{11}, and A_{10} respectively for $T=\infty$, exists.

THEOREM 1. Suppose that the following conditons, besides condtion A_{1}, are fulfilled:
$\left.\mathrm{A}_{2}\right) \sup _{T>T_{0}}\left\|\mathrm{~A}_{11}{ }^{-1}\right\|_{L_{2}}\left(\mathrm{~T}_{0}, \mathrm{~T}\right]<\infty ;$
$\left.A_{3}\right)$ There exist $i, j \in\{1, \ldots, r\}$ such that $\varepsilon_{i j}(T)=\left(\int_{i}^{\infty} f_{i}^{2}(x) d x \times \int_{j}^{\infty} \varphi_{i}^{2}(x) d x^{1 / 2}>\right.$ 0 for $\forall T>0$.
$\left.A_{4}\right)$ The limit $c_{k l}(i, j)=\lim _{T \rightarrow \infty} \varepsilon_{i j}{ }^{-1}(T)_{\gamma_{k}} T, k, l=\overline{1, r}$, exists and the matrix $c(i, j)=$ $\left(c_{k}(\mathrm{i}, \mathrm{j}), \mathrm{k}, \quad l=\overline{1, r}\right)$ has the 1 nverse $\left(c^{(i, j)-i}=\left(c_{k}(i, j)(-1), k, \quad l=\bar{l}, r\right)\right.$.

Then

$$
\lim _{T \rightarrow \infty} \varepsilon_{i j}(T) g_{T}^{0}(x)=\sum_{k, I=1}^{\prime} c_{1} c_{k l}^{(i, j)(-1)}\left(\varphi_{i}, h\right) f_{k}^{0}(x), \quad x \in\left[0, T_{0}\right]
$$

Proof. It follows from conditions A_{2}) and A_{4}) that

$$
\begin{equation*}
\sup _{T>T_{n}} \varepsilon_{i j}^{-1}(T)\left\|B_{T}\right\|=S_{i}^{(i, i)}<\infty \tag{10}
\end{equation*}
$$

and, therefore, $\left\|B_{T}\right\| \rightarrow 0$ as $T \rightarrow \infty$. Using this fact and condition A_{1}), we have $\|_{00} T \rightarrow 1_{00}=$ $\mathrm{A}_{00}-\overline{\mathrm{A}}_{01} \overline{\mathrm{~A}}_{11}{ }^{-1} \overline{\mathrm{~A}}_{10}$ as $\mathrm{T} \rightarrow \infty$.

It is immediately verified that $\mathfrak{U}_{00} f_{i}^{0}=0$ and $\mu_{00}^{0} \varphi_{i}^{0}=0$, $i=\overline{1,4}$, and f_{i}^{0} and φ_{i}^{0}, $i=\overline{1, r}$, form bases in $N\left(\mathfrak{U}_{00}\right)$ and $N\left(\mathscr{U}_{00} *\right)$ respectively, i.e., ρ_{0} is the eigenprojection of the oeprator μ_{00}. Hence $R=\left(\|_{00}+P_{0}\right)^{-1}$ exists. Since $R^{T}=\left(U_{00} T+P_{0}\right)^{-1}$ exists $\forall T \in$ $\left(T_{0}, \infty\right)$, it follows by virtue of a well-known result from functional analysis [4] that $\exists \mathrm{T}_{1}>\mathrm{T}_{0}$:

$$
\begin{equation*}
\sup _{T>T_{1}}\left\|R^{T}\right\|<\infty \tag{11}
\end{equation*}
$$

whence

$$
\begin{equation*}
\sup _{T>T_{2}}\left\|R_{0}^{T}\right\|<\infty \tag{12}
\end{equation*}
$$

where $R_{0} T=\left(H_{00} T+P_{0}\right)^{-1}-P_{0}$.
Let $\tilde{B}_{i j}=\varepsilon_{i j}{ }^{-1}(T) B_{T}$, $\Pi_{B_{i j}}$ be the generalized inverse operator of the operator $P_{0} \tilde{B}_{i j} P_{0}$ [3],

$$
T_{H}^{(i, j)}=\left(I-\Pi_{\widetilde{B}_{i j}} \widetilde{B}_{i j}\right) R_{0}^{T}\left(I-\widetilde{B}_{i j} \Pi_{B_{i j}}\right)
$$

We show that

$$
\begin{equation*}
\sup _{T>T_{1}}\left\|T_{H}^{(l, i)}\right\|=S_{2}^{(t, j)}<\infty \tag{13}
\end{equation*}
$$

By virtue of (12) and (13), to this end it is sufficient to show that sup $\left\|\Pi_{\tilde{B}_{i j}}\right\|<\infty$, but this follows from condition A_{4}). Therefore, $\exists T_{2}>T_{1}: \varepsilon_{i j}(T)<\left(S_{i}(i, j)_{S_{2}}(i, j)\right)^{-1}$ $\forall T>T_{2}$. Applying [3, Lemma 3.1], for $T>T_{2}$ we can write

$$
\left(\mathfrak{U}_{00}^{T}-\varepsilon_{i j}(T) \widetilde{B}_{i j}\right)=-\varepsilon_{i j}^{-1}(T) \Pi_{\tilde{B}_{i j}}+T_{H}\left(l-\varepsilon_{i j}(T) B_{i j} T_{H}\right)^{-1}
$$

Hence, by virtue of (12) and (13) we have

$$
\begin{equation*}
\left(\mathfrak{H}_{00}^{T}-\varepsilon_{i j}(T) \tilde{B}_{i j}\right)^{-1}=-\varepsilon_{i j}^{-1}(T) \Pi_{\widetilde{B}_{i j}}+o\left(\varepsilon_{i j}^{-1}(T)\right) \tag{14}
\end{equation*}
$$

Taking (14) into account, from (8) we get

$$
\begin{equation*}
g_{T}^{0}(x)=\sum c_{l} \gamma_{k l}^{(-1), T}\left(\varphi_{i}^{0}, z_{T}^{0}\right) f_{k}^{0}(x)+o\left(\varepsilon_{i j}^{-1}(T)\right), \quad x \in\left[0, T_{0}\right] \tag{15}
\end{equation*}
$$

Since $A_{01}^{*} \varphi_{l}^{0}=-A_{11}^{*} \varphi_{l}^{1}-a_{T}^{(l)}, l=\overline{1, r}$,

$$
\left(\varphi_{i}^{0}, z_{T}^{0}\right)=\left(\varphi_{l}^{0}, h_{T}^{0}\right)+\left(\varphi_{l}^{1}, h_{T}^{1}\right)+a_{T}^{(l)} A_{11}^{-1} h_{T}^{1} .
$$

Since $\mathrm{a}_{\mathrm{T}}(l) \rightarrow 0$ as $\mathrm{T} \rightarrow \infty, l=\overline{1, r}$, from condition A_{2}) we have

$$
\begin{equation*}
\lim _{T \rightarrow \infty}\left(\varphi_{l}^{0}, z_{T}^{0}\right)=(\varphi, h) \tag{16}
\end{equation*}
$$

Multiplying both sides of (15) by $\varepsilon_{i j}(T)$ and passing to limit as $T \rightarrow \infty$, by virtue of A_{4}) and (16) we get the assertion of the theorem.

Let us consider a generalization of the above result. Let $A_{T, \alpha g}=A_{T} g-\alpha H_{T} g$, where $A_{T}=\Pi_{T} A_{0} \Pi_{T}, T>0$, and A_{0} being an invertibly reducible bounded operator on $L_{2}[0, \infty)$:
$A_{0} g=g(x)-\int_{0}^{\infty} k(x, y) g(y) \times d y, \operatorname{dim} N\left(A_{0}\right)=r \geq 1, f_{i} \varphi_{i}, i=\overline{1, r}$ are bases in $N\left(A_{0}\right), N\left(A_{0} *\right)$ respectively and $\left(f_{i}, \varphi_{j}\right)=\delta_{i j}, i, j=1, r, h=L_{2}[0, \infty), H_{T}=\Pi_{T} H_{0} \Pi_{T}, T>0$, where H_{0} is a bounded operator on $L_{2}[0, \infty), H_{0} g=g(x)-\int_{0}^{\infty} h(x, y) g(y) d y, \alpha$ is a small parameter, $\exists i \in$ $\{1, \ldots, r\}:\left(\varphi_{i}, h\right) \neq 0$.

Let $\hat{A}_{T, \alpha}$ be the restriction of the operator $A_{T, \alpha}$ to $L_{2}[0, T]$. Suppose that there exists a T_{1} such that $\forall T \in\left(T_{1}, \infty\right)$ the equation

$$
\begin{equation*}
\hat{A}_{T, \alpha g}=h_{T}, \quad h_{T}(x)=h(x), \quad x \in[0, T] \tag{17}
\end{equation*}
$$

has a unique solution in $L_{2}[0, T]$.
In the same way as from (1) to (3), we pass from (17) to

$$
\begin{equation*}
\left(A_{00}^{(\alpha)}-A_{01}^{(\alpha)} A_{11}^{(\alpha)-1} A_{10}^{(\alpha)}\right) g_{T}^{0}=\tilde{z}_{T}^{0}, \tag{18}
\end{equation*}
$$

where $\tilde{z}_{T}{ }^{0}=h_{T}{ }^{0}-A_{10}(\alpha)_{A_{11}}(\alpha)-h_{T}{ }^{1}, A_{i j}(\alpha)=A_{i j}-\alpha H_{i j}, i, j=\overline{0,1} . \quad$ Adding and subtracting the operator $A_{00}-A_{01} A_{11}{ }^{-1} A_{10}$, obtained from A_{0}, in the expression within the brackets in (18), we have

$$
\begin{equation*}
\left(A_{00}-A_{01} A_{11}^{-1} A_{10}-L_{T . \alpha}\right)=\tilde{z}_{T}^{0}, \tag{19}
\end{equation*}
$$

where $L_{T, \alpha}=A_{00}-A_{01} A_{11}{ }^{-1} A_{10}-\left(A_{00}(\alpha)-A_{11}(\alpha)_{A_{11}}(\alpha)-{ }^{1} A_{10}(\alpha)\right)$. Let $\mathfrak{u}_{00}^{T}, B_{T}, \gamma_{k l}{ }^{T}$, $\mathrm{k}, l=\overline{1, r}$, be defined from the operator A_{0} in the same manner as earlier [see (9)].

Adding and subtracting the operator \mathfrak{u}_{00}^{T}, in the expression within the brackets in (19), we get

$$
\begin{equation*}
\left(\mathfrak{u}_{00}^{T}-\left(B_{T}+L_{T, \alpha}\right)\right) g_{T}^{0}=\tilde{z_{T}^{0}} . \tag{20}
\end{equation*}
$$

THEOREM 2. Let conditions A_{1})- A_{3}) of Theorem 1 and the following condition $A_{4}{ }^{\prime}$) be fulfilled: $T \rightarrow \infty, \alpha \rightarrow 0$ such that the limits

$$
l_{i j}=\lim _{\substack{T \rightarrow \infty \\ \alpha \rightarrow 0}} \varepsilon_{i j}^{-1}(T) \alpha, \quad c_{k l}^{(i, i)}=\lim _{T \rightarrow \infty} \varepsilon_{i j}^{-1}(T) \gamma_{k k}^{\tau}, \quad k, l=\overline{1, r},
$$

exist and the matrix $\tilde{\mathrm{c}}^{(\mathrm{i}, \mathrm{j})}=\left(\tilde{\mathrm{c}}_{\mathrm{k} \ell}(\mathrm{i}, \mathrm{j})+l_{i j}\left(\varphi_{k}, H_{0} \mathrm{f}\right), \mathrm{k}, l=\overline{1, \mathrm{r}}\right)$ has the inverse $\tilde{c}^{(i, j)-1}=\left(\tilde{c}_{k \ell}(i, j)(-1), k, \ell l=\bar{l}, r\right)$. Then

$$
\lim _{\substack{T \rightarrow \infty \\ \alpha \rightarrow 0}} \varepsilon_{i j}(T) g_{T}^{0}(x)=\underset{k, t=1}{\prime} \underset{c_{1} c_{k l}^{(i, j)(-1)}}{\left(\varphi_{k}, h\right)} f_{l}^{0}(x), x \in\left[0, T_{0}\right] .
$$

Proof. We show that

$$
\begin{equation*}
\lim _{\substack{\alpha \rightarrow 0 \\ \tau \rightarrow \infty}} \alpha^{-1}\left(\varphi_{k}^{0}, L_{T, \alpha} f_{l}^{0}\right)=\left(\varphi_{k}, H_{0} f_{l}\right), \quad k, l=\overline{1, r} . \tag{21}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
& \left(\varphi_{k}^{0}, L_{T, \alpha} f_{l}^{0}\right)=\left(\varphi_{k}^{0},\left(A_{00}-A_{00}^{(\alpha)}\right) f_{l}^{0}\right)+\left(\varphi_{k}^{0},\left(A_{01}^{(\alpha)}-A_{01}\right) A_{1}^{(\alpha)-1} A_{10} f_{l}^{0}\right)+ \\
& \quad+\left(\varphi_{k}^{0}, A_{01} A_{11}^{(\alpha)-1}\left(A_{10}^{(\alpha)}-A_{10}\right) f_{l}^{0}\right)+\left(\varphi_{k}^{0}, A_{01}\left(A_{11}^{(\alpha)-1}-A_{11}^{-1}\right) A_{10} f_{l}^{0}\right) .
\end{aligned}
$$

By virtue of the boundedness of the operator H_{0} and condition A_{2}), we have

$$
A_{11}^{(\alpha)-1}-A_{11}^{-1}=\left(A_{11}-\alpha H_{11}\right)^{-1}-A_{11}^{-1}=\alpha A_{11}^{-1} H_{11} A_{11}^{-1}+o(\alpha) .
$$

Hence

$$
\begin{gather*}
\left(\varphi_{k}^{0}, L_{T, \alpha} f_{l}^{0}\right)=\alpha\left[\left(\varphi_{k}^{0}, H_{00} f_{l}^{0}\right)-\left(\varphi_{k}^{0}, H_{01} A_{11}^{-1} A_{10} f_{l}^{0}-\left(\varphi_{k}^{0}, A_{01} A_{11}^{-1} H_{10} f_{l}^{0}\right)+\right.\right. \\
\left.+\left(\varphi_{k}^{0}, A_{01} A_{11}^{-1} H_{11} A_{11}^{-1} A_{10} f_{l}^{0}\right)\right]+o(\alpha) . \tag{22}
\end{gather*}
$$

With regard for condition A_{2}) and the fact that $f_{\ell} \in N\left(A_{0}\right), \quad \varphi_{l} \in N\left(A_{0} *\right), \quad l=\overline{1, r}$, (21) follows from (22).

The further proof of Theorem 2 is analogous to the proof of Theorem 1.
Example. Let

$$
\begin{aligned}
& A_{0} g=g(x)-\int_{0}^{\infty} e^{-(x+y) / 2} g(y) d y \\
& H_{0} g=\int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)+\frac{1}{2}(x+y)-1} d(y) d y
\end{aligned}
$$

Let us set $\alpha=e^{-T}$. It is easily verified that $\exists T_{2}>0$: the equation

$$
\begin{equation*}
g(x)-\int_{0}^{T} e^{-(x+y) / 2} g(y) d y-e^{-T} \int_{0}^{T} e^{-\left(x^{2}+y^{2}\right)+\frac{1}{2}(x+y)-4} g(y) d y=h_{T} \tag{23}
\end{equation*}
$$

has a unique solution for $\forall T \in\left(T_{1}, \infty\right)$ and $h(x) \in L_{2}[0, \infty)$. We can immediately verify that $f(x)=e^{-x / 2} \in N\left(A_{0}\right)$, and $\operatorname{dim} N\left(A_{0}\right)=1$. Since A_{0} is self-adjoint, it follows that $\varphi(x)=e^{-x / 2} \in N\left(A_{0} *\right)$.

In order to apply Theorem 2, we compute

$$
\begin{gathered}
\left(\varphi, H_{0} f\right)=e^{-4} \int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y=\frac{\pi}{4 e^{4}} \\
\varepsilon(T)=\int_{\dot{T}}^{\infty} f^{2}(x) d x=\int_{i}^{\infty} e^{-x} d x=e^{-T} \\
c=\lim _{T \rightarrow \infty} \varepsilon^{-1}(T) \gamma_{11}^{T}=\lim _{T \rightarrow \infty} \frac{1}{1-e^{-T_{0}}}\left(1-\frac{e^{-T}}{1-e^{-T_{0}}+e^{-T}}\right)=\frac{1}{1-e^{-T_{0}}} .
\end{gathered}
$$

Hence, applying Theorem 2, we see that the solution $g_{T}{ }^{\circ}(x)$ of $E q$. (23), considered on the segment $\left[0, T_{0}\right]$, behaves in the following manner as $T \rightarrow \infty$:

$$
\lim _{T \rightarrow \infty} e^{-T} g_{T}^{0}(x)=\frac{4 e^{-x / 2+4}}{\left(4 e^{4}+\pi\right)} \int_{0}^{\infty} e^{-y / 2} h(y) d y, \quad h(y) \in L_{2}[0, \infty), \quad x \in\left[0, T_{0}\right]
$$

LITERATURE CITED

1. V. S. Korolyuk, A. A. Tomusyak, and A. F. Turbin, "Sojourn time of a semi-Markov process in an expanding state set," in: Analytic Methods in Probability Theory [in Russian], Naukova Dumka, Kiev (1979), pp. 69-80.
2. A. A. Borovkov, "Boundary-value problems for random observations and large deviations in functional spaces," Teor. Veroyatn. Ee Primen, , 12, No. 4, 635-654 (1967).
3. V. S. Korolyuk and A. F. Turbin, Mathematical Foundations of the Phase Extension of Complex Systems [in Russian], Naukova Dumka, Kiev (1978).
4. K. Yoshida, Functional Analysis, Springer Verlag, Berlin-New York (1965).
