《(4)

International Science Group

ISG-KONF.COM

XXIV

INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE
"INFORMATION AND INNOVATIVE TECHNOLOGIES IN EDUCATION IN MODERN CONDITIONS"

Varna, Bulgaria June 20 - 23, 2023

ISBN 979-8-88992-689-4
DOI 10.46299/ISG.2023.1.24

INFORMATION AND INNOVATIVE TECHNOLOGIES IN EDUCATION IN MODERN CONDITIONS

Proceedings of the XXIV International Scientific and Practical Conference

Varna, Bulgaria
June 20 - 23, 2023

UDC 01.1

The 24th International scientific and practical conference "Information and innovative technologies in education in modern conditions" (June 20-23, 2023) Varna, Bulgaria. International Science Group. 2023. 439 p.

ISBN - 979-8-88992-689-4
DOI - 10.46299/ISG.2023.1.24

EDITORIAL BOARD

Pluzhnik Elena	Professor of the Department of Criminal Law and Criminology Odessa State University of Internal Affairs Candidate of Law, Associate Professor
$\underline{\text { Liudmyla Polyvana }}$	Department of Accounting and Auditing Kharkiv National Technical University of Agriculture named after Petr Vasilenko, Ukraine
$\underline{\text { Mushenyk Iryna }}$	Candidate of Economic Sciences, Associate Professor of Mathematical Disciplines, Informatics and Modeling. Podolsk State Agrarian Technical University
Prudka Liudmyla	Odessa State University of Internal Affairs, Associate Professor of Criminology and Psychology Department
$\underline{\text { Marchenko Dmytro }}$	PhD, Associate Professor, Lecturer, Deputy Dean on Academic Affairs Faculty of Engineering and Energy
$\underline{\text { Harchenko Roman }}$	Candidate of Technical Sciences, specialty 05.22.20 - operation and repair of vehicles.
$\underline{\text { Belei Svitlana }}$	Ph.D., Associate Professor, Department of Economics and Security of Enterprise
$\underline{\text { Lidiya Parashchuk }}$	PhD in specialty 05.17.11 "Technology of refractory non-metallic materials"
$\underline{\text { Levon Mariia }}$	Candidate of Medical Sciences, Associate Professor, Scientific direction - morphology of the human digestive system
$\underline{\text { Hubal Halyna }}$	Ph.D. in Physical and Mathematical Sciences, Associate Professor
$\underline{\text { Mykolaivna }}$	

QUATERNION-VALUED MEASURE AND ITS TOTAL VARIATION

Kolomiiets Tamila,
Assistant of the Department of Mathematical Analysis,
Business Analysis and Statistics
Zhytomyr Ivan Franko State University

The notion of a measure is one of the most fundamental objects in mathematics and it would be superfluous to talk much about this. We present now a few lines only in order to explain what we are going to do in the paper, for more details the reader is referred, for instance, to [1], but for many other sources as well.

Let X be a non-empty set and let \mathfrak{M} be a σ-algebra of subsets of X. A measure (sometimes called a positive measure) is a function μ defined on the measurable space (X, \mathfrak{M}) whose range is in $[0, \infty]=: \overline{\mathbb{R}}_{+}$and which is countably additive, i.e., if $\left\{A_{i}\right\}$ is a disjoint countable family of elements of \mathfrak{M} then

$$
\begin{equation*}
\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right) . \tag{1}
\end{equation*}
$$

This definition includes tacitly that the series on the right-hand side converges to a non-negative number or to ∞.

We assume that there exists at least one $A \in \mathfrak{M}$ for which $\mu(A)<\infty$. This excludes the trivial situation of the measure identically equal to ∞.

Some important properties are:

1. $\mu(\varnothing)=0$.
2. Any measure is finite additive, i.e., holds for a finite number of pair-wise disjoint elements of \mathfrak{M}.
3. Any measure is monotone: if A, B are in \mathfrak{M} and $A \subset B$ then $\mu(A) \leq \mu(B)$.
4. If $\left\{A_{n}\right\}_{n \in \mathbb{N}} \subset \mathfrak{M}, A=\cup_{n=1}^{\infty} A_{n}, A_{1} \subset A_{2} \subset \cdots \subset A_{n}, \ldots$, then $\mu\left(A_{n}\right) \rightarrow \mu(A)$ as $n \rightarrow \infty$.
5. If $\left\{A_{n}\right\}_{n \in \mathbb{N}} \subset \mathfrak{M}, A_{1} \supset A_{2} \supset \cdots \supset A_{n} \ldots, A=\cap_{n=1}^{\infty} A_{n}, \mu\left(A_{1}\right)<\infty$, then $\mu\left(A_{n}\right) \rightarrow \mu(A)$ as $n \rightarrow \infty$.

Definition 1. A measure on a measurable space (X, \mathfrak{P}) is called σ-finite if there exists a collection of sets $\left\{A_{n}, n \in \mathbb{N}\right\} \subset \mathfrak{M}$ such that $\cup_{n=1}^{\infty} A_{n}=X$ and for each $n \geq$ $1 \mu\left(A_{n}\right)<\infty$.

Let us recall a notion of a signed measure or charge.
Definition 2. A signed measure (or a charge) on a measurable space (X, \mathfrak{M}) is a function

$$
\begin{equation*}
\lambda: \mathfrak{M} \rightarrow \mathbb{R} \cup\{-\infty, \infty\} \tag{2}
\end{equation*}
$$

such that $\lambda(\varnothing)=0$ and λ is countably additive.
The origin of the notion of the measure explains why it takes just non-negative values. At the same time the question arises: can the measure be complex-valued?

A complex measure w is a complex-valued countably additive function defined on
\mathfrak{M}. A good source of basic information may be Chapter 6 of the book [2].
In accordance with the definition if w is identically zero then w is a positive measure. A positive measure is allowed to have $+\infty$ as its value; but it is proved that a complex measure μ has as its values the complex numbers only: any $\mu(E)$ is in \mathbb{C}. The real measures are defined as σ-additive real-valued functions and they form a subclass of the complex measures. Complex measures are not monotone in general but they verify the other above properties. It is worth noting that for a given σ-algebra the collections of positive and of complex measures have, in general, a non-empty intersection but the former is not necessarily a subcollection of the latter; the same kind of relation exists between the positive and the real measures.

The definition of a complex measure can be rephrased as follows. Consider a countable family $\left\{E_{i}\right\}$ of elements of \mathfrak{M} which are pairwise disjoint and let $E:=$ $\cup_{i=1}^{\infty} E_{i}$; the family $\left\{E_{i}\right\}$ is called a partition of E. Then a complex measure w is a complex function on \mathfrak{M} such that

$$
\begin{equation*}
w(E)=\sum_{i=1}^{\infty} w\left(E_{i}\right) \tag{3}
\end{equation*}
$$

for any $E \in \mathfrak{M}$ and for every partition $\left\{E_{i}\right\}$ of E.
Notice that the requirement of being $\left\{E_{i}\right\}$ in (3) any partition of E has a strong implication: one can change the order of the enumeration in $\left\{E_{i}\right\}$, thus every rearrangement of the series is convergent to the same complex number; it is known that hence the series in (3) converges in fact absolutely.

The main goal of this work is to show that some ideas from [2] extend onto σ additive functions with values in Hamilton quaternions [3].

We assume in the sequel that X is a non-empty set.
Definition 3. Let \mathfrak{M} be a σ-algebra of subsets of a set X. A quaternionic measure ω on a measurable space (X, \mathfrak{M}) is a quaternion-valued function on \mathfrak{M} such that for any collection of sets $\left\{A_{n}, n \in \mathbb{N}\right\} \subset \mathfrak{M}$ that $A_{n} \cap A_{m}=\emptyset$ whenever $n \neq m$ we have

$$
\begin{equation*}
\omega\left(\cup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \omega\left(A_{n}\right) \tag{4}
\end{equation*}
$$

Since the union of sets A_{n} is not changed if the subscripts are permuted, every rearrangement of series (4) must converge to $\omega\left(\cup_{n=1}^{\infty} A_{n}\right)$. For this reason, we assume that the series converges absolutely.

Let us ask the question: Is it possible to find a positive measure μ on a measurable space (X, \mathfrak{M}) such that $|\omega(A)| \leq \mu(A)$ for any $A \in \mathfrak{M}$? That is, we ask to find a positive measure μ that dominates the Euclidean module of ω. It is easily seen that if there exists such a dominant measure then for any partition $\left\{A_{n}, n \in \mathbb{N}\right\} \subset \mathfrak{M}$, we have:

$$
\sum_{n=1}^{\infty}\left|\omega\left(A_{n}\right)\right| \leq \sum_{n=1}^{\infty} \mu\left(A_{n}\right)=\mu\left(\cup_{n=1}^{\infty} A_{n}\right)
$$

Let us define the set function $\operatorname{var}[\omega](\cdot)$ on \mathfrak{M} as follows:

$$
\operatorname{var}[\omega](A):=\sup \sum_{n=1}^{\infty}\left|\omega\left(A_{n}\right)\right|
$$

where the supremum is taken over all partitions of A. It is clear that

$$
|\omega(A)| \leq \operatorname{var}[\omega](A) \leq \mu(A)
$$

We will call the function var $[\omega]$ the total variation of ω.
Theorem 1. The total variation var $[\omega]$ of a quaternionic measure ω on a measurable space (X, \mathfrak{M}) is a positive measure on (X, \mathfrak{M}).

Proof. Suppose $\left\{A_{n}, n \in \mathbb{N}\right\} \subset \mathfrak{M}$ is a partition of A. Let $\left\{A_{n m}\right\}$ be a partition of $A_{n}, n \in \mathbb{N}$. Hence, we have:

$$
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty}\left|\omega\left(A_{n m}\right)\right| \leq \operatorname{var}[\omega](A) .
$$

Then, taking into account that $A_{n}=\cup_{m=1}^{\infty} A_{n m}$, we have:

$$
\sum_{n=1}^{\infty} \sup \sum_{m=1}^{\infty}\left|\omega\left(A_{n m}\right)\right| \leq \operatorname{var}[\omega](A) .
$$

Hence,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \operatorname{var}[\omega]\left(A_{n}\right) \leq \operatorname{var}[\omega](A) . \tag{5}
\end{equation*}
$$

Let us show that

$$
\sum_{n=1}^{\infty} \operatorname{var}[\omega]\left(A_{n}\right) \geq \operatorname{var}[\omega](A) .
$$

Suppose $\left\{B_{m}\right\}$ is a partition of A. Then for a fixed $m \in \mathbb{N}$, the collection $\left\{B_{m} \cap A_{n}\right\}_{n \in \mathbb{N}}$ is a partition of B_{m} and for a fixed $n \in \mathbb{N}$, the collection $\left\{B_{m} \cap A_{n}\right\}_{m \in \mathbb{N}}$ is a partition of A_{n}. Thus, we have:

$$
\sum_{m=1}^{\infty}\left|\omega\left(B_{m}\right)\right|=\sum_{m=1}^{\infty}\left|\sum_{n=1}^{\infty} \omega\left(B_{m} \cap A_{n}\right)\right| \leq \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \mid \omega\left(B_{m} \cap\right.
$$

$\left.A_{n}\right) \mid$

$$
\begin{equation*}
=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty}\left|\omega\left(B_{m} \cap A_{n}\right)\right| \leq \sum_{n=1}^{\infty}\left|\omega\left(A_{n}\right)\right| . \tag{6}
\end{equation*}
$$

Since Eq. (6) holds for every partition $\left\{B_{m}\right\}$ of A, it holds that

$$
\operatorname{var}[\omega](A) \leq \sum_{n=1}^{\infty}\left|\omega\left(A_{n}\right)\right| .
$$

Therefore, together with (5) one obtains:

$$
\operatorname{var}[\omega](A)=\sum_{n=1}^{\infty} \operatorname{var}[\omega]\left(A_{n}\right) .
$$

It is easily seen that

$$
\operatorname{var}[\omega](\phi)=0 .
$$

Some comments on this Theorem are given in [4].
Theorem 2. If ω is a quaternionic measure on a measurable space (X, \mathfrak{P}), then

$$
\operatorname{var}[\omega](X)<\infty .
$$

Proof. First of all we need an auxiliary inequality.
Suppose h_{1}, \ldots, h_{n} are arbitrary quaternions, then there exists a subset S of $\{1, \ldots, n\}$ such that

$$
\begin{equation*}
\left|\sum_{l \in S} h_{l}\right| \geq \frac{3\left(\pi^{2}-8\right)}{4 \pi^{3}} \sum_{l=1}^{n}\left|h_{l}\right| . \tag{7}
\end{equation*}
$$

Every quaternion $q=q_{0}+\vec{q}$, where q_{0} is the scalar part and \vec{q} the vector part of q, can be represented in the following form

$$
q=\frac{q_{0}}{|q|}+\frac{\vec{q}}{|\vec{q}| \vec{q}| | q \mid}=|q|\left(\cos \alpha+\frac{\vec{q}}{|\vec{q}|} \sin \alpha\right),
$$

where α is a solution of the system of equations $\cos \alpha=\frac{q_{0}}{|q|}$ and $\sin \alpha=\frac{|\vec{q}|}{|q|}$. It is easily seen that this system has a unique solution α_{0} in the segment $0 \leq \alpha \leq \pi$. One can show that there is a unique vector \vec{v}_{0} such that \vec{v}_{0} and \vec{q} have same direction and $\left|\vec{v}_{0}\right|=\alpha_{0}$.

Thus, every quaternion has the following unique representation

$$
\begin{equation*}
q=|q|\left(\cos \left|\vec{v}_{0}\right|+\frac{\vec{v}_{0}}{\left|\vec{v}_{0}\right|} \sin \left|\vec{v}_{0}\right|\right), 0 \leq\left|\vec{v}_{0}\right| \leq \pi . \tag{8}
\end{equation*}
$$

Write $h_{l}=\left|h_{l}\right|\left(\cos \left|\vec{v}_{l}\right|+\frac{\vec{v}_{l}}{\left|\vec{v}_{l}\right|} \sin \left|\vec{v}_{l}\right|\right)$, where $\vec{v}_{l}=\alpha_{l} I+\beta_{l} J+\gamma_{l} K, 0 \leq$ $\left|\vec{v}_{l}\right| \leq \pi$, is vector as \vec{v}_{0} in Eq 8.

Consider $\vec{\theta}=\theta_{1} I+\theta_{2} J+\theta_{3} K$, where $0 \leq \sqrt{\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}} \leq \pi$ and let $S(\vec{\theta})$ be a set of all $l \in S$ such that $\cos \left(\left|\vec{v}_{l}-\vec{\theta}\right|\right)>0$. Then

$$
\left|\sum_{l \in S(\vec{\theta})} h_{l}\right|=\left|\sum_{l \in S(\vec{\theta})} h_{l} e^{-\vec{\theta}}\right| \geq \operatorname{Re} \sum_{l \in S(\vec{\theta})} h_{l} e^{-\vec{\theta}}=\sum_{l=1}^{n}\left|h_{l}\right| \cos ^{+}\left(\left|\vec{v}_{l}-\vec{\theta}\right|\right),
$$ where $\cos ^{+}\left(\left|\vec{v}_{l}-\vec{\theta}\right|\right)=\cos \left(\left|\vec{v}_{l}-\vec{\theta}\right|\right) I_{\left\{\cos \left(\left|\vec{v}_{l}-\vec{\theta}\right|\right)>0\right\}}$.

Choose $\vec{\theta}_{0}$ so as to maximize last sum, and put $S\left(\vec{\theta}_{0}\right)$. This maximum is at least as large as the average of the sum over $\vec{\theta}=\theta_{1} I+\theta_{2} J+\theta_{3} K$, and this average is $\frac{3\left(\pi^{2}-8\right)}{4 \pi^{3}} \sum_{l=1}^{n}\left|h_{l}\right|$, because

$$
\begin{aligned}
& \frac{1}{m(B(\pi))} \iiint_{\left|\vec{v}_{l}-\vec{\theta}\right| \leq \pi} \cos ^{+}\left(\left|\vec{v}_{l}-\vec{\theta}\right|\right) d \vec{\theta}= \\
& \frac{1}{m(B(\pi))} \iiint_{|\vec{\theta}| \leq \pi} \cos ^{+}(|\vec{\theta}|) d \overrightarrow{\theta=} \\
& \frac{1}{m(B(\pi))} \iiint_{|\vec{\theta}| \leq \frac{\pi}{2}} \cos (|\vec{\theta}|) d \vec{\theta}= \\
& \frac{3}{4 \pi^{4}} \int_{0}^{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \cos (\theta) \cos (\pi \rho) \rho^{2} d \rho d \theta d \varphi=\frac{3\left(\pi^{2}-8\right)}{4 \pi^{3}},
\end{aligned}
$$

where $m(B(\pi))=\frac{4}{3} \pi^{4}$ is the volume of the ball of radius π.
We now proceed to prove the inequality (7).
Suppose that there is a set $A \in \mathfrak{M}$ such that $\operatorname{var}[w](A)=\infty$. Put $t=\frac{4 \pi^{3}}{3\left(\pi^{2}-8\right)}(1+$ $|w(A)|)$. Since $\operatorname{var}[w](A)>t$ there is a partition $\left\{A_{i}\right\}$ of A such that

$$
\sum_{i=1}^{n}\left|w\left(A_{i}\right)\right|>t
$$

for some n. Let us apply Lemma with $h_{i}=w\left(A_{i}\right)$ to conclude that there is a set $E \subset$ A which is a union of some sets A_{i} and

$$
|w(E)|>\frac{3\left(\pi^{2}-8\right)}{4 \pi^{3}} t>1 .
$$

Considering $F=A \backslash E$, it follows that

$$
|w(F)|=|w(A)-w(E)| \geq|w(E)|-|w(A)|>\frac{3\left(\pi^{2}-8\right)}{4 \pi^{3}} t-|w(A)|=1 .
$$

Thus, we have split A into disjoint sets E and F such that $|w(E)|>1$ and $|w(F)|>1$.

Now, if $\operatorname{var}[w](X)=\infty$ then we can split X into sets E_{1} and F_{1} with $\left|w\left(E_{1}\right)\right|>1$ and $\operatorname{var}[w]\left(F_{1}\right)=\infty$. Then we split F_{1} into E_{2} and F_{2} with $\left|w\left(E_{2}\right)\right|>1$ and $\operatorname{var}[w]\left(F_{2}\right)=\infty$. Continuing in this way, we obtain countably infinite disjoint collection $\left\{E_{n}\right\}$ with $\left|w\left(E_{n}\right)\right|>1$ for all n. The countable additivity of w implies that

$$
w\left(\cup_{n=1}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} w\left(E_{n}\right) .
$$

But this series cannot converge since $w\left(E_{n}\right)$ does not tend to 0 as $n \rightarrow \infty$. This contradiction shows that $\operatorname{var}[w](X)<\infty$.

Remark 1. The common term measure includes $+\infty$ as an admissible value. Thus the measures do not form a subclass of the quaternionic measures.

A detailed justification of these results can be found in the paper [5].

References:

1. Halmos, P. R. (1950). Measure Theory: Springer-Verlag New York, Heidelberg, Berlin.
2. Rudin, W. (1987). Real and Complex Analysis : McGraw-Hill Book Company, Singapore, New York.
3. Hamilton, W. R. (1866). Elements of quaternions : University of Dublin Press.
4. Agrawal, S., Kulkarni, S. H. (2000). An analogue of the Riesz-representation theorem. Novi Sad J. Math. Vol. 30. P. 143-154.
5. Luna-Elizarrarás, M. E., Pogorui, A., Shapiro, M., Kolomiiets, T. (2020). On Quaternionic Measure. Advances in Applied Clifford Algebras. Vol. 30, iss. 4, art. 63. P. 1-17.
