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We study the Dirichlet boundary value problem with continuous boundary data for the A-harmonic equations
div[A grad u] = 0 in an arbitrary bounded domain D of the complex plane C with no boundary component degenerated
to a single point. We provide integral criteria, including the BMO and FMO criteria expressed in terms of A (z), for
the existence of weak solutions to the problem. We also discuss the connections between A-harmonic functions and
potential theory.
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Introduction. The existence theorems of normalized homeomorphic solutions for the degener-
ate Beltrami equation f- =p(z)f, in the whole complex plane C established in [1] have several
basic consequences, including the solvability of the Dirichlet problem for this equation in simply
connected domains, as shown in [2]. In this paper, we provide another example of its application
to degenerate elliptic equations of the form

div[A(2)Vu(z)]=0, (1)

which arise naturally in hydrodynamics, nonlinear elasticity, and other related fields.
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From now on we will assume that 2x2 matrix functions

a,,(2) ay,(2)
ay(2)  ay,(2)
with measurable real-valued entries a, (z) are symmetric, have det A(z)=1 and satisfy the el-
lipticity condition (1+ay,(2))(1+a,,(2))>a,,(2)a,,(z) almost everywhere. The set of all such
matrix functions we will denoted by M**

Let pu: D — C be a measurable function with |p(z)|<1 a.e.in D . If D is simply connected,
then by lengthy but elementary al?ebraic manipulation (see, for instance, Theorem 16.1.6 in [3]),
it can be shown thatif f isa Wli’c solution to the Beltrami equation

fz=n@@)f, (3)
then both u(z)=Re f (z) and v(z) =Im f (z) satisfy the equation (1) with the matrix coefficient

A(z) { (2)

L-pf 2

a4 a —uP 1-|uP
A:{“ 12}:= |ul |H|2 ' (4)

4y 4y —2Imp |1+ p|

I=-[uf 1=|pf?

The matrix identities (4) can be converted a.e. to express the coefficient |1(z) of the Beltrami
equation (3) through the elements of the matrices A(z):
ay —ay +ia;, +ay)

U, =— , (5)
H=Ha 2+ay, +a,,

see e.g. the formula (16.20) in [3]. Vice versa, every matrix valued coefficient A € M**2(D) in (2)
generates by formula (5) the complex coefficient p of the corresponding Beltrami equation (3).

A continuous function u: D — R is called the A-harmonic function, see e.g. [4], if u satisfies
(1) in the sense of distributions, i.e., if u € Wlicl (D) and

jD<A(z)w(z), Vy(z)) dm(z)=0 VY yeCy (D), (6)

where Cj’ (D) denotes the collection of all infinitely differentiable functions y:D —R with
compact support in D, {(a,b) means the scalar product of vectors a and b in R?, and dm(z)
stands for the Lebesgue measure in C.

A continuous function v:D — R is called the A-harmonic conjugate of u or sometimes a
stream function of the potential u,if v e Wli’cl (D) and

Vv(z)=HA(2)Vu(z), (7)
where H is the Hodge operator,
0 -1 ) 5
H = :R* > R?, (8)
1 0

i.e., the counterclockwise rotation by the angle 7/2 in R*.
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The matrix H plays the role of an imaginary unit in the space of two-dimensional square
matrices with real elements, because H? =-I. Thus, the relation (7) is equivalent to the equation

A(2)Vu(z)=-HVv(z). )

As known, the curl of any gradient field is equal to zero in the sense of distributions and the
Hodge operator H transforms curl-free fields into divergence-free fields, and vice versa, see e.g.
16.1.3 in [3]. Hence (9) itself implies (1).

Thus, the above considerations alow us to involve the theory of the Beltrami equations in the
development of the theory of A -harmonic functions.

Recall that a Beltrami equation (3) is called degenerate it ess sup K " (z) =0, where

_1+|u@)
1-|u(@)|

The case of degeneracy is particularly interesting from the viewpoint of applications since it
allows for the study of equation (1) in strongly anisotropic and inhomogeneous media.

2. On multi-valued solutions for the Beltrami equations. In this section we present criteria
for the existence of multi-valued solutions f of the Dirichlet problem to the Beltrami equations
in the spirit of the theory of multi-valued analytic functions in arbitrary bounded domains D in
C with no boundary component degenerated to a single point. These criteria are formulated both
in terms of K, and the more refined quantity that takes into account not only the modulus of p
but also its argument

K, (2): (10)

KE (z,2y):=

(11)
1-|u(2) P

that is called the tangent dilatation quotient of (3) with respect to the point z, € C. Note that
K.'(2)<K, (2,2))<K,(z) VzeD, z,€C. (12)

Let B(z,€) be an open disk centered at a point z of radius €. We say that a discrete
open mapping f:B(z,,&,) > C, where B(z,,&,) =D, is a local regular solution of the equa-
tion (3) if fe Wli)’cl, J¢(z)#0 and f satisfies (3) a.e. in B(z,,¢€,). The local regular solutions
fo:B(zy,€)) >C andf f«:B(z.,&.) > C of the equation (3) will be called extension of each to
other if there is a finite chain of such solutions f;:B(z;,&;) > C, i=1,...,m, such that f, = f,,
fm =1 and f,(2)= f,,,(2) for z€E,:=B(z;,€;,) N B(z;,;,€,,,) 2D, i=1,...,m~1.

A collection of local regular solutions f;:B(z;,€;,) >C, jeJ, will be called a multi-valued
solution of the equation (3) in D if the disks B(z.,&.) cover the whole domain D and f] are
extensions of each to other through the collection, and the collection is maximal by inclusion.

A multi-valued solution of the equation (3) will be called a multi-valued solution of the Dirich-

let problem
limRef(z)=0() V{edD (13)

z—C
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for a prescribed continuous function ¢:0D —> R, if u(z)=Ref(z)=Ref;(z), z€ B(zj, sj) ,
je],isasingle-valued function in D satisfying the condition limu(z) = (p(d forall £ in 0D.
From now on, we will assume that the functions Kz; (z, zé?%nd K, (z) are extended by 1
outside of the domain D .
Lemma 1. Let D be a bounded domain in C with no boundary component degenerated to a
single point, p: D — C be measurable, |u(2)|<1 a.e., K, € L' (D) and

J Kf;(z,zo)-\yﬁo,sﬂz—zo|)dm(z)=o(1§0(8)) as €0 ‘v’zoeB (14)

e<|z—zy|<g,

for g, =€(z,) >0 and a family of measurable functions (S (0, &,) — (0, 0) with
€
L=y, Odt<o  Vee(0,g). (15)

Then the Beltrami equation (3) has a multi-valued solution f of the Dirichlet problem (13) in
D for each continuous function @:0D - R.
Moreover, such a solution f can be represented as the composition

f=hog, g(z)=z+0(l) as z—>w, (16)

where g:C — C is a regular homeomorphic solution of the Beltrami equation (3) in C with p
extended by zero outside of D and h:D. - C, D.:=g(D), is a multi-valued analytic function
with a single-valued harmonic function Reh satisfying the Dirichlet condition

éimReh(g)z@(g) V{edD., whereq.:=qog . (17)
—G

Proof. Indeed, by Lemma 1 in [1], there is a regular homeomorphic solution with hydrody-
namic normalization g(z):=z+0(1) as z—> o of the Beltrami equation (3) in C with p ex-
tended by zero outside of D . It should be noted that D. = g(D) is also a bounded domain in C
with no boundary component degenerated to a single point due to homeomorphism g:C— C.
Therefore, based on Theorem 4.2.2 and Corollary 4.1.8 in [5], there is a unique harmonic function
u:D. - R that satisfies the Dirichlet boundary condition

gmu(g):z 0.(§) V(eoD., where ¢.:=pog . (18)
—G

Let B, = B(z,,1,) be adisk in the domain D .Then D, = g(B,) is a simply connected subdo-
main of the domain D. = g(D) , where there exists a conjugate harmonic function v determined
up to an additive constant such that #* = u +iv is a single-valued analytic function. Let us denote
through h, the holomorphic function corresponding to the choice of such a harmonic function
v, in D, with normalization v,(g(z,))=0. Thus, we have determined the initial element of a
multi-valued analytic function in D,,. The function h, can be extended along any path in D. to,
generally speaking, multi-valued analytic function h , because u is given in the whole domain D..
Hence, f =hog isjusta desired multi-valued function, that solves the Dirichlet problem (13) in
D for the Beltrami equation (3).
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3. The Dirichlet problem for A-harmonic functions. Taking into account the connection
between the solutions of the A-harmonic equation (1) and the corresponding Beltrami equation
(3), noted in the introduction, we arrive to the following result.

Lemma 2. Let D be a bounded domain in C with no boundary component degenerated to a
single point and A e M¥* (D) with KHA e I' (D). Suppose that

[ Kl z)vl (z-2Ddm@)=o( () as ¢—0 Vz,eD (19)

e<|z—z;|<¢,

for some &, =¢&(z,)>0 and a family of measurable functions . :(0,&,) —(0,0) with
€9
I @)= v,  (Odi<o  Vee(,g). (20)
€

Then there exist A —harmonic solutions u of the Dirichlet problem

ling u(z)=9(C)  VCedD (21)
ze
for each continuous function ¢:0D - R.

Moreover, such a solution u can be represented as the composition

u=Hog, g(z)=z+0(l) as z—x, (22)

where g:C — C is a regular homeomorphic solution of the Beltrami equation (7) in C with n,
extended by zero outside of D and H : D. — C, D. := g(D), is a unique harmonic function satisfy-
ing the Dirichlet condition

gm HE)=0¢.(§) V{eodD., where @.:=¢og". (23)
—G

Choosing y(t)=1/(tlog(1/t)) in Lemma 2, we obtain by Lemma 2 in [1] the following result
in terms of FMO, finite mean oscillation.

Theorem 1. Let D be a bounded domain in C with no boundary component degenerated to a
single point and A e_szz (D) with K, el' (D). Suppose that KEA (z,25) < on (z) a.e. in UZO
for every point z,€D, a neighborhoodAUZ of zy and a function Q, :U, —[0,00] in the class
FMO(z,). Then there exist A —harmonic solutions of Dirichlet problem (21) in D with representa-
tion (22) for each continuous function ¢:0D —R.

By Corollary 2 in [1], we can derive the following consequence of Theorem 1.

Corollary 1. Let D be a bounded domain in C with no boundary component degenerated to a
single point and A e M¥* (D) with K, € L'(D) . If

R 1 J—
lim— [ Ky (z2)dm(z)<ew  VzeD, (24)
g0 T B(zy,€)

then there exist A-harmonic solutions of Dirichlet problem (21) in D with representation (22) for
each continuous function@:0D - R.
By (12), we also obtain the following consequences of Theorem 1.

ISSN 1025-6415. JJonos. Hay, axao. nayx Yxp. 2023. Ne 4 15



V.Ya. Gutlyanskii, V1. Ryazanov, E.A. Sevost’yanov, E. Yakubov

Corollary 2. Let D be a bounded domain in C with no boundary component degenerated to
a single point, A e M*?(D) and K, have a dominant Q:C —[1, ) in the class BMO, . Then
there exist A-harmonic solutions oszrzchlet problem (21) in D with representation (22) for each
continuous function:0D - R.

Corollary 3. Let D be a bounded domain in C with no boundary component degenerated to a
single point, A eM*>?(D) and K, (z)< Q(z) a.e.in D with a function Q in the class FMO(D).
Then there exist A-harmonic solutzons of Dirichlet problem (21) in D with representation (22) for
each continuous function ¢:0D — R.

By taking the function y(t)=1/t, in Lemma 2, we arrive to the Calderon-Zygmund type
criterion.

Theorem 2. Let D be a bounded domain in C with no boundary component degenerated to a
single point, A e M>? (D) with K, € L' (D). Suppose that

dm(z) u 1}2} _
I (, zy) ———=o0| | log— ase—0 Vz,eD (25)

s<|z—zo|<so |Z 29 | &

for g, =€(z,)>0. Then, there exist A-harmonic solutions of Dirichlet problem (21) with representa-
tion (22) for each continuous function ¢:0D —> R.

Of course, we could be able to give here the whole scale of conditions in terms of iterated
logarithms y(t)=1/(tlogl/t-loglogl/t-...-log...logl/t).

Choosmg in Lemma 2 V.., ROE V., (t): —1/[tkT (zy,t)], where kT (zy,7) is the integral
mean of K W (z,z,) over the c1rcle {zeC:|z-2, |—r} we obtain the Lehto type criterion.

Theorem 3. Let D be a bounded domain in C with no boundary component degenerated to a
single point, A€ M>? (D) with K, € L' (D). Suppose that

SJ(-) dr

———=w  VzeD (26)
0 rkMA (29>7)

for g, =€(z,)>0. Then there exist A-harmonic solutions of Dirichlet problem (21) with representa-
tion (22) for each continuous function ¢:0D — R.

Corollary 4. Let D be a bounded domain in C with no boundary component degenerated to a
single point, A e M*?* (D) with K, € L' (D) and

1 J—
kEA (zy,€) = O(loggj ase—0 Vz,e€D. (27)
Then there exist A-harmonic solutions of Dirichlet problem (21) in D with representation (22)

for each continuous function®:0D - R.
Condition (27) can be replaced by the whole series of more weak conditions

kT L (zg,8)= O@log loglog— ~log...logéD Vz, eD. (28)

Combining Theorems 2.5 and 3.2 in [6] and Theorems 3, we obtain the following Orlicz type
criteria.
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Theorem 4. Let D be a bounded domain in C with no boundary component degenerated to a
single point, A e M¥? (D) with K, € L' (D). Suppose that

[@, (Ki (z.2,)dm(z)<e0  Vz,eD (29)

for a neighborhood U, of z, and a convex non-decreasing function (DZO :[0, 0] = [0, o] with

j log®d, (t) (30)
A(Z())

for A(z,)>0. Then there exist A-harmonic solutions of Dirichlet problem (21) in D with represen-
tation (22) for each continuous function:0D — R.

Corollary 5. Let D be a bounded domain in C with no boundary component degenerated to a
single point, A € M¥? (D) with K, € L' (D) and

)K ( ) —
jezo 2O dm(z)<o  Vz,eD (31)

UZO

for some a(z,)>0 and a neighborhood U, —of the point z,. Then there exist A-harmonic solutions
of Dirichlet problem (21) in D with representation (22) for each continuous function:0D - R.
By applying (12), we can deduce the following consequence of Theorem 4.
Corollary 6. Let D be a bounded domain in C with no boundary component degenerated to a
single point, A e M>? (D) with K, € L' (D). Suppose that

[k, (2)dm(z) < (32)
D
for a convex non-decreasing function @ :[0, 0] — [0, o] with
| log® (£) 2 = 400 (33)
t
5

for some 5>0. Then there exist A-harmonic solutions of Dirichlet problem (21) in D with represen-
tation (22) for each continuous function:0D — R.

Remark 1. By the Stoilow theorem, see e.g. [7], a multi-valued solution f =u+iv of the Dirich-
let problem (21) in D for the Beltrami equation (3) with K, € Ll10C (D) can be represented in the
form f=hoF where h isa mult1 valued analytic function and F is a homeomorphic solution of
(3) with p:=p, in the class W . Therefore, as per Theorem 5.1 in [6] (also see Theorem 16.1.6

n [3]), condition (33) is not only sufficient but also necessary to have A-harmonic solutions u of
Dirichlet problem (21) in D with integral constraints (32) for all continuous functions ¢:0D — R.

Corollary 7. Let D be a bounded domain in C with no boundary component degenerated to a

single point, AeM*? (D) and such that, for some o.>0,

o (2)
j e Fha dm(z) < ©. (34)

D

ISSN 1025-6415. JJonos. Hay, axao. nayx Yxp. 2023. Ne 4 17



V.Ya. Gutlyanskii, V1. Ryazanov, E.A. Sevost’yanov, E. Yakubov

Then there exist A-harmonic solutions of Dirichlet problem (21) in D with representation (22)
for each continuous function:0D > R.

Remark 2. The requirement for domains to have no boundary component degenerated to
a single point is necessary even for harmonic functions. Consider, for instance, the punctured
unit disk D :=D\{0}. By setting ¢(£)=1 on 0D and ¢(0)=0, we see that ¢ is continuous on
0D, =0DuU{0}. Let us assume that there is a harmonic function u satisfying (21) with such ¢
. Then u is bounded by the maximum principle for harmonic functions and by the classic Cau-
chy—Riemann theorem, see also Theorem V.4.2 in [8], the extended u is harmonic in D. Thus,
by contradiction with the Mean-Value-Property we disprove the above assumption, as stated in
Theorem 0.2.4 in [9].

Finally, recall that a point pedD for a domain D in R",n>2, is called a regular point if
each solution of the Dirichlet problem for the Laplace equation in D, whose boundary function
is continuous at p, is also continuous at p . The well-known Wiener criterion for regularity of a
boundary point, as formulated in terms of barrier functions in [10], has simple geometric inter-
pretation in the complex plane. Specifically, a point p € 0D is regular if p belongs to a component
of 0D that is not degenerated to a single point, as stated in Theorem 4.2.2 in [5]. The example
given above shows that this condition is not only sufficient but also necessary for regularity of a
boundary point in the plane.
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[TIPO 3AJTAYY JIIPIXJIE JIJId A-TAPMOHIYHNX OYHKI[IN

[ A-rapMOHIYHOTO PiBHSAHHS TOCTIIKEHO 3aaqy [lipixie 3 HellepepBHIMIU MEXOBUMI JAaHUMU B 0OMEXEHUX
0071acTAX KOMIUIEKCHOI ItowyHy. HaMmu BcTaHOB/IeH] kpuTepii icHyBaHHA cTaOKMX po3B’A3KiB MocTaBIeHol 3aadi
y KOBiMbHIiT 06MexxeHiiT 0671acTi 6e3 BUPOIKEHNX MEKOBIX KOMITIOHEHT B CEHCI POSIIOfIB, 3[1/ICHEHNX Y TepMiHax
YMOB Ha MaTpu4Huii koedinient piBHAHHA Tty BMO (¢dyHKuiin o6MexxeHoro cepenuporo komBanusA) i FMO
(yHKILilt cCKiHYeHHOTO CepefHbOro KonuBaHHs:;). HaBemeHo Takox psf iHTerpanbHux Kputepiis tumy Kaabaepo-
Ha—3UrMyH/a, J/lexTo Ta Opmnya. BigmosigHi mprkIagy MoKasyoTh, 0 YMOBA HEBUPOKEHOCTI MEKOBIX KOM-
IIOHEHT 0671acTi € He /uIlle JOCTATHDOIO, ajle i1 HeOOXiHOK YMOBOK po3B’I3HOCTI 3aayi ipixie HaBiTh [/Ist rap-
MOHIUYHMX QyHKIIif. OCTaHHE Y3TOKYETLCA 3 BifoMoro yMoBoIo Binepa. ITokasaHo, o oTpyMaHi po3B’A3Ku Ma-
I0Tb 300paKeHHS Y BUIVIAAL KOMIIO3MIl TapMOHIYHMX pPO3B’A3KIB BifmoBimHux 3amad Jipixie i perymsapHux
romeoMopHMX PO3B’s3KiB PiBHsAHD benbTpami Bci€l KOMIIEKCHOT IUTOIINMHY 3 BiITIOBITHNMI KOMITJIEKCHUMU KO-
edirfieHTam, K 3aJOBOIBHSIIOTH TiIPOANHAMIYHY YMOBY HOPMYBaHHsI Y HECKIHUEHHO Bifiia/ieHilt TO4Ili.

Kniouosi cnosa: BMO, obmesxcene cepedne xonusarnns, FMO, cxinuente cepedte Konusanns, sadaua lipixne, meo-
pisg nomenuyiany.
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