On singularities of mappings with a Lebesgue integrable majorant

Victoria Desyatka

(Zhytomyr Ivan Franko State University) *E-mail:* victoriazehrer@gmail.com

Sevost'yanov Evgeny

(Zhytomyr Ivan Franko State University; Institute of Applied Mathematics and Mechanics, Slov'vans'k)

E-mail: esevostyanov2009@gmail.com

The following definitions are from [1]. A path γ in \mathbb{R}^n is a continuous mapping $\gamma : \Delta \to \mathbb{R}^n$ where Δ is an interval in \mathbb{R} . Its locus $\gamma(\Delta)$ is denoted by $|\gamma|$. Given a family Γ of paths γ in \mathbb{R}^n , a Borel function $\rho : \mathbb{R}^n \to [0, \infty]$ is called *admissible* for Γ , abbr. $\rho \in \operatorname{adm} \Gamma$, if

$$\int_{\gamma} \rho(x) |dx| \ge 1$$

for each (locally rectifiable) $\gamma \in \Gamma$. Given $p \ge 1$, the *p*-modulus of Γ is defined by the relation

$$M_p(\Gamma) := \inf_{\rho \in \operatorname{adm} \Gamma} \int_{\mathbb{R}^n} \rho^p(x) dm(x)$$
(1)

interpreted as $+\infty$ if $\operatorname{adm} \Gamma = \emptyset$.

Given sets E and F and a given domain D in $\overline{\mathbb{R}^n} = \mathbb{R}^n \cup \{\infty\}$, we denote by $\Gamma(E, F, D)$ the family of all paths $\gamma : [0,1] \to \overline{\mathbb{R}^n}$ joining E and F in D, that is, $\gamma(0) \in E$, $\gamma(1) \in F$ and $\gamma(t) \in D$ for all $t \in (0,1)$. Everywhere below, unless otherwise stated, the boundary and the closure of a set are understood in the sense of the extended Euclidean space $\overline{\mathbb{R}^n}$. Let $x_0 \in \overline{D}, x_0 \neq \infty$,

$$S(x_0, r) = \{x \in \mathbb{R}^n : |x - x_0| = r\}, S_i = S(x_0, r_i), \quad i = 1, 2$$
$$A = A(x_0, r_1, r_2) = \{x \in \mathbb{R}^n : r_1 < |x - x_0| < r_2\}.$$

Let $f: D \to \mathbb{R}^n$, $n \ge 2$, and let $Q: \mathbb{R}^n \to [0, \infty]$ be a Lebesgue measurable function such that $Q(y) \equiv 0$ for $y \in \mathbb{R}^n \setminus f(D)$. Let $A = A(y_0, r_1, r_2)$ and $\Gamma_f(y_0, r_1, r_2)$ denotes the family of all paths $\gamma: [a, b] \to D$ such that $f(\gamma) \in \Gamma(S(y_0, r_1), S(y_0, r_2), A(y_0, r_1, r_2))$, i.e., $f(\gamma(a)) \in S(y_0, r_1)$, $f(\gamma(b)) \in S(y_0, r_2)$, and $f(\gamma(t)) \in A(y_0, r_1, r_2)$ for any a < t < b. We say that f satisfies the inverse Poletsky inequality at $y_0 \in f(D)$ with respect to p-modulus, if the relation

$$M_p(\Gamma_f(y_0, r_1, r_2)) \leqslant \int_A Q(y) \cdot \eta^p(|y - y_0|) \, dm(y) \tag{2}$$

holds for any $0 < r_1 < r_2 < r_0 := \sup_{y \in f(D)} |y - y_0|$ and any Lebesgue measurable function $\eta : (r_1, r_2) \to [0, \infty]$ such that

$$\int_{r_1}^{r_2} \eta(r) \, dr \ge 1 \,. \tag{3}$$

Note that estimates of the type (2) are well known and hold at least for p = n in many classes of mappings (see, e.g., [2, Theorem 3.2], [3, Theorem 6.7.II] and [4, Theorem 8.5]). For $p \neq n$, similar estimates may be found, e.g., in [5] and [6].

A mapping $f: D \to \mathbb{R}^n$ is called *discrete* if the image $\{f^{-1}(y)\}$ of any point $y \in \mathbb{R}^n$ consists of isolated points, and *open* if the image of any open set $U \subset D$ is an open set in \mathbb{R}^n .

Later, in the extended space $\overline{\mathbb{R}^n} = \mathbb{R}^n \cup \{\infty\}$ we use the *spherical (chordal) metric* $h(x, y) = |\pi(x) - \pi(y)|$, where π is a stereographic projection of $\overline{\mathbb{R}^n}$ onto the sphere $S^n(\frac{1}{2}e_{n+1}, \frac{1}{2})$ in \mathbb{R}^{n+1} , namely,

$$h(x,\infty) = \frac{1}{\sqrt{1+|x|^2}},$$

$$h(x,y) = \frac{|x-y|}{\sqrt{1+|x|^2}\sqrt{1+|y|^2}}, \quad x \neq \infty \neq y$$
(4)

(see, e.g., [1, Definition 12.1]). The following statement is true.

Theorem 1. Let $n \ge 2$, $p \ge n$, let D be a domain in \mathbb{R}^n , $x_0 \in D$, and let $f : D \setminus \{x_0\} \to \mathbb{R}^n$ be an open discrete mapping that satisfies the conditions (2)-(3) at any point $y_0 \in \overline{D'} \setminus \{\infty\}$, where $D' := f(D \setminus \{x_0\})$.

If $Q \in L^1(D')$, then f has a continuous extension $\overline{f} : D \to \overline{\mathbb{R}^n}$, the continuity of which should be understood in the sense of the chordal metric h in (4). The extended mapping \overline{f} is open and discrete in D. Moreover, if p = n and $\overline{f}(x_0) \neq \infty$, then there is a neighborhood $U \subset D$ of the point x_0 depending only on x_0 , and $C = C(n, D, x_0) > 0$ such that

$$\left|\overline{f}(x) - \overline{f}(x_0)\right| \leqslant \frac{C_n \cdot (\|Q\|_1)^{1/n}}{\log^{1/n} \left(1 + \frac{\delta}{2|x - x_0|}\right)} \tag{5}$$

for any $x, y \in U$, where $||Q||_1$ is the norm of the function Q in $L^1(D')$.

References

- J. Väisälä. Lectures on n-Dimensional Quasiconformal Mappings. Lecture Notes in Math. 229. Berlin etc., Springer-Verlag, 1971.
- [2] O. Martio, S. Rickman and J. Väisälä. Distortion and singularities of quasiregular mappings. Ann. Acad. Sci. Fenn. Ser. A1, 465, 1–13, 1970.
- [3] S. Rickman. Quasiregular mappings. Springer-Verlag, Berlin, 1993.
- [4] O. Martio, V. Ryazanov, U. Srebro and E. Yakubov. Moduli in Modern Mapping Theory. & Springer Science + Business Media, LLC : New York, 2009.
- [5] V. Gol'dshtein, L. Gurov and A. Romanov. Homeomorphisms that induce monomorphisms of Sobolev spaces. Israel J. Math., 91, 31–60, 1995.
- [6] A. Menovschikov and A. Ukhlov. Composition operators on Sobolev spaces and Q-homeomorphisms. Comput. Methods Funct. Theory, 24, 149–162, 2024.