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Introduction 
Recently, the real-valued measure theory [1] has many generalizations, in particular to complex 

and hypercomplex measure theories. For example, the seminal paper [2] generalized the notion of a 
classical real measure μ to a complex measure w and studied its properties. The generalization of some 
of the ideas of [2] to a quaternion-valued measure, i.e., a measure with values in the algebra of 
quaternions [3], is the subject of publications [4-5]. In this article, we highlight some properties of a 
quaternion-valued measure. 

 
Main part 
Let 𝑋 be a non-empty set and let 𝔐 be a 𝜎-algebra of subsets of 𝑋. 
Definition 1. Let 𝔐 be a 𝜎-algebra of subsets of a set 𝑋. A quaternionic measure 𝜔 on a measurable 

space (𝑋, 𝔐) is a quaternion-valued function on 𝔐 such that for any collection of sets {𝐴𝑛, 𝑛 ∈ ℕ} ⊂ 𝔐 
that 𝐴𝑛 ∩ 𝐴𝑚 = ∅ whenever 𝑛 ≠ 𝑚 we have 

𝜔 (⋃

∞

𝑛=1

𝐴𝑛) = ∑

∞

𝑛=1

𝜔(𝐴𝑛).                              (1) 

Since the union of sets 𝐴𝑛 is not changed if the subscripts are permuted, every rearrangement of 
series (1) must converge to  

𝜔 (⋃
∞

𝑛=1
𝐴𝑛). 

For this reason, we assume that the series converges absolutely. 
Let 𝜇 be a positive measure on a measurable space (𝑋, 𝔐) and 𝑤 be a quaternionic measure on 

(𝑋, 𝔐). 
Definition 2. We say that 𝜔 is absolutely continuous with respect to 𝜇 if 𝜇(𝐴) = 0 implies 𝜔(𝐴) = 0 

for 𝐴 ∈ 𝔐. We write 𝜔 ≪ 𝜇.  
Definition 3. Given a quaternionic measure 𝜔 on a measurable space (𝑋, 𝔐), assume that there is 

a set 𝐹 ∈ 𝔐 such that 𝜔(𝐴) = 𝜔(𝐴 ∩ 𝐹) for every 𝐴 ∈ 𝔐, we say that 𝜔 is concentrated on 𝐹. This is 
equivalent to say that 𝜔(𝐴) = 0 whenever 𝐴 ∩ 𝐹 = 0. 

Let 𝜔1, 𝜔2 be quaternionic measures on 𝔐 and suppose there exist a pair of disjoint sets 𝐹, 𝐺 such 
that 𝜔1 is concentrated on 𝐹 and 𝜔2 is concentrated on 𝐺. Then we say that 𝜔1 and 𝜔2 are mutually 
singular, and write 𝜔1 ⊥ 𝜔2. 

Theorem 1. Properties of mutually singular quaternionic measures. Suppose 𝜔, 𝜔1, 𝜔2 are 
quaternionic measures and 𝜇 is a positive measure, then: 

1. If 𝜔 is concentrated on 𝐹, so is v𝑎𝑟[𝜔]. 
2. If 𝜔1 ⊥ 𝜔2 then v𝑎𝑟[𝜔1] ⊥ v𝑎𝑟[𝜔2]. 
3. If 𝜔1 ⊥ 𝜇 and 𝜔2 ⊥ 𝜇, then (𝜔1 + 𝜔2) ⊥ 𝜇.  
4. If 𝜔1 ≪ 𝜇 and 𝜔2 ≪ 𝜇, then (𝜔1 + 𝜔2) ≪ 𝜇. 
5. If 𝜔 ≪ 𝜇, then v𝑎𝑟[𝜔] ≪ 𝜇. 
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6. If 𝜔1 ≪ 𝜇 and 𝜔2 ⊥ 𝜇, then 𝜔1 ⊥ 𝜔2. 
7. If 𝜔 ≪ 𝜇 and 𝜔 ⊥ 𝜇 then 𝜔 = 0 identically.  
Proof. 
1. If 𝐴 ∩ 𝐹 = ∅ then for any partition {𝐴𝑛, 𝑛 ∈ ℕ} of 𝐴 we have 𝜔(𝐴𝑛) = 0 for every 𝑛 ∈ ℕ and 

hence v𝑎𝑟[𝜔](𝐴) = 0 for any 𝐴. 
2. This follows from 1. 
3. There is a set 𝐵 ∈ 𝔐 on which 𝜇 is concentrated. There are 𝐹, 𝐺 ∈ 𝔐 such that 𝜔1 is 

concentrated on 𝐹 and 𝜔2 is concentrated on 𝐺. If 𝐴 ⊂ (𝐹 ∪ 𝐺)𝑐 = 𝐹𝑐 ∩ 𝐺𝑐  then  
(𝜔1 + 𝜔2)(𝐴) = 𝜔1(𝐴) + 𝜔2(𝐴) = 0. 

This means that 𝜔1 + 𝜔2 is concentrated on 𝐹 ∪ 𝐺, but it is clear that 𝐵 ⊂ (𝐹 ∪ 𝐺)𝑐, hence  
(𝜔1 + 𝜔2) ⊥ 𝜇. 

4. Follows directly from the definitions. 
5. Suppose 𝜇(𝐴) = 0 and {𝐴𝑛, 𝑛 ∈ ℕ} is a partition of 𝐴. Then 𝜇(𝐴𝑛) = 0 and since 𝜔 ≪ 𝜇 then 

𝜔(𝐴𝑛) = 0 for every 𝑛 ∈ ℕ; hence  

∑
∞

𝑛=1
|𝜔(𝐴𝑛)| = 0. 

This implies that v𝑎𝑟[𝜔](𝐴) = 0. 
6. Since 𝜔2 ⊥ 𝜇 there is a set 𝐸 ∈ 𝔐 such that 𝜇(𝐸) = 0 and 𝜔2 is concentrated on 𝐸. Since  𝜔1≪ 𝜇,

 then 𝜔1(𝐴) = 0 for every 𝐴 ∈ 𝔐 such that 𝐴 ⊂ 𝐸 and hence 𝜔1 is concentrated on 𝐸𝑐. 
7. It follows from 6 that 𝜔 ⊥ 𝜔. Hence 𝜔 = 0.◼ 
Theorem 2 (Lebesgue). Decompostition of a quaternionic measure. Let 𝜆 be a signed real 𝜎-finite 

measure on a measurable space  (𝑋, 𝔐) and let 𝑤 be a quaternionic measure on (𝑋, 𝔐). Then there exists 
a unique pair of quaternionic measures 𝑤𝑎 and 𝑤𝑠 such that  

𝑤 = 𝑤𝑎 + 𝑤𝑠 , 𝑤𝑎 ≪ 𝜆, 𝑤𝑠 ⊥ 𝜆.                               (2) 
The pair 𝑤𝑎, 𝑤𝑠 is called the Lebesgue decomposition of 𝑤 w.r.t. 𝜆, where 𝑤𝑎 is the absolutely 

continuous part and 𝑤𝑠 is the singular part of the decomposition.  
Proof. Since 𝑤 is a quaternionic finite measure on (𝑋, 𝔐), we have 𝑤 = 𝜆0 + 𝐼𝜆1 + 𝐽𝜆2 + 𝐾𝜆3, with 

𝜆𝑘, 𝑘 = 0,1,2,3 real finite signed measures. By applying Lebesgue’s decomposition theorem to each 𝜆𝑘, 

we obtain 𝜆𝑘 = 𝜆𝑎
(𝑘)

+ 𝜆𝑠
(𝑘)

, where 𝜆𝑎
(𝑘)

≪ 𝜆 and 𝜆𝑠
(𝑘)

⊥ 𝜆. By putting  

𝑤𝑎 = 𝜆𝑎
(0)

+ 𝐼𝜆𝑎
(1)

+ 𝐽𝜆𝑎
(2)

+ 𝐾𝜆𝑎
(3)

 

and  

𝑤𝑠 = 𝜆𝑠
(0)

+ 𝐼𝜆𝑠
(1)

+ 𝐽𝜆𝑠
(2)

+ 𝐾𝜆𝑠
(3)

 

we conclude the proof of the existence of the pair 𝑤𝑎, 𝑤𝑠. Suppose that there is another pair 𝑤′𝑎, 𝑤′𝑠, 
which satisfies (2), then  

𝑤′𝑎 − 𝑤𝑎 = 𝑤𝑠 − 𝑤′𝑠. 
It is easily seen that 𝑤′𝑎 − 𝑤𝑎 ≪ 𝜆 and 𝑤𝑠 − 𝑤′𝑠 ⊥ 𝜆.  
Hence, considering item 7 of Theorem  we have 𝑤′𝑎 − 𝑤𝑎 = 𝑤𝑠 − 𝑤′𝑠 = 0.◼  
Theorem 3 (Radon-Nikodym). Let 𝜇 be a positive 𝜎-finite measure on a measurable space (𝑋, 𝔐), 

let 𝑤 be a quaternionic measure on (𝑋, 𝔐) and let 𝑤𝑎 be absolutely continuous part of the Lebesgue 
decomposition of 𝑤 w.r.t. 𝜇. Then there is a measurable quaternionic function ℎ on 𝑋 such that for every 
set 𝐴 ∈ 𝔐  

𝑤𝑎(𝐴) = ∫
𝐴

ℎ𝑑𝜇, 

where ℎ is uniquely defined up to a 𝜇-null set.  
Remark 1. Recall that a quaternionic function is measurable if the preimage of any borelian set 

belongs to 𝔐.  

Proof. Since 𝑤𝑎 ≪ 𝜇, taking into account that 𝑤𝑎(⋅): = 𝜆𝑎
(0)(⋅) + 𝐼𝜆𝑎

(1)(⋅) + 𝐽𝜆𝑎
(2)(⋅) + 𝐾𝜆𝑎

(3)(⋅), 

where 𝜆𝑎
(𝑘)

 are signed measures, we have that 𝜆𝑎
(𝑘)

≪ 𝜇 for each 𝑘 = 0,1,2,3. Taking into account Radon-

Nikodym Theorem for signed measures there exist measurable functions ℎ𝑘 such that  

𝜆𝑎
(𝑘)(𝐴) = ∫

𝐴

ℎ𝑘𝑑𝜇,    ∀𝐴 ∈ 𝔐, 𝑘 = 0,1,2,3. 

Hence  

𝑤𝑎(𝐴) = ∫
𝐴

(ℎ0(𝑥) + 𝐼ℎ1(𝑥) + 𝐽ℎ2(𝑥) + 𝐾ℎ3(𝑥))𝑑𝜇(𝑥). 

1

◼ 
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Remark 2 The function ℎ(𝑥): = ℎ0(𝑥) + 𝐼ℎ1(𝑥) + 𝐽ℎ2(𝑥) + 𝐾ℎ3(𝑥) will be called the Radon-
Nikodym derivative of 𝑤𝑎 w.r.t 𝜇 and it is denoted by 𝑑𝑤𝑎/𝑑𝜇.  

In the quaternionic case the Radon-Nikodym theorem has many corollaries and we give one of 
them. 

Theorem 4. Let 𝑤 be a quaternionic measure on a measurable space (𝑋, 𝔐). Then there exists a 
measurable function ℎ such that |ℎ(𝑥)| = 1 for all 𝑥 ∈ 𝑋 and 

𝑑𝑤

𝑑v𝑎𝑟[𝑤]
= ℎ. 

Proof. Since 𝑤 ≪ v𝑎𝑟[𝑤] it follows from Theorem that there is a measurable function ℎ such that 
𝑑𝑤/𝑑v𝑎𝑟[𝑤] = ℎ. 

For a positive real 𝑝 let us consider 𝑆𝑝: = {𝑥 ∈ 𝑋: |ℎ(𝑥)| < 𝑝}. Then for any partition {𝐴𝑛} of 𝑆𝑝 we 

have: 

∑

∞

𝑛=1

|𝑤(𝐴𝑛)| = ∑

∞

𝑛=1

|∫
𝐴𝑛

ℎ(𝑥)𝑑v𝑎𝑟[𝑤](𝑥)| ≤ 𝑝 ∑

∞

𝑛=1

v𝑎𝑟[𝑤](𝐴𝑛) = 𝑝v𝑎𝑟[𝑤](𝑆𝑝). 

Hence v𝑎𝑟[𝑤](𝑆𝑝) ≤ 𝑝v𝑎𝑟[𝑤](𝑆𝑝). If 𝑝 < 1 then v𝑎𝑟[𝑤](𝑆𝑝) = 0. Therefore, |ℎ(𝑥)| ≥ 1 a.e. On 

the other hand for 𝐴 ∈ 𝔐 such that v𝑎𝑟[𝑤](𝐴) > 0 we have: 
1

v𝑎𝑟[𝑤](𝐴)
|∫

𝐴

ℎ(𝑥)𝑑v𝑎𝑟[𝑤](𝑥)| =
|𝑤(𝐴)|

v𝑎𝑟[𝑤](𝐴)
≤ 1. 

Thus, the integral  

𝐼𝐴(ℎ) =
1

v𝑎𝑟[𝑤](𝐴)
∫

𝐴

ℎ(𝑥)𝑑v𝑎𝑟[𝑤](𝑥) 

lies in a 4-D ball 𝐵1(0) of radius 1 for each 𝐴 ∈ 𝔐 such that v𝑎𝑟[𝑤](𝐴) > 0. Suppose 𝐵𝑟(𝑎) is a ball of 
radius 𝑟 and with center at the point 𝑎 such that 𝐵𝑟(𝑎) ∩ 𝐵1(0) = ∅. Let us show that v𝑎𝑟[𝑤](𝐶) = 0, 

where 𝐶 = ℎ−1(𝐵𝑟(𝑎)). 

Indeed, if v𝑎𝑟[𝑤](𝐶) > 0 then  

|𝐼𝐶(ℎ) − 𝑎| =
1

v𝑎𝑟[𝑤](𝐶)
|∫

𝐶

(ℎ(𝑥) − 𝑎)𝑑v𝑎𝑟[𝑤](𝑥)| ≤
1

v𝑎𝑟[𝑤](𝐶)
∫

𝐶

|ℎ(𝑥) − 𝑎|𝑑v𝑎𝑟[𝑤](𝑥) ≤ 𝑟, 

which is impossible since 𝐼𝐶(𝑓) ∈ 𝐵1(0) and we conclude that |ℎ(𝑥)| ≤ 1 (a. e.) Therefore,  
|ℎ(𝑥)| = 1 (a. e.). 

Let 𝑁: = {𝑥 ∈ 𝑋: |ℎ(𝑥)| ≠ 1}. Since as it is shown v𝑎𝑟[𝑤](𝑁) = 0 we redefine ℎ on 𝑁 so that ℎ(𝑥)=
for all 𝑥 ∈ 𝑁 and obtain a function with the desired properties. ◼ 

Conclusion 
The obtained results can be used in the course of research for problems of measure theory, random 

process theory, and statistical physics. 
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