On equicontinuity of families of mappings with one normalization condition by the prime ends

Sevost'yanov Evgeny

(Zhytomyr Ivan Franko State University; Institute of Applied Mathematics and Mechanics, Slavyansk)

E-mail: esevostyanov2009@gmail.com

Ilkevych Nataliya

(Zhytomyr Ivan Franko State University) *E-mail:* ilkevych1980@gmail.com

Borel function $\rho: \mathbb{R}^n \to [0, \infty]$ is called *admissible* for Γ , abbr. $\rho \in \operatorname{adm} \Gamma$, if $\int_{\gamma} \rho(x) |dx| \geqslant 1$ for each (locally rectifiable) $\gamma \in \Gamma$. We define the quantity

$$M(\Gamma) = \inf_{\rho \in \operatorname{adm} \Gamma} \int_{\mathbb{R}^n} \rho^n(x) \, dm(x)$$
 (1)

and call $M(\Gamma)$ a modulus of Γ ; here m stands for the n-dimensional Lebesque measure, see [1, 6.1].

Given sets E and F and a domain D in $\mathbb{R}^n = \mathbb{R}^n \cup \{\infty\}$, we denote $\Gamma(E, F, D)$ the family of all paths $\gamma : [0, 1] \to \mathbb{R}^n$ joining E and F in D, that is, $\gamma(0) \in E$, $\gamma(1) \in F$ and $\gamma(t) \in D$ for all $t \in [0, 1]$.

An end of a domain D is an equivalence class of chains of cross-cuts of D. We say that an end K is a prime end if K contains a chain of cross-cuts $\{\sigma_m\}$, such that

$$\lim_{m \to \infty} M(\Gamma(C, \sigma_m, D)) = 0$$

for some continuum C in D. Set $\mathbb{B}^n := \{x \in \mathbb{R}^n : |x| < 1\}$. We say that the boundary of a domain D in \mathbb{R}^n is locally quasiconformal if every point $x_0 \in \partial D$ has a neighborhood U that admit a conformal mapping φ onto the unit ball $\mathbb{B}^n \subset \mathbb{R}^n$ such that $\varphi(\partial D \cap U)$ is the intersection of \mathbb{B}^n and a coordinate hyperplane, see e.g. [2], cf. [3]. We say that a bounded domain D in \mathbb{R}^n is regular if D may be mapped quasiconformally onto a bounded domain with a locally quasiconformal boundary. If \overline{D}_P is the completion of a regular domain D by its prime ends and g_0 is a quasiconformal mapping of a domain D_0 with locally quasiconformal boundary onto D, then this mapping naturally determines the metric $\rho_0(p_1, p_2) = \left|\widetilde{g_0}^{-1}(p_1) - \widetilde{g_0}^{-1}(p_2)\right|$, where $\widetilde{g_0}$ is the extension of g_0 onto $\overline{D_0}$. Let $x_0 \in \overline{D}$, $x_0 \neq \infty$, $S(x_0, r) = \{x \in \mathbb{R}^n : |x - x_0| = r\}$, $A = A(x_0, r_1, r_2) = \{x \in \mathbb{R}^n : r_1 < |x - x_0| < r_2\}$.

Let $f: D \to \mathbb{R}^n$, $n \geq 2$, and let $Q: \mathbb{R}^n \to [0, \infty]$ be a Lebesgue measurable function such that $Q(y) \equiv 0$ for $y \in \mathbb{R}^n \setminus f(D)$. Let $A = A(y_0, r_1, r_2)$ and let $\Gamma_f(y_0, r_1, r_2)$ denotes the family of all paths $\gamma: [a, b] \to D$ such that

$$f(\gamma) \in \Gamma(S(y_0, r_1), S(y_0, r_2), A(y_0, r_1, r_2))$$

i.e., $f(\gamma(a)) \in S(y_0, r_1)$, $f(\gamma(b)) \in S(y_0, r_2)$, and $f(\gamma(t)) \in A(y_0, r_1, r_2)$ for any a < t < b. We say that, f satisfies the inverse Poletsky inequality at a point $y_0 \in f(D)$, if the relation

$$M(\Gamma_f(y_0, r_1, r_2)) \leqslant \int_{f(D) \cap A(y_0, r_1, r_2)} Q(y) \cdot \eta^n(|y - y_0|) \, dm(y)$$
 (2)

holds for any Lebesgue measurable function $\eta:(r_1,r_2)\to[0,\infty]$ satisfying the relation

$$\int_{r_1}^{r_2} \eta(r) dr \geqslant 1. \tag{3}$$

We say that the boundary of D is weakly flat at a point $x_0 \in \partial D$ if, for every number P > 0 and every neighborhood U of the point x_0 , there is a neighborhood $V \subset U$ such that $M(\Gamma(E, F, D)) \geqslant P$ for all continua E and F in D intersecting ∂U and ∂V . We say that the boundary ∂D is weakly flat if the corresponding property holds at every point of the boundary.

Given domains $D, D' \subset \mathbb{R}^n$, $n \geq 2$, points $a \in D$, $b \in D'$ and a Lebesgue measurable function $Q: D' \to [0, \infty]$ denote $\mathfrak{S}_{a,b,Q}(D, D')$ a family of all open discrete and closed mappings f of D onto D', satisfying the relation (2) for any $y_0 \in D'$, while f(a) = b. The following statement holds.

Theorem 1. Assume that, D has a weakly flat boundary, any component of which does not degenerate into a point. If $Q \in L^1(D')$ and D' is regular, then any $f \in \mathfrak{S}_{a,b,Q}(D,D')$ has a continuous extension $\overline{f}: \overline{D} \to \overline{D'}_P$, $\overline{f}(\overline{D}) = \overline{D'}_P$, and, in addition, a family $\mathfrak{S}_{a,b,Q}(\overline{D},\overline{D'})$ which consists of all extended mappings $\overline{f}: \overline{D} \to \overline{D'}_P$, is equicontinuous in \overline{D} .

The result mentioned above is published in [4].

References

- [1] Väisälä J. Lectures on n-Dimensional Quasiconformal Mappings. Lecture Notes in Math. 229. Berlin etc., Springer-Verlag, 1971.
- [2] Näkki R. Prime ends and quasiconformal mappings. J. Anal. Math., 35: 13-40, 1979.
- [3] Kovtonyuk D.A., Ryazanov V.I. On the theory of prime ends for space mappings. *Ukrainian Mathematical Journal*, 67 (4): 528–541, 2015.
- [4] Ilkevych N.S., Sevost'yanov E.A. On equicontinuity of the families of mappings with one normalization condition in terms of prime ends. *Ukrainian Mathematical Journal*, 74 (6): 936–945, 2022.