On Beltrami equations with inverse conditions and hydrodynamic normalization

Oleksandr Dovhopiatyi

Zhytomyr Ivan Franko State University, 40, Velyka Berdychivs'ka Str., 10 008 Zhytomyr, UKRAINE e-mail: Alexdov1111111@gmail.com

Evgeny Sevost'yanov

Zhytomyr Ivan Franko State University, 40, Velyka Berdychivs'ka Str., 10 008 Zhytomyr, UKRAINE; Institute of Applied Mathematics and Mechanics of NAS of Ukraine, Slov'yans'k e-mail: esevostyanov2009@gmail.com

Abstract. A Beltrami equation with two characteristics is a differential equation of the form

$$
f_{\overline{z}} = \mu(z) \cdot f_z + \nu(z) \cdot \overline{f_z} \,, \tag{1}
$$

where $\mu = \mu(z)$ and $\nu = \nu(z)$ are given measurable functions with $|\mu(z)| < 1$ and $|\nu(z)| < 1$ a.a. Let $\mu : D \to \mathbb{D}$ and $\nu : D \to \mathbb{D}$ be functions such that the relation $|\mu(z)| + |\nu(z)| < 1$ holds for almost any $z \in D$. We will consider that $\mu(z) = \nu(z) \equiv 0$ for any $z \in \mathbb{C} \setminus D$. Fix $n \ge 1$ and set

$$
\mu_n(z) = \begin{cases} \mu(z), & z \in \mathbb{C}, K_{\mu,\nu}(z) \le n, \\ 0, & \text{otherwise in } \mathbb{C}, \end{cases} \qquad \nu_n(z) = \begin{cases} \nu(z), & z \in \mathbb{C}, K_{\mu,\nu}(z) \le n, \\ 0, & \text{otherwise in } \mathbb{C}. \end{cases}
$$
 (2)

Let $f_n : \mathbb{C} \to \mathbb{C}$ be a homeomorphic solution of the equation $(f_n)_{\overline{z}} = \mu_n(z) \cdot (f_n)_z + \nu_n(z) \cdot (\overline{f_n})_z$. Set $g_n(z) :=$ $f_n^{-1}(z)$. Observe that f_n is conformal at the neighborhood of the infinity, so there is a continuous extension $f_n : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$. Thus $f_n(\mathbb{C}) = \mathbb{C}$ and $f_n(\infty) = \infty$. Note that, $g_n : \mathbb{C} \to \mathbb{C}$ is quasiconformal, in particular, g_n is almost everywhere differentiable in $\mathbb C$. It may be showed that, $f_n(z) = a_n z + b_n + o(1)$ as $z \to \infty$, where $a_n, b_n \in \mathbb{C}$ and $a_n \neq 0$. We may consider that $a_n = 1$ and $b_n = 0$ for any $n \in \mathbb{N}$. Note that such a function f_n is unique.

Let

$$
K_{\mu_{g_n}}(w) = \frac{|(g_n)_w|^2 - |(g_n)_{\overline{w}}|^2}{(|(g_n)_w| - |(g_n)_{\overline{w}}|)^2}, \qquad K_{I,p}(w, g_n) = \frac{|(g_n)_w|^2 - |(g_n)_{\overline{w}}|^2}{(|(g_n)_w| - |(g_n)_{\overline{w}}|)^p}.
$$
\n(3)

Theorem. Let D be a domain in $\mathbb C$ such that \overline{D} is a compact set in $\mathbb C$, let $\mu : \mathbb C \to \mathbb D$ and $\nu : \mathbb C \to \mathbb D$ be Lebesgue measurable functions vanishing outside D such that the relation $|\mu(z)| + |\nu(z)| < 1$ holds for almost any $z \in D$. In addition, let μ_n , ν_n , f_n and g_n as above, $n = 1, 2, \ldots$, Let $Q : \mathbb{C} \to [1, \infty]$ be a Lebesgue measurable function. Assume that the following conditions hold: 1) for each $0 < r_1 < r_2 < 1$ and $y_0 \in \mathbb{C}$ there is a set $E \subset [r_1, r_2]$ of positive linear Lebesgue measure such that the function Q is integrable over the circles $S(y_0, r)$ for any $r \in E$; 2) there exist a number $1 < p \le 2$ such that, for any bonded domain $G \subset \mathbb{C}$ there exists a constant $M = M_G > 0$ such that $\int_G K_{I,p}(w, g_n) dm(w) \leq M$ for all $n = 1, 2, ...,$ where $K_{I,p}(w, g_n)$ is defined in (3); 3) the inequality $K_{\mu_{g_n}}(w) \leq Q(w)$ holds for a.e. $w \in \mathbb{C}$, where $K_{\mu_{g_n}}$ is defined in (3). Then the equation (1) has a continuous $W^{1,p}_{loc}(\mathbb{C})$ -solution f in $\mathbb C$ such that $f(z) = z + \varepsilon(z)$, where $\varepsilon(z) \to 0$ as $z \to \infty$.

Corollary. In particular, the conclusion of Theorem holds if, in this theorem, we abandon condition 1), accept condition 3), and replace condition 2) with the requirement $Q \in L^1_{loc}(\mathbb{C})$. If G is some bounded domain in $\mathbb C$ and K is a compactum in G, then there is some domain $G' \subset \mathbb C$ and a function Q' equal Q in G' and vanishing outside G' such that Q' is integrable in $\mathbb C$ and the relation $|f(x) - f(y)| \leq \frac{C}{\log^{1/2} \left(1 + \frac{r_0}{2|x-y|}\right)}$ holds for any $x, y \in K$, where $C = C(K, ||Q'||_1, G) > 0$ is some constant depending only on K, G and $||Q'||_1, ||Q'||_2$ denotes L^1 -norm of Q' in \mathbb{R}^n , and $r_0 = d(K, \partial G)$.

Keywords: Beltrami equations, quasiconformal mappings, mappings with a finite distortion