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Abstract 

The theoretical description for hydroxyquinol and pyrogallol electrochemical determination in food and 

wastewater has been made in this work. The efficiency of the cobalt (III) oxyhydroxide for this 

determination is verified from either electroanalytical and electrosynthetical point of view, as it also 

provides the assisted electro(co)polymerization. The stable steady-state is easy to obtain and maintain, 

which confirms the efficiency of the electrode modifier and the easy interpretation of analytical signal.   

 

Keywords: hydroxyquinol, pyrogallol, cobalt (III) oxyhydroxide, electrochemical sensors, 

electrochemical oscillations, stable steady-state  

 

Introduction  

Phenol [1 – 4] is one of the most widespread pollutants in the pharmaceutical and food industry 

wastewaters. One of the most popular methods for its removal consists in its mineralization, by which 

it is fistly oxidized to polyphenolic compounds, and then to carbon dioxide and water (Fig. 1).  
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Fig. 1. Phenol gradual oxidation and mineralization.  

 

Either the proper phenol or the products of its gradual oxidation are natural compounds. For 

example, the proper phenol and 1,4-hydroquinone are among the toxins of yellow stainer mushroom 

Agaricus xanthodermus [5 – 10]. 1,2-Hydroquinone is decarboxylate of protocatechic acid, pyrogallol 

(1,2,3-trihydroxybenzene) is decarboxylate of gallic acid. The derivatives of both of the acids may be 

found in fruit juices, wines, biodiesel etc. As for hydroxyquinol (1,2,4-trihydroxybenzene), it is a natural 

antioxidant, a fructose fermentative dehydratation product. Its derivatives (ethers and esters) are natural 

aromatizers and sweeteners. For example, sesamol is a hydroxyquinol ether, responsible for the taste of 

Turkish delights including lokum, tahini halva and baklava. It also may be found in ayran, tan and doug 

milk drinks and traditional Inebolu simit from Kastamonu. For this and other reasons, the development 

of a rapid and efficient method for both hydroxyquinol and pyrogallol determination is really actual [11 

– 14].  

Cobalt (III) oxyhydroxide [15 – 21] (alone and in composite with conducting polymers) has 

become a popular electrode modifier for electroanalytical systems. It is a semiconducting material, 

similar to titanium dioxide, but more electroactive. It may be an interesting electrode modifier for 

phenolic and polyphenolic compounds electrochemical determination and electropolymerization. 

Therefore, the goal of this work is to investigate theoretically the hydroxyquinol and pyrogallol 

electrochemical determination over cobalt (III) oxyhydroxide. This aims to find the condition of the 

parameter range for the best analytical signal interpretation, the oscillatory and monotonic instabilities 

condition and the comparison of the behavior of this system with that of the similar ones [22 – 28].  

 

System And Its Modeling 

Both pyrogallol and hydroxyquinol may be oxidized by both micro and macromolecular oxidation 

scenarios. Nevertheless, hydroxyquinol may be oxidized by more scenarios in relation to pyrogallol. 

Both of them form conducting polymers and may form either homopolymer or copolymer. Assuming 

that the copolymerization is more probable, that the homopolymerization of each of the compounds, we 
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consider only the copolymerization scenario in the model. The behavior of electroanalytical system is 

described on the Fig. 2.  
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Fig. 2. The schematic representation of electroanalytical process.  

 

Therefore, taking into account the above-mentioned statements and taking some assumptions 

[22 – 28], we describe the system´s behavior by a trivariant equation-set (1):  
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𝛨

𝛿
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𝑑𝑝

𝑑𝑡
=

2

𝛿
(
𝑃

𝛿
(𝑝0 − 𝑝) − 𝑟21 − 𝑟𝑝)

𝑑𝑐

𝑑𝑡
=

1

𝐶
(𝑟11 + 𝑟12 + 𝑟21 + 𝑟𝑝 − 𝑟𝑐)

                         (1) 

 

Herein, h and p are hydroxyquinol and pyrogallol concentrations in the pre-surface layer; H and 

P are their diffusion coefficients, h0 and p0 are their bulk concentrations, c is the cobalt (II) oxide surface 

coverage degree, C is this maximal concentration and the parameters r are their correspondent reaction 

rates, which, in neutral media, may be calculated as:  

𝑟11 = 𝑘11ℎ(1 − 𝑐)
2                            (2) 

𝑟12 = 𝑘12ℎ(1 − 𝑐)
2                            (3) 

𝑟21 = 𝑘21𝑝(1 − 𝑐)
2                            (4) 

𝑟𝑝 = 𝑘𝑝ℎ
𝑥𝑝𝑦(1 − 𝑐)𝑧                          (5) 

𝑟𝑐 = 𝑘𝑐𝑐 exp (
𝐹𝜑0

𝑅𝑇
)                              (6) 

In which the parameters k are the correspondent reaction rate constants, x, y and z are 

polymerization reaction orders, F is the Faraday number, 𝜑0 is the zero-charge related potential slope, 

R is the universal gas constant and T is the absolute temperature.  

In neutral media, the ionization is phenolic compounds is reduced, being, therefore, neglected. 

So, in this case the oscillatory behavior will be less probable than in alkaline media, and the 

electroanalytical process will be more stable, as shown below.  

 

Results And Discussion  

In order to investigate the stability of the system with the hydroxyquinol and pyrogallol electrochemical 

determination over CoO(OH)-modified electrode in neutral media, we investigate the equation-set (1) 

by means of linear stability theory. The steady-state Jacobian matrix components may be described as:  

(

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

)                                  (7) 

Herein:  

𝑎11 =
2

𝛿
(−

𝛨

𝛿
− 𝑘11(1 − 𝑐)

2 − 𝑘12ℎ(1 − 𝑐)
2 − 𝑥𝑘𝑝ℎ

𝑥−1𝑝𝑦(1 − 𝑐)2)    (8) 

𝑎12 =
2

𝛿
(−𝑦ℎ𝑥𝑝𝑦−1(1 − 𝑐)2)                                (9) 

𝑎13 =
2

𝛿
(2𝑘11ℎ(1 − 𝑐) + 2𝑘12ℎ(1 − 𝑐) + 𝑧𝑘𝑝ℎ

𝑥𝑝𝑦(1 − 𝑐)𝑧−1)   (10) 

𝑎21 =
2

𝛿
(𝑥𝑘𝑝ℎ

𝑥−1𝑝𝑦(1 − 𝑐)2)                      (11) 

𝑎22 =
2

𝛿
(−

𝑃

𝛿
− 𝑘21(1 − 𝑐)

2 − 𝑦ℎ𝑥𝑝𝑦−1(1 − 𝑐)2)      (12) 

𝑎23 =
2

𝛿
(2𝑘21𝑝(1 − 𝑐) + 𝑧𝑘𝑝ℎ

𝑥𝑝𝑦(1 − 𝑐)𝑧−1)            (13) 

𝑎31 =
1

𝐶
(𝑘11(1 − 𝑐)

2 + 𝑘12ℎ(1 − 𝑐)
2 + 𝑥𝑘𝑝ℎ

𝑥−1𝑝𝑦(1 − 𝑐)2)     (14) 

𝑎32 =
1

𝐶
(𝑘21(1 − 𝑐)

2 + 𝑦ℎ𝑥𝑝𝑦−1(1 − 𝑐)2)     (15) 

𝑎33 =
1

𝐶
(−𝑘11ℎ(1 − 𝑐) − 2𝑘12ℎ(1 − 𝑐) − 2𝑘21𝑝(1 − 𝑐) − 𝑧𝑘𝑝ℎ

𝑥𝑝𝑦(1 − 𝑐)𝑧−1 −

𝑘𝑐 exp (
𝐹𝜑0

𝑅𝑇
) + 𝑗𝑘𝑐𝑐 exp (

𝐹𝜑0

𝑅𝑇
))   (16) 
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In neutral media, the chemical stage do not affect the double electric layer, reason why the 

oscillatory behavior will be caused by the only factor of DEL impact of the electrochemical stage, 

described by the positivity of   𝑗𝑘𝑐𝑐 exp (
𝐹𝜑0

𝑅𝑇
) > 0, if j>0. This factor is common for all the similar 

systems [22 – 28] and defines also the dependence of the oscillation frequency and amplitude from the 

background electrolyte composition.  

Avoiding the cumbersome expression during the determinant analysis, we introduce new 

variables and rewrite the determinant as (17):  

 

4

𝛿2𝐶
|
−𝜅 − 𝛯 − 𝛴 −𝛲 𝛬 + 𝛷

−𝛴 −𝜉 − 𝛵 − 𝛲 𝛮 + 𝛷
𝛯 + 𝛴 𝛵 + 𝛲 −𝛬 − 𝛷 − 𝛮 − 𝛺

|       (17) 

 

Applying the Det J<0 requisite, salient from Routh-Hurwitz critetion, we obtain the steady-state 

stability condition, expressed as (18):  

−𝜅(𝜉𝛬 + 𝛵𝛬 + 𝛲𝛬 + 𝜉𝛷 + 𝜉𝛮 + 𝜉𝛺 + 𝛵𝛺 + 𝛲𝛺) − 𝛴(𝜉𝛬 + 𝛵𝛬 + 𝛲𝛬 + 𝜉𝛷 + 𝜉𝛮 + 𝜉𝛺 +

𝛵𝛺 − 𝛲𝛮 − 𝜉𝛬 − 𝜉𝛷) − 𝛯(𝛲𝛬 + 𝜉𝛷 + 𝜉𝛮 + 𝜉𝛺 + 𝛵𝛺 + 𝛲𝛺) < 0                   (18) 

 

Which may be rewritten as (19):  

𝜅(𝜉𝛬 + 𝛵𝛬 + 𝛲𝛬 + 𝜉𝛷 + 𝜉𝛮 + 𝜉𝛺 + 𝛵𝛺 + 𝛲𝛺) + 𝛴(𝜉𝛬 + 𝛵𝛬 + 𝛲𝛬 + 𝜉𝛷 + 𝜉𝛮 + 𝜉𝛺 +

𝛵𝛺 − 𝛲𝛮 − 𝜉𝛬 − 𝜉𝛷) + 𝛯(𝛲𝛬 + 𝜉𝛷 + 𝜉𝛮 + 𝜉𝛺 + 𝛵𝛺 + 𝛲𝛺) > 0                   (19) 

 

Defining a highly stable electroanalytical system, in which the linear current-concentration 

dependence range will be wider than for alkaline media [21 – 28]. For this reason, neutral or neutralized 

pH may be recommended for the electroanalytical process, which will be both diffusion or kinetically 

controlled, with higher impact of the kinetical factor.  

 As for the detection limit, it defines the margin between stable steady-states and unstable states. 

Being described by the monotonic instability, its condition is exposed as (20):  

𝜅(𝜉𝛬 + 𝛵𝛬 + 𝛲𝛬 + 𝜉𝛷 + 𝜉𝛮 + 𝜉𝛺 + 𝛵𝛺 + 𝛲𝛺) + 𝛴(𝜉𝛬 + 𝛵𝛬 + 𝛲𝛬 + 𝜉𝛷 + 𝜉𝛮 + 𝜉𝛺 +

𝛵𝛺 − 𝛲𝛮 − 𝜉𝛬 − 𝜉𝛷) + 𝛯(𝛲𝛬 + 𝜉𝛷 + 𝜉𝛮 + 𝜉𝛺 + 𝛵𝛺 + 𝛲𝛺) = 0                   (20) 

 

If phloroglucinol (1,3,5-trihydroxybenzene) or an etherified phenolic derivative is used as a 

second analyte, the electropolymerization scenario may become the only oxidation scenario for this 

compound. In this case, the balance equation-set will be rewritten as (21):  

 

{
 
 

 
 
𝑑ℎ

𝑑𝑡
=

2

𝛿
(
𝛨

𝛿
(ℎ0 − ℎ) − 𝑟11 − 𝑟12 − 𝑟𝑝)

𝑑𝑝

𝑑𝑡
=

2

𝛿
(
𝑃

𝛿
(𝑝0 − 𝑝) − 𝑟𝑝)

𝑑𝑐

𝑑𝑡
=

1

𝐶
(𝑟11 + 𝑟12 + 𝑟𝑝 − 𝑟𝑐)

                         (21) 

 

This case (for neutral and alkaline media) will be analyzed in our next works.  
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Conclusions 

From the analysis of the system with hydroxyquinol and pyrogallol electrochemical determination over 

CoO(OH), it was possible to conclude that that it is an efficient process from both electroanalytical and 

electrosynthetical points of view, providing an economical and green conducting polymer synthesis and 

phenolic compounds analysis in food and wastewater. The linear dependence between the analyte 

concentration and electrochemical parameter is easy to form in an efficient kinetically-controlled 

system. For its turn, the oscillatory behavior is expected to be probable due to the double electric layer 

structure changes during the process on electrochemical stage. Either way, its probability is lower in 

neutral than in alkaline medium. The probability of the oscillatory behavior and the oscillation amplitude 

will be highly dependent on the solution background electrolyte composition. 
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