On quasilinear Beltrami equations and tangential dilatation

Evgeny Sevost'yanov

Zhytomyr Ivan Franko State University, 40, Velyka Berdychivs'ka Str., 10 008 Zhytomyr, UKRAINE; Institute of Applied Mathematics and Mechanics of NAS of Ukraine, Slov'yans'k e-mail: esevostyanov2009@gmail.com

Nataliya Ilkevych

Zhytomyr Ivan Franko State University, 40, Velyka Berdychivs'ka Str., 10 008 Zhytomyr, UKRAINE e-mail: ilkevych1980@gmail.com

Valery Targonskii

Zhytomyr Ivan Franko State University, 40, Velyka Berdychivs'ka Str., 10 008 Zhytomyr, UKRAINE e-mail: w.targonsk@gmail.com

Abstract. Below we consider that a mapping f is sense-preserving. Given a mapping $f: D \to \mathbb{C}$, $D \subset \mathbb{C}$, we set $f_{\overline{z}} = (f_x + if_y)/2$ if $f_z = (f_x - if_y)/2$. We say that, a function $\nu = \nu(z, w) : D \times \mathbb{C} \to \mathbb{D}$ satisfies Caratheodory conditions, if ν is Lebesgue measurable over $z \in D$ for every $w \in \mathbb{C}$, and ν is continuous by w for almost all $z \in D$. Let $\mu = \mu(z, w)$ and $\nu = \nu(z, w)$ satisfy Caratheodory conditions and, in addition, $|\mu(z, w)| + |\nu(z, w)| < 1$ for all $w \in \mathbb{C}$ and almost all $z \in D$. The maximal dilatation corresponding to μ and ν is defied by the equality $K_{\mu,\nu}(z, w) = \frac{1+|\mu(z,w)|+|\nu(z,w)|}{1-|\mu(z,w)|-|\nu(z,w)|}$. The tangential dilatation corresponding to the functions $\mu(z, w)$ and $\nu(z, w)$ with respect to the point $z_0 \in \mathbb{C}$ and $\theta \in [0, 2\pi)$ is called the quantity

$$K_{\mu,\nu}^{T}(z,z_{0},w,\theta) = \frac{\left|1 - \frac{\overline{z-z_{0}}}{z-z_{0}} \left(\mu(z,w) + \nu(z,w)e^{i\theta}\right)\right|^{2}}{1 - |\mu(z,w) + \nu(z,w)e^{i\theta}|^{2}}$$

whenever $z \in D$ is a differentiability point of f. The quasilinear Beltrami equation with two characteristics is defined by the formula

$$f_{\overline{z}} = \mu(z, f(z)) \cdot f_z + \nu(z, f(z)) \cdot \overline{f_z} .$$
⁽¹⁾

The mapping $f: D \to \mathbb{C}$ is called a regular solution of the equation (1), if $f \in W^{1,1}_{\text{loc}}$ and $J(z, f) \neq 0$ almost everywhere in D. We say that, a locally integrable function $\varphi: D \to \mathbb{R}$ has a finite mean oscillation at the point x_0 (we write: $\varphi \in FMO(x_0)$), if $\limsup_{\varepsilon \to 0} \frac{1}{\pi \varepsilon^2} \int_{B(x_0, \varepsilon)} |\varphi(x) - \overline{\varphi}_{\varepsilon}| dm(x) < \infty$, where

$$\overline{\varphi}_{\varepsilon} = \frac{1}{\pi \varepsilon^2} \int_{B(x_0, \varepsilon)} \varphi(x) \ dm(x).$$
 Let D be a domain in $\mathbb{C}, z_0 \in D$, and let $Q_{z_0}^{(1)} : D \to [0, \infty]$ be a Lebesgue

measurable function that is zero outside the domain D. Set $q_{z_0}^{(1)}(r) = \frac{1}{2\pi} \int_0^{2\pi} Q_{z_0}^{(1)}(z_0 + re^{i\varphi}) d\varphi$.

Theorem. Let D be a domain in \mathbb{C} , and let the functions $\mu = \mu(z, w)$ and $\nu = \nu(z, w)$ satisfy the Caratheodory conditions and, in addition, $|\mu(z, w)| + |\nu(z, w)| < 1$ for all $w \in \mathbb{C}$ and almost all $z \in D$. Suppose that, there exists a function $Q: D \to [1, \infty]$ such that $K_{\mu,\nu}(z, w) \leq Q(z) \in L^1_{loc}(D)$ for almost all $z \in D$ and all $w \in \mathbb{C}$. Assume that, for any $z_0 \in D$ there is a function $Q_{z_0}^{(1)}: D \to [0, \infty]$ such that the inequality $K^T_{\mu,\nu}(z, z_0, w, e^{i\theta}) \leq Q_{z_0}^{(1)}(z)$ holds for almost all $z \in D$, all $w \in \mathbb{C}$ and all $\theta \in [0, 2\pi)$. Suppose that, one of two conditions holds: either $Q_{z_0}^{(1)} \in FMO(D)$, or

$$\int_{0}^{\delta(z_{0})} \frac{dr}{rq_{z_{0}}^{(1)}(r)} = \infty$$

for some $\delta(z_0) < \text{dist}(z_0, \partial D)$ and each $z_0 \in D$, where $q_{z_0}^{(1)}(r)$ as above. Then the equation (1) has a regular homeomorphic solution f of the class $W_{\text{loc}}^{1,1}$ in D such that $f^{-1} \in W_{\text{loc}}^{1,2}(f(D))$. Moreover, f has a

homeomorphic extension in \mathbb{C} , which is conformal outside the domain D, and it may be chosen such that f(0) = 0, f(1) = 1.

Keywords: Beltrami equations; Quasiconformal mappings; Mappings with a finite distortion.