ON GLOBAL BEHAVIOR OF MAPPINGS IN METRIC SPACES IN TERMS OF PRIME ENDS Evgeny Sevost'yanov

Zhytomyr Ivan Franko State University, Zhytomyr, Ukraine; Institute of Applied Mathematics and Mechanics of NAS of Ukraine, Kyiv, Ukraine

Given a metric space (X, d, μ) with a measure μ , a domain in X is an open path-connected set in X. We call a bounded connected set $E \subsetneq \Omega$ an acceptable set if $\overline{E} \cap \partial\Omega \neq \emptyset$. We call a sequence $\{E_k\}_{k=1}^{\infty}$ of acceptable sets a chain if it satisfies the following conditions: 1. $E_{k+1} \subset E_k$ for all $k = 1, 2, \ldots, 2$. dist $(\Omega \cap \partial E_{k+1}, \Omega \cap \partial E_k) > 0$ for all $k = 1, 2, \ldots, 3$. The impression $\bigcap_{k=1}^{\infty} \overline{E_k} \subset \partial\Omega$. We say that a chain $\{E_k\}_{k=1}^{\infty}$ divides the chain $\{F_k\}_{k=1}^{\infty}$ if for each k there exists l_k such that $E_{l_k} \subset F_k$. Two chains are equivalent if they divide each other. A collection of all mutually equivalent chains is called an end and denoted $[E_k]$, where $\{E_k\}_{k=1}^{\infty}$ is any of the chains in the equivalence class. The impression of $[E_k]$, denoted $I[E_k]$, is defined as the impression of any representative chain. We say that an end $[E_k]$ is a prime end if it is not divisible by any other end. The collection of all prime ends is called the *prime end boundary* and is denoted E_{Ω} . In what follows, we set $\overline{\Omega}_P := \Omega \cup E_{\Omega}$. Given a family of paths Γ in X, a Borel function $\varrho : X \to [0, \infty]$ is called *admissible* for Γ , abbr. $\varrho \in \operatorname{adm} \Gamma$, if $\int \varrho \, ds \ge 1$ for all (locally rectifiable) $\gamma \in \Gamma$. We denote by

 $\Gamma(E, F, G)$ the family of all continuous curves $\gamma : [0, 1] \to X$ such that $\gamma(0) \in E$, $\gamma(1) \in F$, and $\gamma(t) \in G$ for all $t \in (0, 1)$. Everywhere further (X, d, μ) and (X', d', μ') are metric spaces with metrics d and d' and locally finite Borel measures μ and μ' , correspondingly. We will assume that μ is a Borel measure such that $0 < \mu(B) < \infty$ for all balls B in X. Given $p \ge 1$, the p-modulus of the family Γ is the number $M_p(\Gamma) = \inf_{\rho \in \operatorname{adm} \Gamma} \int_X \varrho^p(x) \, d\mu(x)$.

Let G and G' be domains with finite Hausdorff dimensions α and $\alpha' \ge 1$ in X and X', and let $Q : G \to [0, \infty]$ be a measurable function. Given $x_0 \in \partial G$, denote $S_i := S(x_0, r_i)$, i = 1, 2, where $0 < r_1 < r_2 < \infty$. We say that a mapping $f : G \to G'$ is a ring Q-mapping at a point $x_0 \in \partial G$, if the inequality $M_{\alpha'}(f(\Gamma(S_1, S_2, A))) \le \int_{A\cap G} Q(x)\eta^{\alpha}(d(x, x_0)) d\mu(x)$ holds for any ring $A = A(x_0, r_1, r_2) = \{x \in X : r_1 < d(x, x_0) < r_2\}, 0 < r_1 < r_2 < \infty$, and any measurable function $\eta : (r_1, r_2) \to [0, \infty]$ such that $\int_{\gamma}^{r_2} \eta(r) dr \ge 1$. Given $\delta > 0, D \subset X$, a continuum $A \subset D$

and a measurable function $Q: D \to [0, \infty]$, denote $\mathfrak{F}_{Q,\delta,A}(D)$ the family of all ring Q-homeomorphisms $f: D \to X' \setminus K_f$ in D, such that f(D) is some open set in X' and $d'(K_f) = \sup_{x,y \in K_f} d'(x,y) \ge \delta$

and $d'(f(A)) \ge \delta$, where $K_f \subset X'$ is a continuum.

Theorem. Let D and $D'_f := f(D)$, $f \in \mathfrak{F}_{Q,\delta,A}(D)$, be domains with finite Hausdorff dimensions α and $\alpha' \ge 2$ in spaces (X, d, μ) and (X', d', μ') , respectively, and let X' be a domain with finite Hausdorff dimension $\alpha' \ge 2$. Assume that X is complete and supports an α -Poincaré inequality, and that the measure is doubling. Let D be a bounded domain which is finitely connected at the boundary, and let $Q: X \to (0, \infty)$ be a locally integrable function. Assume that, $Q \in FMO(\overline{D})$. If $D'_f := f(D)$ and X' are equi-uniform domains over $f \in \mathfrak{F}_{Q,\delta,A}(D)$ and $\overline{D'_f}$ are compacts in X', then $\mathfrak{F}_{Q,\delta,A}(D)$ is equicontinuous in \overline{D}_P .

e-mail: esevostyanov2009@gmail.com