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Given a metric space (X, d, μ) with a measure μ, a domain
in X is an open path-connected set in X. We call a bounded
connected set E � Ω an acceptable set if E ∩ ∂Ω �= ∅. We
call a sequence {Ek}∞k=1 of acceptable sets a chain if it satisfies
the following conditions: 1. Ek+1 ⊂ Ek for all k = 1, 2, . . . , 2.
dist (Ω∩ ∂Ek+1, Ω∩ ∂Ek) > 0 for all k = 1, 2, . . . , 3. The impres-

sion
∞⋂

k=1

Ek ⊂ ∂Ω. We say that a chain {Ek}∞k=1 divides the chain

{Fk}∞k=1 if for each k there exists lk such that Elk ⊂ Fk. Two chains
are equivalent if they divide each other. A collection of all mu-
tually equivalent chains is called an end and denoted [Ek], where
{Ek}∞k=1 is any of the chains in the equivalence class. The impres-
sion of [Ek], denoted I[Ek], is defined as the impression of any
representative chain. We say that an end [Ek] is a prime end if it
is not divisible by any other end. The collection of all prime ends is
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called the prime end boundary and is denoted EΩ. In what follows,
we set ΩP := Ω∪EΩ. Given a family of paths Γ in X, a Borel func-
tion � : X → [0,∞] is called admissible for Γ, abbr. � ∈ adm Γ,
if

∫

γ

� ds � 1 for all (locally rectifiable) γ ∈ Γ. We denote by

Γ(E,F,G) the family of all continuous curves γ : [0, 1] → X such
that γ(0) ∈ E, γ(1) ∈ F, and γ(t) ∈ G for all t ∈ (0, 1). Ev-
erywhere further (X, d, μ) and (X ′, d ′, μ ′) are metric spaces with
metrics d and d ′ and locally finite Borel measures μ and μ ′, cor-
respondingly. We will assume that μ is a Borel measure such that
0 < μ(B) < ∞ for all balls B in X. Given p � 1, the p-modulus
of the family Γ is the number Mp(Γ) = inf

ρ∈adm Γ

∫

X

� p(x) dμ(x).

Let G and G ′ be domains with finite Hausdorff dimensions α
and α ′ � 1 in X and X ′, and let Q : G → [0,∞] be a
measurable function. Given x0 ∈ ∂G, denote Si := S(x0, ri),
i = 1, 2, where 0 < r1 < r2 < ∞. We say that a mapping
f : G → G ′ is a ring Q-mapping at a point x0 ∈ ∂G, if the inequal-
ity Mα ′(f(Γ(S1, S2, A))) �

∫

A∩G

Q(x)ηα(d(x, x0)) dμ(x) holds for

any ring A = A(x0, r1, r2) = {x ∈ X : r1 < d(x, x0) < r2}, 0 <
r1 < r2 < ∞, and any measurable function η : (r1, r2) → [0,∞]

such that
r2∫

r1

η(r)dr � 1. Given δ > 0, D ⊂ X, a continuum A ⊂ D

and a measurable function Q : D → [0,∞], denote FQ,δ,A(D) the
family of all ring Q-homeomorphisms f : D → X ′ \Kf in D, such
that f(D) is some open set in X ′ and d ′(Kf ) = sup

x,y∈Kf

d ′(x, y) � δ

and d ′(f(A)) � δ, where Kf ⊂ X ′ is a continuum.
Theorem. Let D and D ′

f := f(D), f ∈ FQ,δ,A(D), be domains
with finite Hausdorff dimensions α and α ′ � 2 in spaces (X, d, μ)
and (X ′, d ′, μ ′), respectively, and let X ′ be a domain with finite
Hausdorff dimension α ′ � 2. Assume that X is complete and
supports an α-Poincaré inequality, and that the measure is dou-
bling. Let D be a bounded domain which is finitely connected at
the boundary, and let Q : X → (0,∞) be a locally integrable func-
tion. Assume that, Q ∈ FMO(D). If D ′

f := f(D) and X ′ are
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equi-uniform domains over f ∈ FQ,δ,A(D) and D ′
f are compacts

in X ′, then FQ,δ,A(D) is equicontinuous in DP .
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