On boundary behavior of ring Q-mappings in terms of prime ends

132 Section: Complex Analysis

Evgeny Sevost'yanov

Zhytomyr Ivan Franko State University, Zhytomyr, Ukraine esevostyanov2009@gmail.com

By definition, a chain of cross-cuts $\{\sigma_m\}$ determines a chain of domains $d_m \subset D$ such that $\partial d_m \cap D \subset \sigma_m$ and $d_1 \supset d_2 \supset \cdots \supset d_m \supset \cdots$. Two chains of cross-cuts $\{\sigma_m\}$ and $\{\sigma'_k\}$ are said to be equivalent if for every $m \in \mathbb{N}$ the domain d_m contains all domains d'_k except finitely many of them, and for every $k \in \mathbb{N}$ the domain d'_k also contains all domains d_m except finitely many. An end of a domain D is an equivalence class of chains of cross-cuts of D. We say that an end K is a prime end if K contains a chain of cross-cuts $\{\sigma_m\}$, such that $\lim_{m\to\infty} M(\Gamma(C,\sigma_m,D)) = 0$ for some continuum C in D, where M is the modulus of the family $\Gamma(C,\sigma_m,D)$.

We say that the boundary of a domain D in \mathbb{R}^n is locally quasiconformal if every point $x_0 \in \partial D$ has a neighborhood U that admits a conformal mapping φ onto the unit ball $\mathbb{B}^n \subset \mathbb{R}^n$ such that $\varphi(\partial D \cap U)$ is the intersection of \mathbb{B}^n and a coordinate hyperplane. We say that a bounded domain D in \mathbb{R}^n is regular if D can be mapped quasiconformally onto a domain with a locally quasiconformal boundary. If \overline{D}_P is the completion of a regular domain D by its prime ends and g_0 is a quasiconformal mapping of a domain D_0 with locally quasiconformal boundary onto D, then this mapping naturally determines the metric $\rho_0(p_1,p_2)=|\tilde{g_0}^{-1}(p_1)-\tilde{g_0}^{-1}(p_2)|$, where $\tilde{g_0}$ is the extension of g_0 onto $\overline{D_0}$. Let $x=(x_1,\ldots,x_n)$ and $f(x)=(f_1(x),\ldots,f_n(x))$. Let D be a domain in \mathbb{R}^n , $n \geq 2$, and $f:D \to \mathbb{R}^n$ be a continuous mapping. A mapping $f:D \to \mathbb{R}^n$ is said to be discrete if the preimage $f^{-1}(y)$ of every point $g \in \mathbb{R}^n$ consists of isolated points, and open if the image of every open set $g \in \mathbb{R}^n$ be a continuous mapping open in $g \in \mathbb{R}^n$. A mapping $g \in \mathbb{R}^n$ is closed if the image of every closed set $g \in \mathbb{R}^n$ is closed in

f(D). Given a domain D and two sets E and F in $\overline{\mathbb{R}^n}$, $n \geq 2$, $\Gamma(E, F, D)$ denotes the family of all paths $\gamma : [a, b] \to \overline{\mathbb{R}^n}$ which join E and F in D, i.e., $\gamma(a) \in E$, $\gamma(b) \in F$ and $\gamma(t) \in D$ for a < t < b. Denote

$$S(x_0, r_i) = \{x \in \mathbb{R}^n : |x - x_0| = r_i\}, \quad i = 1, 2,$$

$$A(x_0, r_1, r_2) = \{x \in \mathbb{R}^n : r_1 < |x - x_0| < r_2\}.$$

Given a (Lebesgue) measurable function $Q: D \to [0, \infty]$ with Q(x) = 0 for $x \notin D$, a mapping $f: D \to \mathbb{R}^n$ is called ring Q-mapping at a point $x_0 \in \overline{D}$ if

$$M(f(\Gamma(S_1, S_2, D))) \leqslant \int_{A(x_0, r_1, r_2) \cap D} Q(x) \cdot \eta^n(|x - x_0|) \ dm(x)$$

for any $A(x_0,r_1,r_2),\ 0< r_1< r_2< r_0,$ some $r_0>0$ and for every Lebesgue measurable function $\eta:(r_1,r_2)\to [0,\infty]$ with $\int\limits_{r_1}^{r_2}\eta(r)dr\geqslant 1$. The following results hold.

Theorem 1. Let $n \ge 2$, let D be a regular domain in \mathbb{R}^n , and let D' be a bounded domain with locally quasiconformal boundary. Assume that $f: D \to D'$ is open, discrete and closed ring Q-mapping at ∂D , D' = f(D). Then f has a continuous extension $f: \overline{D}_P \to \overline{D'}_P$ such that $f(\overline{D}_P) = \overline{D'}_P$, whenever

$$\int_{\varepsilon}^{\varepsilon_0} \frac{dt}{tq_{x_0}^{\frac{1}{n-1}}(t)} < \infty, \qquad \int_{0}^{\varepsilon_0} \frac{dt}{tq_{x_0}^{\frac{1}{n-1}}(t)} = \infty$$
 (1)

for every $x_0 \in \partial D$, where

$$q_{x_0}(r) := \frac{1}{\omega_{n-1}r^{n-1}} \int_{|x-x_0|=r} Q(x) d\mathcal{H}^{n-1}.$$

Theorem 2. The statement of Theorem 1 is true, if instead of the conditions (1) we require that $Q \in FMO(x_0)$ for every $x_0 \in \partial D$.

Paper reference: (arXiv:1602.00660).