Мамула Сергій, здобувач другого (магістерського) рівня вищої освіти фізико-математичного факультету Грищук Андрій, кандидат педагогічних наук, доцент, доцент кафедри фізики та методики її навчання, Житомирський державний університет імені Івана Франка, м. Житомир, Україна

РОЗРАХУНОК ЕЛЕКТРОННОГО СПЕКТРУ З ДОПОМОГОЮ ПРОГРАМИ СИМВОЛЬНОГО ЧИСЛЕННЯ WOLFRAM МАТНЕМАТІСА, В КВАНТОВОМУ ШИСТЕГРАНОМУ ДРОТІ

У дослідженні електронних властивостей наноструктур, особливу увагу привертають квантові дроти, які демонструють унікальні квантово-розмірні ефекти. Шестигранний квантовий дріт є перспективним об'єктом для вивчення, оскільки його симетрія та розміри дозволяють отримувати специфічні енергетичні спектри, що впливають на електронні та оптичні властивості матеріалу. Проте, розрахунок електронного спектру в такій системі є нетривіальною задачею, що вимагає точного математичного апарату.

Програма Wolfram Mathematica є одним з провідних інструментів для обчислення та моделювання складних квантово-механічних систем. Ці тези

присвячені особливостям використання Wolfram Mathematica для розрахунку електронного спектру у квантовому шестигранному дроті, що дозволяє глибше зрозуміти його фізичні властивості і сприяє подальшому розвитку нанотехнологій.

Будемо досліджувати експериментально реалізовану в роботах [1-3] шестигранну нанотрубку (рис. 1.а), яка розташована у зовнішньому середовищі.

Вважається, що неузгодженість постійних граток, та різниця діелектричних проникливостей контактуючих середовищ настільки незначна, що модель ефективної маси і прямокутних потенціалів для електрона і дірки [4] є цілком обґрунтованою.

Матеріальні параметри внутрішньої дротини і зовнішнього середовища одинакові, а трубки — інші. При цьому, потенціали електрона і дірки у трубці менші, ніж за її межами, тобто вона є квантовою ямою для обох квазічастинок.

Рис.1 Геометричні схеми шестигранної (а) і апроксимуючої (б) нанотрубок, та схема потенціальних енергій (в) електрона і дірки в наносистемі.

У зв'язку з очевидною неможливістю точного розв'язування рівняння Шредінгера, яке описує екситонний спектр у шестигранній нанотрубці, застосовується підхід, подібний до того, який був використаний для знаходження електронного спектра у попередньому параграфі. Тобто, спочатку розв'язується задача про екситонний спектр і хвильові функції у апроксимованій циліндричній нанотрубці (рис. 1.б) з внутрішнім радіусом ρ_0 і зовнішнім $\rho_1 = \rho_0 + \delta$, де далі ρ_0 буде розглядатися, як варіаційний параметр.

Розрахунки спектра такої системи виконувалися з використанням програми символьного числення Wolfram Mathematica 11. Спочатку задавалися всі вхідні параметри та константи, потім записувалися хвильові функції, які задавалися через циліндричні функції Бесселя цілого аргументу (Рис 2.)

```
aa1 = \frac{1}{\sqrt{ced1}};

Xf1[r_] = (bb * BesselJ[m, kap1r] + cc * BesselY[m, kap1r])<sup>2</sup>

Xf2[r_] = (bb1 * BesselJ[m, kap1hr] + cc1 * BesselY[m, kap1hr])<sup>2</sup>

Xfe[r_] = (aa * BesselI[m, kap0r])<sup>2</sup>

Xfh[r_] = (aa1 * BesselI[m, kap0hr])<sup>2</sup>

Xf3[r_] = (dd * BesselK[m, kap2r])<sup>2</sup>

Xf4[r_] = (dd1 * BesselK[m, kap2hr])<sup>2</sup>
```

Рис.2 код в програмі Wolfram, для задання хвильових функцій.

В подальшому використовувалася функція FindRoot, яка дозволяла розв'язати дисперсійне рівняння (рис 3).

Рис.3 код в програмі Wolfram, розв'язку дисперсійного рівняння.

Для запису значень хвильової функції в файл використовувався цикл Do (Рис 4). Отримані файли розширенням «dat» можна було використовувати в довільних редакторах що дозволяють будувати графіки.

```
Do[fd0 = Xfe[r];
оператор циклу
xxx = OpenAppend["Xfr0=10.dat", DOSTextFormat -> True];
      відкрити для додавання в кінець
                                                     істина
WriteString[xxx, r * a / aInP, "\t", CForm[fd0], "\n"];
записати стрічку
                                    С форма
Close[xxx];
закрити
 , {r, 0, r0, 10}]
Do[fd1 = Xf1[r]; xxx = OpenAppend["Xfr0=10.dat", DOSTextFormat -> True];
                      відкрити для додавання в кінець
оператор циклу
                                                                     істина
WriteString[xxx, r * a / aInP, "\t", CForm[fd1], "\n"];
записати стрічку
                                   С форма
Close[xxx];, {r, r0, r1, 10}]
закрити
Do[fd2 = Xf3[r]; xxx = OpenAppend["Xfr0=10.dat", DOSTextFormat -> True];
                       відкрити для додавання в кінець
оператор циклу
                                                                     істина
WriteString[xxx, r * a / aInP, "\t", CForm[fd2], "\n"];
записати стрічку
                                    С форма
Close[xxx];, {r, r1, 2 * r1, 10}]
закрити
```

Рис.4 Організація циклу програмі Wolfram, для знаходження значень хвильової функції.

На рис. 5 приведено залежності від внутрішнього розміру (d) трубки чотирьох енергетичних рівнів $E_{1m}^{e,h}$ (m = 0,1,2,3) при малій ($\delta = 4a_{1nP}$) і великій ($\delta = 35a_{1nP}$) її товщинах. З рис. 3.7 видно, що характер зміни положення основного рівня (m = 0) відрізняється від всіх інших збуджених рівнів (m \neq 0). Причиною того, що всі збуджені рівні, зі збільшенням d, зміщуються лише у область менших енергій є те, що хоча, як видно з рис. 3.7.в, при цьому густини ймовірностей $W_{1m\neq0}^{e,h}$ перебування електрона, чи дірки в просторі квантової ями лише плавно зменшуються, але при цьому ще швидше (обернено квадратично) зменшується від'ємна величина енергії відцентрового руху.

Рис. 5 Залежність енергій від розміру (d) трубки при малих (a) і великих (б) її товщинах (δ), та еволюція $W_{11}^{e,h}(\rho_{e,h})$ при зміні розміру d (в).

Розглянутий код програми можна використовувати для розрахунку спектрів довільних шестигранних квантових нанотрубок.

Список використаних джерел та літератури

1. O.M.Makhanets, O.M.Voitsekhivska, A.M.Gryschyk Spectrum of confined and interface phonons in complicated cylindrical nanoheterosystem placed into the plane quantum well in water // Advanced optical materials. – 2006. V.9, №5. P. 1564-1567

2. O.M.Makhanets, A.M. Gryschyk., M.M.Dovganiuk. *Influence of electric field* at electron energy spectrum in cylindrical quantum wire with two quantum dots // Rom.Journ.Phys. 2007. Vol. 52. №.3-4. P. 403-409.

3. Mykola Tkach, Olexander Makhanets, Andrii Gryschyk, Rostyslav Fartushynsky *Exciton in Quantum Tube with Hexagon Cross* // Rom.Journ.Phys. 2007. Vol. 54. № 1-2. P. 37-47.

4. Zinovchuk, A.V., Gryschuk, A.M. Alloy-assisted Auger recombination in InGaN // Optical and Quantum Electronics, 2018, V. 50 455 P.