https://doi.org/10.15407/dopovidi2025.01.058 УДК 548.312.3

Ю.О. Titob¹, https://orcid.org/0000-0001-9900-3751

Н.М. Білявина¹, https://orcid.org/0000-0001-7371-3608

М.С. Слободяник¹, https://orcid.org/0000-0003-2684-9806

B.B. Hymak², https://orcid.org/0000-0001-5892-3703

¹ Київський національний університет ім. Тараса Шевченка, Київ, Україна

² Житомирський державний університет ім. Івана Франка, Житомир, Україна

E-mail: titov1952@ukr.net

Вплив заміщення європію диспрозієм на будову шаруватої структури скандатів SrEu, "Dy Sc₂O₇

Представлена членом-кореспондентом НАН України І.О. Фрицьким

Встановлено розміри області фаз з шаруватою перовськітоподібною структурою в системі $SrEu_{2}Dy_{S}Sc_{2}O_{7}0 \ge x \ge 0,5, i \ визначено кристалічну структуру фаз <math>SrEu_{2}Dy_{S}Sc_{2}O_{7}$ з $x = 0,25 \ ma \ 0,5$ за програмою, що базується на алгоритмах Рітвельда для багатофазних зразків. Встановлено, що зразки SrEu ,__Dy ,Sc ,O , з x = 0,25 та 0,5 містять дві модифікації з шаруватою перовськітоподібною структурою: модифікацію з ромбічною сингонією (пр. гр. Fmmm) та модифікацію з тетрагональною сингонією (пр. гр. I4/ттт). Основою шаруватої структури обох модифікацій SrEu_{2_x}Dy_xSc₂O₇ є двовимірні перовськітоподібні блоки завтовшки в два шари сполучених вершинами деформованих октаедрів ScO₆. Між блоками розташований шар поліедрів (Ец,Dy)О, а з'єднання блоків між собою відбувається за допомогою зв'язків -O-(Eu,Dy)-O-. Встановлено що збільшення вмісту атомів диспрозію в SrEu $_{2-x}$ Dy $_{x}$ Sc $_{2}O_{7}$ призводить до зростання ступеня деформації міжблокових поліедрів LnO $_9$ і скорочення міжблокової відстані Ln-O2. Така трансформація будови дестабілізує міжблоковий простір і є одним з головних чинників руйнування шаруватої перовськітоподібної структури фаз SrEu_{2-x}Dy_xSc₂O₇ при x > 0,5 та зумовлює неможливість існування скандату SrDy₂Sc₂O₇.

Ключові слова: сполуки типу A_{n+1}B_nO_{3n+1}, шарувата перовськітоподібна структура, рентгенівська порошкова дифрактометрія, ізоморфізм.

Вступ. Особливості будови шаруватої перовськітоподібної структури (ШПС) представників сімейства оксидних сполук Рудлесдена—Попера $A_{n+1}B_nO_{3n+1}$ (*n* — кількість шарів октаедрів ВО₆ у перовськітоподібному блоці) обумовлюють наявність у них комплексу цінних

Цитування: Тітов Ю.О., Білявина Н.М., Слободяник М.С., Чумак В.В. Вплив заміщення європію диспрозієм на будову шаруватої структури скандатів SrEu_{2−x}Dy_xSc₂O₇. Допов. Нац. акад. наук Укр. 2025. № 1. С. 58—67. https:// doi.org/10.15407/dopovidi2025.01.058

[©] Видавець ВД «Академперіодика» НАН України, 2025. Стаття опублікована за умовами відкритого доступу за ліцензією CC BY-NC-ND (https://creativecommons.org/licenses/by-nc-nd/4.0/)

властивостей, зокрема мікрохвильових, резистивних, магнітних, іонообмінних, фотокаталітичних, люмінесцентних та низки інших [1—9]. Зазначений факт визначає безумовну актуальність досліджень можливості та характеру впливу різнотипних ізоморфних заміщень атомів як на будову ШПС, так і на структурно чутливі властивості сполук типу $A_{n+1}B_nO_{3n+1}$.

Для синтезованих на цей час скандатів SrLn₂Sc₂O₇ (Ln = La — Tb) з двошаровою ШПС [9] характер впливу ізовалентного заміщення атомів *A*-позиції на будову їх ШПС встановлено лише для La-вмісних скандатів SrLa_{2-x}Dy_xSc₂O₇ [10] та Sr_{1-x}Ca_xLa₂Sc₂O₇ [11].

Одним із структурних чинників, що найбільше впливає на властивості оксидних сполук, є деформованість їх кристалічної структури. Як показано в [9], деформованість двошарової ШПС сполук $SrLn_2Sc_2O_7$ зростає зі зменшенням розміру атома РЗЕ. Однак не було визначено особливостей впливу ізоморфних заміщень атомів *A*-позиції на будову ШПС скандатів $SrLn_2Sc_2O_7$ з малорозмірними атомами РЗЕ.

Мета роботи — визначення умов ізовалентного заміщення атомів Еu у двошаровій ШПС SrEu₂Sc₂O₇ за типом SrEu_{2-x}Dy_xSc₂O₇ і дослідження його впливу на будову ШПС SrEu_{2-x}Dy_xSc₂O₇.

Матеріали і методи. Скандати SrEu_{2-x}Dy_xSc₂O₇ синтезували шляхом сумісної кристалізації (випаровування за інтенсивного перемішування) суміші водних розчинів нітратів Sr, P3E та Sc зі співвідношенням Sr : Eu : Dy : Sc 1 : 2 - x : x : 2 з подальшою термообробкою одержаного продукту на газовому пальнику для видалення основної маси оксидів нітрогену. Отриману таким способом шихту перетирали, пресували у вигляді дисків і піддавали термообробці за температури 1670 К до досягнення незмінного фазового складу. Як вихідні використано водні розчини нітратів Sr, P3E та Sc марок "хч".

Дифрактограми полікристалічних зразків записано на дифрактометрі XRD-6000 фірми "Shimadzu" (Японія) у дискретному режимі (крок сканування 0,02°, експозиція в точці 4 с, інтервал кутів $2\theta = 21 \div 68^{\circ}$) на мідному фільтрованому (дуговий графітовий монохроматор перед лічильником) Си K_{α} -випромінюванні. Кристалічна структура одержаних зразків визначена методом Рітвельда. Первинне оброблення дифракційних спектрів і структурні розрахунки виконано з використанням апаратно-програмного комплексу як описано в [12].

Результати та їх обговорення. Рентгенофазовий аналіз продуктів термообробки шихти спільно закристалізованих нітратів Sr, Eu, Dy та Sc показав, що дифрактограми фаз SrEu_{2-x}Dy_xSc₂O₇ з 0 < $x \le 0.5$ подібні до дифрактограми SrEu₂Sc₂O₇ з двошаровою ШПС. У зразках SrEu_{2-x}Dy_xSc₂O₇ з x > 0.5 з'являється фаза зі структурою перовськіту, кількісний вміст якої зростає зі збільшенням значення x.

З урахуванням умов існування фаз SrEu_{2-x}Dy_xSc₂O₇ з ШПС (0 $\leq x \leq$ 0,5) для вирішення поставленого завдання нами було визначено будову ШПС фаз SrEu_{2-x}Dy_xSc₂O₇ зі ступенями заміщення атомів європію x = 0,25 та x = 0,5.

На початковому етапі виконано розрахунок двох моделей кристалічної структури ізовалентнозаміщених фаз складу SrEu_{1,75}Dy_{0,25}Sc₂O₇ та SrEu_{1,5}Dy_{0,5}Sc₂O₇: першої — у просторовій групі *Fmmm* (ромбічна сингонія) вихідної незаміщеної сполуки SrEu₂Sc₂O₇ [9], другої — у найпоширенішій просторовій групі *I4/mmm* (тетрагональна сингонія) сполук типу $A_{n+1}B_nO_{3n+1}$ [13]. Однак уточнення повної сукупності структури вищезазначених фаз показало незадовільне значення факторів недостовірності ($R_B > 0,12$ для ромбічної моделей структурної моделей структурної моделей сингонія сингонія сингонія сингонія (полук структурних параметрів) си структурних порадинатних, теплових, текстурних тощо си структури вищезазначених фаз показало незадовільне значення факторів недостовірності ($R_B > 0,12$ для ромбічної моделей структурнох параметрів (ко-

лі і $R_B > 0,2$ для тетрагональної моделі). Дані рентгенофазового аналізу про належність SrEu_{2-x}Dy_xSc₂O₇ з 0 < x ≤ 0,5 до сімейства сполук типу $A_{n+1}B_nO_{3n+1}$ з ШПС та вищезазначені результати структурних розрахунків дали підстави для гіпотези, що кожна з фаз SrEu_{1,75}Dy_{0,25}Sc₂O₇ та SrEu_{1,5}Dy_{0,5}Sc₂O₇ одночасно містить дві модифікації з ШПС, які належать до взаємозв'язаних ромбічної *Fmmm* та тетрагональної *I4/mmm* просторових груп. Структурні розрахунки за програмою, що ґрунтується на алгоритмах Рітвельда для багатофазних зразків, переконливо підтвердили наявність двох вищезазначених модифікацій з ШПС у зразках SrEu_{1,75}Dy_{0,25}Sc₂O₇ та SrEu_{1,5}Dy_{0,25}Sc₂O₇ та SrEu_{1,5}Dy_{0,5}Sc₂O₇ та SrEu_{1,5}Dy_{0,5}Sc₂O₇ та SrEu_{1,5}Dy_{0,5}Sc₂O₇ з а 78 наявними на дифрактограмах відбиттями становлять відповідно 0,043 та 0,053). Тобто заміщення в ШПС SrEu₂Sc₂O₇ атомів європію меншими атомами диспрозію зумовлює утворення зразків SrEu_{2-x}Dy_xSc₂O₇, які містять одночасно дві модифікації SrEu_{2-x}Dy_xSc₂O₇ з ШПС, а саме: модифікацію з ромбічною (пр. гр. *Fmmm*) та модифікацію з тетрагональною (пр. гр. *I4/mmm*) сингонією.

За даними детального рентгенівського кількісного фазового аналізу для зразка складу SrEu_{1,75}Du_{0,25}Sc₂O₇ співвідношення між тетрагональною та ромбічною модифікаціями є паритетним, тобто 50 : 50 за розрахунку як в об'ємних, так і у вагових відсотках. Для зразка складу SrEu_{1 5}Du_{0 5}Sc₂O₇ розрахована частка тетрагональної модифікації на 1—2 % менша.

Результати ўточнення моделей структур модифікацій SrEu_{1,75}Dy_{0,25}Sc₂O₇ та SrEu_{1,5}Dy_{0,5}Sc₂O₇ наведено в табл. 1—3. Встановлений за розрахунку структури склад обох модифікацій SrEu_{2-x}Dy_xSc₂O₇ у межах похибки визначення відповідає експериментально заданому. Зважаючи на близькі функції атомного розсіювання Еи та Dy, заповнення позиції РЗМ на межі перовськітного блока в обох модифікаціях узято з номінального складу зразка.

	SrEu _{1,75} Dy _{0,25} Sc ₂ O ₇									
Атом	Заповнення позиції	Ромбічна модифікація (пр. гр. <i>Fmmm</i>)				Тетрагональна модифікація (пр. гр. <i>I4/mmm</i>)				
		Позиція	X	Y	Z	Позиція	X	Y	Z	
Sr	1	4b	0	0	0,5	2 <i>b</i>	0	0	0,5	
Eu	0,875	8 <i>i</i>	0	0	0,3111(3)	4 <i>e</i>	0	0	0,3107(2)	
Dy	0,125	8 <i>i</i>	0	0	0,3111(3)	4e	0	0	0,3107(2)	
Sc	1	8 <i>i</i>	0	0	0,1033(2)	4 <i>e</i>	0	0	0,1042(3)	
O1	1	4 <i>a</i>	0	0	0	2a	0	0	0	
O2	1	8 <i>i</i>	0	0	0,213(3)	4e	0	0	0,213(2)	
O3	1	16j	0,25	0,25	0,119(2)	8g	0	0,5	0,118(2)	
Параметри елементарної комірки, нм		a = 0,5721(3) b = 0,5704(2) c = 1,994(3)				a = 0,4048(1) c = 1,9973(9)				
Загальний ізотропний <i>В</i> фактор, нм ²		$1,89(9) \cdot 10^{-2}$				$1,38(5)\cdot 10^{-2}$				
Незалежні відбиття		78								
Фактор недостовірності R_B		0,043								

Таблиця 1. Структурні дані $SrEu_{2-x}Dy_xSc_2O_7$

Слід зазначити, що утворення зразків, які одночасно містять ромбічну та тетрагональну модифікації з ШПС, було зафіксовано раніше в разі заміщення атомів La на менші атоми Nd у ШПС одношарового індату BaLaInO₄ [15].

ШПС обох модифікацій SrEu_{1,75}Dy_{0,25}Sc₂O₇ та SrEu_{1,5}Dy_{0,5}Sc₂O₇ складається з двовимірних (нескінченних у площині XY) перовськітоподібних блоків, кожний з яких містить два шари деформованих октаедрів ScO₆ (рис. 1, *a*). Суміжні перовськітоподібні блоки зміщені один відносно одного вздовж діагоналі площини XY на пів ребра перовськітового куба. Октаедри ScO₆ у блоках сполучені між собою тільки вершинами, при цьому кожний октаедр ScO₆ має п'ять спільних вершин з октаедрами того ж двошарового блока.

Між блоками розташований міжблоковий шар поліедрів (Eu,Dy)O₉, який утримує блоки за допомогою зв'язків —O—(Eu,Dy)—O—. Вісім атомів оксигену координаційного поліедра (Eu,Dy)O₉ (чотири O2 та чотири O3) належать до того самого блока, що й атоми (Eu,Dy), а дев'ятий атом оксигену O2 є спільним аніоном з октаедром ScO₆ суміжного перовськітоподібного блока (див. рис. 1, δ). У поліедрі (Eu,Dy)O₉ чотири атоми O2 знаходяться значно далі (0,289—0,290 нм) від атомів (Eu,Dy), ніж чотири атоми O3 (0,245—0,248 нм), тому (зважаючи на дуже короткий міжблоковий зв'язок (Eu,Dy)—O2 (0,191—0,196 нм)) координаційне число атомів P3E в поліедрі (Eu,Dy)O₉ можна розглядати як 1 + 4 + 4.

У двошаровій ШПС обох модифікацій SrEu_{1,75}Dy_{0,25}Sc₂O₇ та SrEu_{1,5}Dy_{0,5}Sc₂O₇ (як і в ШПС SrEu₂Sc₂O₇ [9]) катіони стронцію розташовані всередині перовськітоподібного блока, а їх координаційний поліедр являє собою кубооктаедр SrO₁₂.

Зіставлення структурних параметрів обох модифікацій SrEu_{1,75}Dy_{0,25}Sc₂O₇, SrEu_{1,5}Dy_{0,5}Sc₂O₇ і незаміщеного скандату SrEu₂Sc₂O₇ [9] показало, що введення в A-позицію ШПС SrEu₂Sc₂O₇ менших, ніж атом європію, атомів диспрозію зумовлює збільшення

SrEu _{1,5} Dy _{0,5} Sc ₂ O ₇										
	Заповнення	Ромбічна модифікація (пр.гр. <i>Fmmm</i>)				Тетрагональна модифікація (пр. гр. <i>I4/mmm</i>)				
	позици	Позиція	X	Y	Ζ	Позиція	X	Y	Ζ	
	1	4b	0	0	0,5	2 <i>b</i>	0	0	0,5	
	0,75	8 <i>i</i>	0	0	0,3100(3)	4 <i>e</i>	0	0	0,3089(3)	
	0,25	8 <i>i</i>	0	0	0,3100(3)	4 <i>e</i>	0	0	0,3089(3)	
	1	8 <i>i</i>	0	0	0,1040(2)	4 <i>e</i>	0	0	0,1050(2)	
	1	4 <i>a</i>	0	0	0	2 <i>a</i>	0	0	0	
	1	8 <i>i</i>	0	0	0,213(2)	4e	0	0	0,213(3)	
	1	16j	0,25	0,25	0,120(3)	8g	0	0,5	0,119(2)	
		a = 0,4033(2) c = 1,9935(1) $5,00(9) \cdot 10^{-2}$								
	78 0,053									

Рис. 1. Кристалічна структура ромбічної модифікації $SrEu_{1,75}Dy_{0,25}Sc_2O_7$ у вигляді окта
едрів ScO_6 та атомів Sr (світлі кружечки), Eu, Dy (темні кружечки) (
a); будова міжблокової границі в ШПС тетрагональної модифікації
SrEu_{1,5}Dy_{0,5}Sc_2O_7 у вигляді окта
едрів ScO_6 та атомів Eu, Dy (темний кружечок) (6)

Таблиця 2. Деякі міжатомні відстані і ступені деформації (Δ) поліедрів MeO_n в ШПС SrEu_{2-x}Dy_xSc₂O₇

Міжатомна	SrEu ₂ Sc ₂ O ₇ [9] SrEu _{1,75} Dy _{0,25} Sc		y _{0,25} Sc ₂ O ₇	SrEu _{1,5} Dy _{0,5} Sc ₂ O ₇						
відстань ме—0, ступінь деформації ΔMeO _n	Fmmm	Fmmm	I4/mmm	Fmmm	I4/mmm					
Поліедр SrO ₁₂										
Середня відстань Sr—O, нм	0,303	0,303	0,303	0,304	0,302					
$\Delta \text{SrO}_{12} \cdot 10^4$	16	17	15	18	16					
Поліедр LnO ₉										
Міжблокова відстань Ln—O, нм	0,201(2)	0,196(2)	0,195(1)	0,193(2)	0,191(2)					
Середня відстань Ln—О, нм	0,260	0,259	0,261	0,259	0,260					
$\Delta LnO_9 \cdot 10^4$	132	140	137	144	143					
Поліедр ScO ₆										
Середня відстань Sc—O, нм	0,207	0,207	0,207	0,207	0,207					
$\Delta ScO_6 \cdot 10^4$	5	6	5	4	4					

Примітка. Ступінь деформації окта
едрів MeO_n у кристалічній структурі розраховано за формулою
 $\Delta = 1/n\Sigma[(R_i - \overline{R})/\overline{R}]^2 (R_i - відстань Me-O, \overline{R} - середня відстань Me-O, n - координаційне число) [14].$

Рис. 2. Залежності довжини міжблокового зв'язку Ln—O (*a*) та ступеня деформації (Δ) міжблокових поліедрів LnO₉ (*b*) в ШПС SrEu_{2-x}Dy_xSc₂O₇ від ступеня заміщення атомів європію (*x*) (1 — ромбічна модифікація, 2 — тетрагональна модифікація)

Дослід		Розрахунок							
		Ромб	бічна модифін	кація	Тетрагональна модифікація				
<i>d</i> , нм	Ι	<i>d</i> , нм	Ι	h k l	<i>d</i> , нм	Ι	h k l		
0,3964	111	0,3959	56	111	0,3968	50	011		
0,3457	143	0,3452	79	113	0,3459	69	013		
0,3329	84	0,3323	45	006	0,3329	40	006		
0,2864	403	0,2860	145	200	0,2863	266	110		
		0,2852	143	020					
0,2844	1000	0,2838	446	115	0,2843	413	015		
0,2752	60	0,2752	15	202	0,2752	28	112		
		0,2742	14	022					
0,2495	52	0,2497	3	008	0,2497	3	008		
0,2481		0,2481	15	204	0,2483	28	114		
		0,2475	15	024					
0,2332	17	0,2328	1	117	0,2332	1	017		
0,2169	131	0,2168	33	206	0,2170	63	116		
		0,2164	33	026					
0,2023	319	0,2020	154	220	0,2024	147	020		
0,1998	103	0,1994	46	0.0.10	0,1997	46	0.0.10		
0,1982	13	0,1979	8	222	0,1984	8	022		
0,1946	31	0,1942	12	119	0,1946	11	019		
0,1881	59	0,1879	14	208	0,1882	26	118		
		0,1877	14	028					
		0,1872	0	224	0,1876	0	024		
0,1799	24	0,1801	6	311	0,1803	12	121		
		0,1797	6	131					
0,1747	51	0,1745	9	313	0,1747	18	123		
		0,1741	9	133					
0,1729	45	0,1726	22	226	0,1730	21	026		

 $T a блиця 3. \Phi$ рагмент розрахунку дифрактограми $SrEu_{1,75}Dy_{0,25}Sc_2O_7$ (CuK_a -випромінювання)

ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2025. № 1

ступеня деформації міжблокових поліедрів LnO_9 (до (143 ÷ 144) · 10⁻⁴) і досить істотне скорочення довжини міжблокового зв'язку Ln-O2 (до 0,191(2)—0,193(2) нм) (табл. 2, рис. 2).

Зазначимо, що для обох модифікацій фази SrEu_{1,5}Dy_{0,5}Sc₂O₇ з максимально можливим ступенем заміщення атомів європію величини довжини міжблокової відстані (Eu,Dy)—O2 (0,191(2)—0,193(2) нм) і ступеня деформації поліедрів (Eu,Dy)O₉ ((143 ÷ 144) · 10⁻⁴) близькі до таких для крайнього члена ряду двошарових скандатів стронцію—P3E — SrTb₂Sc₂O₇ (відповідно 0,191(3) нм та 149 · 10⁻⁴ [9]).

Внаслідок зростання ступеня деформації поліедрів (Eu,Dy)O₉ зі збільшенням ступеня заміщення атомів європію збільшується напруженість у міжблоковому просторі ШПС SrEu_{2-x}Dy_xSc₂O₇. Водночас зближення суміжних двовимірних перовськітоподібних шарів зв'язаних вершинами октаедрів ScO₆ наближає будову ШПС SrEu_{1,75}Dy_{0,25}Sc₂O₇ та SrEu_{1,5}Dy_{0,5}Sc₂O₇ до будови тривимірного термодинамічно стабільного перовськіту. Перевищення ж порогу ізовалентного заміщення атомів європію призводить врешті до з'єднання вершинами октаедрів ScO₆ суміжних блоків з утворенням замість двовимірних блоків з двох шарів октаедрів ScO₆ тривимірного каркасу перовськіту (появи фази зі структурою перовськіту).

Загалом сумарний вплив вищезазначених факторів спричиняє дестабілізацію та руйнацію ШПС і дає підстави для висновку, що саме ці фактори обмежують розмір області фаз з ШПС у системі SrEu_{2-x}Dy_xSc₂O₇ ($0 \le x \le 0,5$) та обумовлюють неможливість існування скандату SrDy₂Sc₂O₇.

Зіставлення особливостей будови ШПС SrEu_{2-x}Dy_xSc₂O₇ та SrLa_{2-x}Dy_xSc₂O₇ [10] показало аналогічний характер змін довжини міжблокових відстаней A—O та ступеня деформації міжблокових поліедрів ΔAO_9 зі збільшенням ступеня ізовалентного заміщення атомів РЗЕ. Слід відзначити, що для SrEu_{2-x}Dy_xSc₂O₇ та SrLa_{2-x}Dy_xSc₂O₇ максимальні значення ΔAO_9 близькі і не залежать від типу РЗЕ ((143 ÷ 147) · 10⁻⁴), а також близькі до ΔAO_9 для крайнього члена ряду двошарових скандатів стронцію—P3E — SrTb₂Sc₂O₇ (149 · 10⁻⁴ [9]). Імовірно такий самий максимальний порядок величин ΔAO_9 слід очікувати і в решти твердих розчинів SrLn_{2-x}Ln^I_xSc₂O₇ з ШПС.

Як показано в [10], ізоморфне заміщення атомів лантану на атоми диспрозію в ромбічній ШПС SrLa₂Sc₂O₇ не змінює поліморфний склад твердого розчину SrLa_{2-x}Dy_xSc₂O₇. Це дає підстави для припущення, що власне ізоморфне заміщення не є основним фактором утворення двох модифікацій з ШПС у системі SrEu_{2-x}Dy_xSc₂O₇. Вірогідним чинником появи тетрагональної модифікації SrEu_{2-x}Dy_xSc₂O₇ може бути відносно низька температурна стабільність ромбічної модифікації SrEu_{1,75}Dy_{0,25}Sc₂O₇ та SrEu_{1,5}Dy_{0,5}Sc₂O₇, яка за температур синтезу частково переходить у модифікації SrEu_{1,75}Dy_{0,25}Sc₂O₇ та SrEu_{1,5}Dy_{0,5}Sc₂O₇ потребують окремого додаткового дослідження.

Висновки. Встановлено область існування фаз SrEu_{2-x}Dy_xSc₂O₇ з ШПС ($0 \le x \le 0,5$). Показано, що ізовалентне заміщення атомів європію на атоми диспрозію в ШПС SrEu₂Sc₂O₇ зумовлює утворення двох модифікацій SrEu_{2-x}Dy_xSc₂O₇ з ромбічною та тетрагональною ШПС. Визначено будову ШПС обох модифікацій SrEu_{1,75}Dy_{0,25}Sc₂O₇ та SrEu_{1,5}Dy_{0,5}Sc₂O₇, характер впливу ізовалентного заміщення атомів на будову їх ШПС і структурні фактори, які обумовлюють руйнацію ШПС SrEu_{2-x}Dy_xSc₂O₇.

ЦИТОВАНА ЛІТЕРАТУРА

- 1. Schaak R.E., Mallouk T.E. Perovskites by design: a toolbox of solid-state reactions. *Chem. Mater.* 2002. 14, № 4. P. 1455—1471. https://doi.org/10.1021/cm010689m
- Lichtenberg F., Herrnberge A., Wiedenmann K. Synthesis, structural, magnetic and transport properties of layered perovskite-related titanates, niobates and tantalates of the type A_nB_nO_{3n+2}, A'A_{k-1}B_kO_{3k+1} and A_mB_{m-1}O_{3m}. *Progr. Solid State Chem.* 2008. **36**, № 4. P. 253—387. https://doi.org/10.1016/j.progsolidstchem.2008.10.001
- 3. Ding P., Li W., Ding P., Li W., Zhao H., Wu C., Zhao L., Dong B., Wang S. Review on Ruddlesden—Popper perovskites as cathode for solid oxide fuel cells. *J. Phys. Mater.* 2021. **4**, № 2. 022002. https://doi.org/10.1088/2515-7639/abe392
- 4. Xiao H., Liu P., Wang W., Ran R., Zhou W., Shao Z. Ruddlesden—Popper perovskite oxides for photocatalysisbased water splitting and wastewater treatment. *Energy Fuels.* 2020. **34**, № 8. P. 9208—9221. https://doi. org/10.1021/acs.energyfuels.0c02301
- 5. He X., Ma W., Hong J., Ba R., Li J. Microwave dielectric properties of Sr₃Ti₂O₇ ceramics with composite element doping of Nd and Al. *Mater. Chem. Phys.* 2022. **282**. 125961. https://doi.org/10.1016/j.matchemphys.2022.125961
- 6. Kamimura S., Yamada H., Xu C.-N. Strong reddish-orange light emission from stress-activated $Sr_{n+1}Sn_nO_{3n+1}:Sm^{3+}$ ($n = 1, 2, \infty$) with perovskite-related structures. *Appl. Phys. Lett.* 2012. **101**, № 9. 091113. https://doi.org/10.1063/1.4749807
- 7. Kim I.-S., Kawaji H., Itoh M., Nakamura T. Structural and dielectric studies on the new series of layered compounds, strontium lanthanum scandium oxides. *Mater. Res. Bull.* 1992. 27, №. 10. P. 1193—1203. https://doi.org/10.1016/0025-5408(92)90227-Q
- 8. Kim I.-S., Nakamura T., Itoh M. Humidity sensing effects of the layered oxides SrO·(LaScO₃)_n (n = 1, 2, ∞).
 J. Ceram. Soc. Jap. 1993. 101, № 1175. P. 800—803. https://doi.org/10.2109/jcersj.101.800
- 9. Тітов Ю.О., Білявіна Н.М., Марків В.Я., Слободяник М.С., Краєвська Я.А., Чумак В.В. Синтез та визначення кристалічної структури шаруватих скандатів SrLn₂Sc₂O₇. Допов. Нац. акад. наук Укр. 2009. № 3. С. 155—161.
- 10. Тітов Ю.О., Білявина Н.М., Слободяник М.С., Чумак В.В., Наконечна О.І. Синтез та кристалічна структура ізовалентнозаміщених шаруватих скандатів SrLa_{2-x}Dy_xSc₂O₇. *Voprosy khimii i khimicheskoi tekhnologii*. 2019. №. 6. С. 228—235. https://doi.org/10.32434/0321-4095-2019-127-6-228-235
- Titov Y., Belyavina N., Slobodyanik M., Nakonechna O., Strutynska N. Effect of strontium atoms substitution on the features of two-slab structure of Sr_{1-x}Ca_xLa₂Sc₂O₇ scandates. *French-Ukrainian Journal of Chemistry*. 2021. 9, № 1. P. 44—50. https://doi.org/10.17721/fujcV9I1P44-50
- 12. Dashevskyi M., Boshko O., Nakonechna O., Belyavina N. Phase transformations in equiatomic Y—Cu powder mixture at mechanical milling. *Metallofiz. Noveishie Tekhnol.* 2017. **39**, № 4. P. 541—552. https://doi. org/10.15407/mfint.39.04.0541
- Elcombe M. M., Kisi E.H., Hawkins K.D., White T.J., Goodman P., Matheson S. Structure determinations for Ca₃Ti₂O₇, Ca₄Ti₃O₁₀, Ca_{3.6}Sr_{0.4}Ti₃O₁₀ and a refinement of Sr₃Ti₂O₇. Acta Cryst. 1991. B47, № 3. P. 305—314. https://doi.org/10.1107/S0108768190013416
- 14. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and halcogenides. *Acta Cryst.* 1976. A32. P. 751—767. https://doi.org/10.1107/S0567739476001551
- 15. Тітов Ю.О., Білявина Н.М., Слободяник М.С., Чумак В.В., Тимошенко М.В., Слива Т.Ю. Вплив заміщення атомів лантану на будову шаруватої структури індатів ВаLа_{1-x}Nd_xInO₄. Допов. Нац. акад. наук Укр. 2020. № 5. С. 86—94. https://doi.org/10.15407/dopovidi2020.05.086

Надійшла до редакції 22.10.2024

REFERENCES

- 1. Schaak, R. E. & Mallouk, T. E. (2002). Perovskites by design: a toolbox of solid-state reactions. Chem. Mater., 14, No. 4, pp. 1455-1471. https://doi.org/10.1021/cm010689m
- 2. Lichtenberg, F, Herrnberge, A. & Wiedenmann, K. (2008). Synthesis, structural, magnetic and transport properties of layered perovskite-related titanates, niobates and tantalates of the type $A_n B_n O_{3n+2}$, $A'A_{k-1} B_k O_{3k+1}$ and $A_m B_{m-1} O_{3m}$. Progr. Solid State Chem., 36, No. 4, pp. 253-387. https://doi.org/10.1016/j.progsolid stchem.2008.10.001
- Ding, P., Li, W., Li, W., Zhao, H., Wu, C., Zhao, L., Dong, B. & Wang, S. (2021). Review on Ruddlesden—Popper perovskites as cathode for solid oxide fuel cells. J. Phys. Mater., 4, No. 2, 022002. https://doi.org/10.1088/2515-7639/abe392
- Xiao, H., Liu, P., Wang, W., Ran, R., Zhou, W. & Shao, Z. (2020). Ruddlesden—Popper perovskite oxides for photocatalysis-based water splitting and wastewater treatment. Energy Fuels, 34, No. 8, pp. 9208-9221. https:// doi.org/10.1021/acs.energyfuels.0c02301
- He, X., Ma, W., Hong, J., Ba, R. & Li, J. (2022). Microwave dielectric properties of Sr₃Ti₂O₇ ceramics with composite element doping of Nd and Al. Mater. Chem. Phys., 282, 125961. https://doi.org/10.1016/j. matchemphys.2022.125961
- 6. Kamimura, S., Yamada, H. & Xu, C.-N. (2012). Strong reddish-orange light emission from stress-activated $Sr_{n+1}Sn_nO_{3n+1}:Sm^{3+}$ ($n = 1, 2, \infty$) with perovskite-related structures. Appl. Phys. Lett., 101, No. 9, 091113. https://doi.org/10.1063/1.4749807
- Kim, I.-S., Kawaji, H., Itoh, M. & Nakamura, T. (1992). Structural and dielectric studies on the new series of layered compounds, strontium lanthanum scandium oxides. Mater. Res. Bull., 27, No. 10, pp. 1193-1203. https://doi.org/10.1016/0025-5408(92)90227-Q
- 8. Kim, I.-S., Nakamura, T. & Itoh, M. (1993). Humidity sensing effects of the layered oxides $\text{SrO}(\text{LaScO}_3)_n$ ($n = 1, 2, \infty$). J. Ceram. Soc. Jap., 101, No. 1175, pp. 800-803. https://doi.org/10.2109/jcersj.101.800
- Titov, Y. A., Belyavina, N. N., Markiv, V. Ya., Slobodyanik, M. S., Krayevska, Ya. A. & Chumak, V. V. (2009). Synthesis and determination of the crystal structure of layer scandates SrLn₂Sc₂O₇. Dopov. Nac. akad. nauk Ukr., No. 3, pp. 155-161 (in Ukrainian).
- Titov, Y. O., Belyavina, N. M., Slobodyanik, M. S., Chumak, V. V. & Nakonechna, O. I. (2019). Synthesis and crystal structure of isovalently substituted slab SrLa_{2-x}Dy_xSc₂O₇ scandates. Voprosy khimii i khimicheskoi tekhnologii, No. 6, pp. 228-235 (in Ukrainian). https://doi.org/10.32434/0321-4095-2019-127-6-228-235
- Titov, Y., Belyavina, N., Slobodyanik, M., Nakonechna, O. & Strutynska, N. (2021). Effect of strontium atoms substitution on the features of two-slab structure of Sr_{1-x}Ca_xLa₂Sc₂O₇ scandates. French-Ukrainian Journal of Chemistry, 9, No. 1, pp. 44-50. https://doi.org/10.17721/fujcV9I1P44-50
- Dashevskyi, M., Boshko, O., Nakonechna, O. & Belyavina, N. (2017). Phase transformations in equiatomic Y—Cu powder mixture at mechanical milling. Metallofiz. Noveishie Tekhnol., 39, No. 4, pp. 541-552. https:// doi.org/10.15407/mfint.39.04.0541
- Elcombe, M. M., Kisi, E.H., Hawkins, K.D., White, T.J., Goodman, P. & Matheson, S. (1991). Structure determinations for Ca₃Ti₂O₇, Ca₄Ti₃O₁₀, Ca_{3.6}Sr_{0.4}Ti₃O₁₀ and a refinement of Sr₃Ti₂O₇. Acta Cryst., B47, No. 3, pp. 305-314. https://doi.org/10.1107/S0108768190013416
- 14. Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and halcogenides. Acta Cryst., A32, pp. 751-767. https://doi.org/10.1107/S0567739476001551
- 15. Titov, Y. A., Belyavina, N. M., Slobodyanik, M. S., Chumak, V. V., Timoschenko, M. V. & Sliva, T. Yu. (2020). Effect of isovalent substitution of lanthanum atoms on the slab structure of BaLa_{1-x}Nd_xInO₄ indates. Dopov. Nac. akad. nauk Ukr., No. 5, pp. 86-94 (in Ukrainian). https://doi.org/10.15407/dopovidi2020.05.086

Received 22.10.2024

*Y.A. Titov*¹, https://orcid.org/0000-0001-9900-3751 *N.M. Belyavina*¹, https://orcid.org/0000-0001-7371-3608 *M.S. Slobodyanik*¹, https://orcid.org/0000-0003-2684-9806 *V.V. Chumak*², https://orcid.org/0000-0001-5892-3703

¹Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
 ² Zhytomyr Ivan Franko State University, Zhytomyr, Ukraine E-mail: titov1952@ukr.net

EFFECT OF ISOVALENT SUBSTITUTION OF EUROPIUM WITH DYSPROSIUM ON THE SLAB STRUCTURE OF SrEu_{2-x}Dy_xSc₂O₇ SCANDATES

The dimensions of the phase region with a slab perovskite-like structure in the $SrEu_{2-x}Dy_xSc_2O_7$ system were determined: $0 \le x \le 0.5$ and the crystal structure of the $SrEu_{2-x}Dy_xSc_2O_7$ phases with x = 0.25 and 0.5 was determined using a program based on Rietveld algorithms for multiphase samples. It was established that $SrEu_{2-x}Dy_xSc_2O_7$ samples with x = 0.25 and 0.5 contain two polymorphic modifications with a slab perovskite-like structure: a modification with rhombic syngonia (sp. group *Fmmm*) and modification with tetragonal syngonia (sp. group *I4/mmm*). The basis of the slab structure of both modifications of $SrEu_{2-x}Dy_xSc_2O_7$ are two-dimensional perovskite-like blocks with a thickness of two slabs of deformed ScO_6 octahedra, which connected by vertices. A slab of $(Eu,Dy)O_9$ polyhedra is located between the blocks and the blocks are connected to each other by bonds -O-(Eu,Dy)-O-. It was established that the increase in the content of dysprosium atoms in $SrEu_{2-x}Dy_xSc_2O_7$ leads to an increase in the degree of deformation of LnO_9 interblock polyhedra and a decrease in the Ln-O2 interblock distance. This transformation of the structure destabilizes the interblock space and is one of the main factors in the destruction of the slab perovskite-like structure of $SrEu_{2-x}Dy_xSc_2O_7$ phases at x > 0.5 and leads to the impossibility of $SrDy_2Sc_2O_7$ scandate existence.

Keywords: compounds of $A_{n+1}B_nO_{3n+1}$ type, slab perovskite-like structure, X-ray powder diffractometry, isomorphism.