On boundary behavior of unclosed mappings with moduli inequality

Evgeny Sevost'yanov

(Zhytomyr Ivan Franko State University; Institute of Applied Mathematics and Mechanics, Slov'yans'k)

E-mail: esevostyanov2009@gmail.com

Victoria Desyatka

(Zhytomyr Ivan Franko State University) *E-mail:* victoriazehrer@gmail.com

Let D be a domain in $\overline{\mathbb{R}^n}$ and let $b \in \partial D$. Then D has property P_1 at b if the following condition is satisfied: If E and F are connected subsets of D such that $b \in \overline{E} \cup \overline{F}$, then $M(\Gamma(E, F, D)) = \infty$, where M denotes the (conformal) modulus of families of paths in \mathbb{R}^n (see the definition below), and $\Gamma(E, F, D)$ is a family of paths joining E and F in D (see e.g. [1, Definition 17.5]). The following results hold.

Theorem A. Suppose that $f: D \to D'$ is a quasiconformal mapping and that D has property P_1 at $\in \partial D$. Then C(f, b) contains at most one point at which D' is finitely connected (see [1, Theorem 17.13]).

Theorem B. Let $f: D \to \mathbb{R}^n$ be quasiregular mapping with $C(f, \partial D) \subset \partial f(D)$. If D is locally connected at a point $b \in \partial D$ and D' = f(D) is qc accessible at some point $y \in C(f, b)$, then $C(f, b) = \{y\}$ (see e.g. [2, Theorem 4.2], cf. [3, Theorem 4.2]).

We give some generalization of Theorems **A** and **B**. Recall some definitions. A Borel function $\rho : \mathbb{R}^n \to [0, \infty]$ is called *admissible* for the family Γ of paths γ in \mathbb{R}^n , if the relation $\int_{\gamma} \rho(x) |dx| \ge 1$ holds for all (locally rectifiable) paths $\gamma \in \Gamma$. In this case, we write: $\rho \in \operatorname{adm} \Gamma$. Let $p \ge 1$, then *p*-modulus of Γ is defined by the equality $M_p(\Gamma) = \inf_{\rho \in \operatorname{adm} \Gamma_{\mathbb{R}^n}} \rho^p(x) dm(x)$. Let $x_0 \in \mathbb{R}^n$, $0 < r_1 < r_2 < \infty$,

$$S(x_0, r) = \{ x \in \mathbb{R}^n : |x - x_0| = r \}, \quad B(x_0, r) = \{ x \in \mathbb{R}^n : |x - x_0| < r \}$$
(1)

and $A = A(x_0, r_1, r_2) = \{x \in \mathbb{R}^n : r_1 < |x - x_0| < r_2\}$. Let $S_i = S(x_0, r_i), i = 1, 2$, where spheres $S(x_0, r_i)$ centered at x_0 of the radius r_i are defined in (1). Let $Q : \mathbb{R}^n \to \mathbb{R}$ be a Lebesgue measurable function satisfying the condition $Q(x) \equiv 0$ for $x \in \mathbb{R}^n \setminus D$. Let $p \ge 1$. Due to [4], a mapping $f : D \to \overline{\mathbb{R}^n}$ is called a ring Q-mapping at the point $x_0 \in \overline{D} \setminus \{\infty\}$ with respect to p-modulus, if the condition

$$M_p(f(\Gamma(S_1, S_2, D))) \leqslant \int_{A \cap D} Q(x) \cdot \eta^p(|x - x_0|) \, dm(x)$$

$$\tag{2}$$

holds for some $r_0(x_0) > 0$, all $0 < r_1 < r_2 < r_0$ and all Lebesgue measurable functions $\eta : (r_1, r_2) \rightarrow [0, \infty]$ such that

$$\int_{r_1}^{r_2} \eta(r) \, dr \ge 1 \,. \tag{3}$$

Recall that a mapping $f: D \to \mathbb{R}^n$ is called *discrete* if the pre-image $\{f^{-1}(y)\}$ of each point $y \in \mathbb{R}^n$ consists of isolated points, and *is open* if the image of any open set $U \subset D$ is an open set in \mathbb{R}^n . Later, in the extended space $\overline{\mathbb{R}^n} = \mathbb{R}^n \cup \{\infty\}$ we use the *spherical (chordal) metric* $h(x,y) = |\pi(x) - \pi(y)|$, where π is a stereographic projection $\overline{\mathbb{R}^n}$ onto the sphere $S^n(\frac{1}{2}e_{n+1}, \frac{1}{2})$ in \mathbb{R}^{n+1} , namely,

$$h(x,\infty) = \frac{1}{\sqrt{1+|x|^2}}, \quad h(x,y) = \frac{|x-y|}{\sqrt{1+|x|^2}\sqrt{1+|y|^2}}, \quad x \neq \infty \neq y$$

(see [1, Definition 12.1]). Further, the closure \overline{A} and the boundary ∂A of the set $A \subset \overline{\mathbb{R}^n}$ we understand relative to the chordal metric h in $\overline{\mathbb{R}^n}$. Given a mapping $f: D \to \mathbb{R}^n$, we denote $C(f, x) := \{y \in \overline{\mathbb{R}^n} : \exists x_k \in D : x_k \to x, f(x_k) \to y, k \to \infty\}$ and $C(f, \partial D) = \bigcup_{x \in \partial D} C(f, x)$. In what follows, Int A denotes the set of inner points of the set $A \subset \overline{\mathbb{R}^n}$. Recall that the set $U \subset \overline{\mathbb{R}^n}$ is neighborhood of the point z_0 , if $z_0 \in \text{Int } A$. Due to [4], we say that a function $\varphi : D \to \mathbb{R}$ has a finite mean oscillation at a point $x_0 \in D$, write $\varphi \in FMO(x_0)$, if $\lim_{\varepsilon \to 0} \frac{1}{\Omega_n \varepsilon^n} \int_{B(x_0, \varepsilon)} |\varphi(x) - \overline{\varphi}_{\varepsilon}| dm(x) < 0$

 $\infty, \text{ where } \overline{\varphi}_{\varepsilon} = \frac{1}{\Omega_{n}\varepsilon^{n}} \int_{B(x_{0},\varepsilon)} \varphi(x) dm(x). \text{ Let } Q : \mathbb{R}^{n} \to [0,\infty] \text{ be a Lebesgue measurable function.}$

We set $Q'(x) = \begin{cases} Q(x), & Q(x) \ge 1, \\ 1, & Q(x) < 1. \end{cases}$ Denote by q'_{x_0} the mean value of Q'(x) over the sphere $|x - x_0| = r$, that means,

$$q'_{x_0}(r) := \frac{1}{\omega_{n-1}r^{n-1}} \int_{|x-x_0|=r} Q'(x) \, d\mathcal{H}^{n-1} \,. \tag{4}$$

Note that, using the inversion $\psi(x) = \frac{x}{|x|^2}$, we may give the definition of FMO as well as the quantity in (4) for $x_0 = \infty$. We say that the boundary ∂D of a domain D in \mathbb{R}^n , $n \ge 2$, is strongly accessible at a point $x_0 \in \partial D$ with respect to the p-modulus if for each neighborhood U of x_0 there exist a compact set $E \subset D$, a neighborhood $V \subset U$ of x_0 and $\delta > 0$ such that $M_p(\Gamma(E, F, D)) \ge \delta$ for each continuum F in D that intersects ∂U and ∂V .

Theorem 1. ([5]). Let $p \ge 1$, let D and D' be domains in \mathbb{R}^n , $n \ge 2$, $f: D \to D'$ be an open discrete mapping satisfying relations (2)–(3) at the point $b \in \partial D$ with respect to p-modulus, f(D) = D'. In addition, assume that 1) the set $E := f^{-1}(C(f, \partial D))$ is nowhere dense in D and D is finitely connected on E, i.e., for any $z_0 \in E$ and any neighborhood \widetilde{U} of z_0 there is a neighborhood $\widetilde{V} \subset \widetilde{U}$ of z_0 such that $(D \cap \widetilde{V}) \setminus E$ consists of finite number of components; 2) for any neighborhood U of b there is a neighborhood $V \subset U$ of b such that: $2a \mid V \cap D$ is connected, $2b \mid (V \cap D) \setminus E$ consists at most of m components, $1 \leq m < \infty$, 3) $D' \setminus C(f, \partial D)$ consists of finite components, each of them has a strongly accessible boundary with respect to p-modulus. Suppose that at least one of the following conditions is satisfied: 4_1 a function Q has a finite mean oscillation at the

point b; 4₂) $q_b(r) = O\left(\left[\log \frac{1}{r}\right]^{n-1}\right)$ as $r \to 0$; 4₃) the condition $\int_{0}^{\delta(b)} \frac{dt}{t^{\frac{n-1}{p-1}}q'_{h}^{\frac{1}{p-1}}(t)} = \infty$ holds for some

 $\delta(b) > 0$. Then f has a continuous extension to b.

If the above is true for any point $b \in \partial D$, the mapping f has a continuous extension $\overline{f} : \overline{D} \to \overline{D'}$, moreover, $\overline{f}(\overline{D}) = \overline{D'}$.

References

- Väisälä J. Lectures on n-Dimensional Quasiconformal Mappings. Lecture Notes in Math. 229. Berlin etc., Springer-Verlag, 1971.
- [2] Srebro U. Conformal capacity and quasiregular mappings. Ann. Acad. Sci. Fenn. Ser. A I. Math., 529: 1–8, 1973.
- [3] Vuorinen M. Exceptional sets and boundary behavior of quasiregular mappings in n-space. Ann. Acad. Sci. Fenn. Ser. A 1. Math. Dissertationes, 11: 1–44, 1976.
- [4] Martio O., Ryazanov V., Srebro U. and Yakubov E. Moduli in Modern Mapping Theory. Springer Science + Business Media, LLC : New York, 2009.
- [5] Desyatka V., Sevost'yanov E. On boundary-non-preserving mappings with Poletsky inequality. Canadian Mathematical Bulletin, 2025. https://www.cambridge.org/core/journals/canadian-mathematical-bulletin/article/abs/ on-boundarynonpreserving-mappings-with-poletsky-inequality/F8994298FDE5B3D33D651F0A435F8990.