On Koebe-Bloch theorem for mappings with inverse Poletsky inequality

Evgeny Sevost'yanov

(Zhytomyr Ivan Franko State University; Institute of Applied Mathematics and Mechanics, Slov'yans'k)

 $E ext{-}mail:$ esevostyanov2009@gmail.com

Valery Targonskii

(Zhytomyr Ivan Franko State University) E-mail: w.targonsk@gmail.com

Let us recall the formulation of the classical Koebe theorem.

Theorem A. Let $f: \mathbb{D} \to \mathbb{C}$ be an univalent analytic function such that f(0) = 0 and f'(0) = 1. Then the image of f covers the open disk centered at 0 of radius one-quarter, that is, $f(\mathbb{D}) \supset B(0, 1/4)$. The main fact contained in the paper is the statement that something similar has been done for a much more general class of spatial mappings. Below dm(x) denotes the element of the Lebesgue measure in \mathbb{R}^n . Everywhere further the boundary ∂A of the set A and the closure \overline{A} should be understood in the sense of the extended Euclidean space $\overline{\mathbb{R}^n}$. Recall that, a Borel function $\rho: \mathbb{R}^n \to [0, \infty]$ is called admissible for the family Γ of paths γ in \mathbb{R}^n , if the relation

$$\int\limits_{\gamma} \rho(x) \, |dx| \geqslant 1$$

holds for all (locally rectifiable) paths $\gamma \in \Gamma$. In this case, we write: $\rho \in \operatorname{adm} \Gamma$. The modulus of Γ is defined by the equality

$$M(\Gamma) = \inf_{\rho \in \operatorname{adm} \Gamma} \int_{\mathbb{R}^n} \rho^n(x) \, dm(x) \,.$$

Let $y_0 \in \mathbb{R}^n$, $0 < r_1 < r_2 < \infty$ and

$$A = A(y_0, r_1, r_2) = \{ y \in \mathbb{R}^n : r_1 < |y - y_0| < r_2 \}$$
.

Given $x_0 \in \mathbb{R}^n$, we put $B(x_0, r) = \{x \in \mathbb{R}^n : |x - x_0| < r\}$, $\mathbb{B}^n = B(0, 1)$, $S(x_0, r) = \{x \in \mathbb{R}^n : |x - x_0| = r\}$. A mapping $f: D \to \mathbb{R}^n$ is called discrete if the pre-image $\{f^{-1}(y)\}$ of any point $y \in \mathbb{R}^n$ consists of isolated points, and open if the image of any open set $U \subset D$ is an open set in \mathbb{R}^n . Given sets $E, F \subset \overline{\mathbb{R}^n}$ and a domain $D \subset \mathbb{R}^n$ we denote by $\Gamma(E, F, D)$ the family of all paths $\gamma: [a, b] \to \overline{\mathbb{R}^n}$ such that $\gamma(a) \in E, \gamma(b) \in F$ and $\gamma(t) \in D$ for $t \in (a, b)$. Given a mapping $f: D \to \mathbb{R}^n$, a point $y_0 \in \overline{f(D)} \setminus \{\infty\}$, and $0 < r_1 < r_2 < r_0 = \sup_{y \in f(D)} |y - y_0|$, we denote by

 $\Gamma_f(y_0, r_1, r_2)$ a family of all paths γ in D such that $f(\gamma) \in \Gamma(S(y_0, r_1), S(y_0, r_2), A(y_0, r_1, r_2))$. Let $Q: \mathbb{R}^n \to [0, \infty]$ be a Lebesgue measurable function. We say that f satisfies the inverse Poletsky inequality at a point $y_0 \in \overline{f(D)} \setminus \{\infty\}$ if the relation

$$M(\Gamma_f(y_0, r_1, r_2)) \leqslant \int_{A(y_0, r_1, r_2) \cap f(D)} Q(y) \cdot \eta^n(|y - y_0|) \, dm(y) \tag{1}$$

holds for any Lebesgue measurable function $\eta:(r_1,r_2)\to[0,\infty]$ such that

$$\int_{r_1}^{r_2} \eta(r) dr \geqslant 1. \tag{2}$$

The relations (1) are proved for different classes of mappings, see e.g. [2].

Set $q_{y_0}(r) = \frac{1}{\omega_{n-1}r^{n-1}} \int_{S(y_0,r)} Q(y) d\mathcal{H}^{n-1}(y)$, where ω_{n-1} denotes the area of the unit sphere \mathbb{S}^{n-1}

in \mathbb{R}^n . We say that a function $\varphi: D \to \mathbb{R}$ has a finite mean oscillation at a point $x_0 \in D$, write $\varphi \in FMO(x_0)$, if $\limsup_{\varepsilon \to 0} \frac{1}{\Omega_n \varepsilon^n} \int\limits_{B(x_0,\varepsilon)} |\varphi(x) - \overline{\varphi}_{\varepsilon}| \ dm(x) < \infty$, where $\overline{\varphi}_{\varepsilon} = \frac{1}{\Omega_n \varepsilon^n} \int\limits_{B(x_0,\varepsilon)} \varphi(x) \ dm(x)$ and

 Ω_n is the volume of the unit ball \mathbb{B}^n in \mathbb{R}^n . We also say that a function $\varphi: D \to \mathbb{R}$ has a finite mean oscillation at $A \subset \overline{D}$, write $\varphi \in FMO(A)$, if φ has a finite mean oscillation at any point $x_0 \in A$. Let h be a chordal metric in $\overline{\mathbb{R}^n}$,

$$h(x,\infty) = \frac{1}{\sqrt{1+|x|^2}}, \quad h(x,y) = \frac{|x-y|}{\sqrt{1+|x|^2}\sqrt{1+|y|^2}}, \quad x \neq \infty \neq y,$$

and let $h(E) := \sup_{x,y \in E} h(x,y)$ be a chordal diameter of a set $E \subset \overline{\mathbb{R}^n}$ (see, e.g., [1, Definition 12.1]).

Given a continuum $E \subset D$, $\delta > 0$ and a Lebesgue measurable function $Q : \mathbb{R}^n \to [0, \infty]$ we denote by $\mathfrak{F}_{E,\delta}(D)$ the family of all open discrete mappings $f : D \to \mathbb{R}^n$, $n \geq 2$, satisfying relations (1)–(2) at any point $y_0 \in \overline{\mathbb{R}^n}$ such that $h(f(E)) \geq \delta$. The following statement holds, cf. [3].

Theorem 1. Let D be a domain in \mathbb{R}^n , $n \ge 2$, and let $B(x_0, \varepsilon_1) \subset D$ for some $\varepsilon_1 > 0$.

Assume that, $Q \in L^1(\mathbb{R}^n)$ and, in addition, one of the following conditions hold:

- 1) $Q \in FMO(\overline{\mathbb{R}^n});$
- 2) for any $y_0 \in \overline{\mathbb{R}^n}$ there is $\delta(y_0) > 0$ such that

$$\int_{0}^{\delta(y_0)} \frac{dt}{tq_{y_0}^{\frac{1}{n-1}}(t)} = \infty.$$
 (3)

Then there is $r_0 > 0$, which does not depend on f, such that

$$f(B(x_0, \varepsilon_1)) \supset B_h(f(x_0), r_0) \quad \forall f \in \mathfrak{F}_{E,\delta}(D),$$

where $B_h(f(x_0), r_0) = \{ w \in \overline{\mathbb{R}^n} : h(w, f(x_0)) < r_0 \}.$

Remark 2. The condition $Q \in FMO(\infty)$ of the condition (3) for $y_0 = \infty$ must be understood as follows: these conditions hold for $y_0 = \infty$ if and only if the function $\widetilde{Q} := Q\left(\frac{y}{|y|^2}\right)$ satisfies similar conditions at the origin.

The result mentioned above is obtained in [4].

References

- [1] Väisälä J. Lectures on n-Dimensional Quasiconformal Mappings. Lecture Notes in Math. 229. Berlin etc., Springer–Verlag, 1971.
- [2] Martio O., Ryazanov V., Srebro U. and Yakubov E. *Moduli in Modern Mapping Theory*. Springer Science + Business Media, LLC: New York, 2009.
- [3] Rajala, K. Bloch's theorem for mappings of bounded and finite distortion. Math. Ann. 339 (2), 445–460 (2007).
- [4] Sevost'yanov E., Targonskii V. An analogue of Koebe's theorem and the openness of a limit map in one class. *Analysis and Mathematical Physics* (accepted for print).