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Confined and interface phonons in combined cylindrical
nanoheterosystem

0.M.Makhanets, O.M.Voitsekhivska, A.M.Gryschyk
Fedkovych Chernivtsi National University, 2, Kotsyubinskoho Str., Chernivtsi, 58012, Ukraine*

Received March 31, 2006, in final form June 2, 2006

The spectra of all types of phonons existing in a complicated combined nanoheterosystem consisting of three
cylindrical quantum dots embedded into the cylindrical quantum wire placed into vacuum are studied within
the dielectric continuum model. It is shown that there are confined optical (LO) and interface phonons of two
types: top surface optical (TSO) and side surface optical (SSO) modes of vibration in such a nanosystem. The
dependences of phonon energies on the quasiwave numbers and geometrical parameters of quantum dots
are investigated and analysed.
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1. Introduction

Recently, the complicated combined nanoheterosystems containing different spatial combinati-
ons of quantum dots (QD), wires (QW) and wells have been intensively researched. Such systems
have already been created experimentally and have good prospects of being utilized in the devices
of physical, biomedical and optical electronics [1]. For example, in the systems containing two or
more QD’s an electron practically without any loss of energy can be localized in different quantum
dots due to the anticrossing effect. Such systems create a single quabit and can be used as an
elementary base of modern quantum computer [2—4].

The theoretical investigations of combined nanoheterosystems are only at the very start. Their
importance is obvious but there are a priori some difficulties arising due to the complicated bound-
ary conditions for the wave functions of quasiparticles (electrons, holes, excitons) and polarization
potentials of free vibrations (phonons). In paper [5] the energy spectrum and life times of quasipar-
ticles in the open QD embedded into the cylindrical QW have been studied within the framework
of the effective mass approximation using the scattering matrix method. It was shown that the
energy loss of the quasiparticles inside the QD arises due to their tunneling through the potential
barrier into the external medium. It is clear that the change of the quantum state of the quasi-
particle (electron, hole, exciton) is accompanied by the processes of creation and annihilation of
phonons. Consequently, there is an additional channel of energy relaxation and finally it causes the
change in the quasiparticle energy spectrum.

This paper presents theoretical investigations of the phonon spectrum in combined nanoheterosys-
tems consisting of three QD’s embedded into the cylindrical semiconductor QW placed into the
medium. The study is performed within the dielectric continuum model widely applied in other
papers [6,7] and the results of which are in good agreement with the experimental data.

2. Theory

The spectra of all types of phonons existing in the complicated combined nanoheterosystem
consisting of three cylindrical quantum dots (CdS “17, HgS “0”, CdS “1”) embedded into the
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Figure 1. Geometrical scheme of combined cylindrical nanosystem.

cylindrical quantum wire (HgS “2”) placed into the external medium (vacuum “3”, figure 1) are
under study. The radii of all QD’s and QW are assumed to be equal (pg), the height of the internal
QD is Ay and that of the external is Ay, the dielectric constant

w? — wi, .
gi(w) :Eiwm7 i=0,1,2, (1)

where €, — is high frequency dielectric constant of the i*" part of nanosystem, wr,; and wr; — are
the frequencies of longitudinal and transversal optical phonons of its bulk analogue and €3 = 1. As
it follows from the dielectric continuum model the phonon spectrum for such a system is obtained
by combining the electrostatic equations and getting the equation [6]

£i(w)V2®(F) = 0, (2)

where ®(7) is the potential of phonon polarization field. It is obvious that there are two possible
solutions to this equation defining the spectra of confined and interface phonons which are further
observed separately.

Confined phonons

It is clear that at the condition
eilw) =0,  V2®(7) #0 (3)
and taking into account equation (1) one can obtain the spectrum of confined optical (LO) phonons
Qi = hw, i=0,1,2, (4)

the energies of which are equal to the energies of the longitudinal phonons of the corresponding
bulk analogues of the nanosystem parts.

According to the symmetry of the system the polarization potential of the LO phonons can be
chosen as

@0 (F) = Tin(kp) f(2)e™? | (5)
where N
AJ cos(qoz) A
< &0
{ Ay sin(goz) N
F(2)= Q0 Af cos(qiz) + Ay sin(qiz), 40 <z< 80+ A, (6)

AF cos(qoz) + A3 sin(gaz), 2> 82 + Ay,

Here m is magnetic quantum number, g; and k = X" pg L are the quasiwave numbers, X" isn-th
root of m-th order Bessel function and Aii are unknown coefficients determined by the boundary
conditions of electrostatic: the continuity of the polarization potential ®,,(7) and normal terms of
electric displacement D at the media interfaces.
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Interface phonons

The spectra of interface phonons due to the equation (2) are obtained from the Laplace’s equation
AD(F) =0 (7)
the solution of which in the cylindrical coordinates (p, ¢, z) can be generally written as

(") = p(p)F(2)e™?. (8)

It is clear that the solutions for the four planes are quite different from that of the solutions
at the side walls. One knows [6] that depending on the boundary conditions for the ¢(p) and
F(z) functions there are two types of interface phonon modes: top surface optical (TSO) modes,
whose amplitude decreases away from the four planes; and side surface optical (SSO) modes, whose
amplitude decreases away from the side walls.

Spectrum of TSO phonons

For the TSO modes the function has to describe the non-decaying potential in the plane per-
pendicular to the OZ axis and the decaying one along this axis. Thus, they are chosen in the

form @)
Jm(ap), P < po
= B 9
w(p) { No(ap), p> po ©)
By ch(gz) A
{ By sh(qz) ’ 2SR
F(z) = 0 S A A (10)
Bfch(qz) + By sh(qz), St <z< 8t +A
Bye 9%, z > % + Ay

Again, from the boundary conditions for polarization potential F(z) and normal terms of elec-
tric displacement Datz= % and z = %Al it is obtained BZT" =0, B; # 0 (antisymmetric TSO
modes) or B;” = 0, B;" # 0 (symmetric TSO modes). As a result we get a system of four equations
for determining the frequencies of symmetric (w;) and antisymmetric (w_) TSO phonons. The de-
tailed analytical solution of the similar system has been performed in paper [8] where the equation
was obtained for defining the TSO phonon spectra but there were no numeric calculations for real
nanosystems. We are going to further analyse the results of computer calculations performed for
the system under research.

Spectrum of SSO phonons

It is clear that for the SSO modes the F'(z) function has to describe the non-decaying potential
along the OZ axis and the decaying ¢(p) in the plane perpendicular to this axis. Taking into
account the symmetry, the polarization potential is expressed as

_ [ DI Lu(kp)CE (kz) ™2, p < po,
= { CF K (kp)CF (kz) €™, p> po (11)
herein (k)
+ | cos(kz),
5 (k2) = { sin (kz). (12)

The unknown coefficients are found during the second quantization of the phonon field, I,,(kp)
and K,,(kp) — are the m-th order modified Bessel functions of the first and the second kind. The
frequencies of SSO phonons are determined by the boundary conditions for polarization potential
®(7) and normal terms of electric displacement at p = po.

+ + ime _ ot + im
DEL(kp)|,_,, C% (h2) 6% = CEKou(kp)| _ O (kz) e

&i DEIL, (kp)| ,_, CF (k2) e = e3C K, (kp) ., C (k2) €™, (13)

p=po S
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here €5 = 1 since the external medium is vacuum. Taking the ratio of these equations one can write

17, (kpo) _ K, (kpo)
E; = .
Ln(kpo)  Km(kpo)

(14)

Solving the latter and using equation (1) a dispersional equation is obtained for the frequencies
of SSO modes in i-th part of nanosystem

V(P(kpo) — €ico) (Wi P(kpo) — wii€ioo)
P(k‘po) — &ico ’

I (kpo) mEp(kpo) — kpoKms1(kpo)
K (kpo) mly(kpo) + kpolm+1(kpo)

The equations (15),(16) prove that the energies of the side surface phonons create the bands
over the magnetic quantum number m.

wi(kpo) = (15)

P(kpo) =

(16)

3. Analysis of the results

The results of the computer calculations performed with the material parameters of -HgS and
(-CdS [9] of the interface phonon energies are shown in figures 2—4. All of them prove that the
spectra of interface phonons depend on the geometric parameters of nanosystem and the type of
vibrations (SSO or TSO) but the energies of all these phonon modes are always located between
the energies of LO and TO phonons of the respective bulk crystals (Qrcods, Qrcds, and Quags,
Qrags shown in the figures by dashed lines).
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Figure 2. Evolution of SSO phonon energy on the quasiwave number and radius of HgS QD.
(a): for m=0 and (b): on the quasiwave number for m=0,1,2,...at po = 10augs.

Figure 2a presents the dependence of SSO phonon energies on the radius of QW pg and quasi-
wave number k. One can see that there are two modes of SSO phonons arising due to the two
sets of interfaces HgS/vacuum and CdS/vacuum. It is clear that the dispersion over the quasiwave
number is rather weak. There are the sets of modes with different magnetic quantum numbers
(figure 2b) and the energies of SSO phonons which are almost the same as for the energy with
m=1.

Figures 3a,b,c,d shows the evolution of TSO phonon energy spectra as a function of the
quasiwave number ¢ for different thicknesses (Ag) of QD HgS at a fixed thickness of QD CdS
(A1 = bacas). When the QD HgsS is absent Ay = 0 (figure 3a) there are four modes of TSO vibra-
tions: two modes with positive (symmetric w, ) and two modes with negative (antisymmetric w_)
dispersion. Their existence is caused by the presence of two interfaces between QD CdS and QW
HgS. The arising of HgS QD (A = bamgs, figure 3c; Ay = 10am,s, figure 3d) and the increase of
its thickness brings about the appearance of four new modes (caused by two additional interfaces)
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Figure 3. Dependence of TSO phonon energy on the quasiwave number at a fixed thickness of
CdS QD (A1 = 5acas) for different thicknesses of HgS QD. (a): Ag = Oangs, (b): Ag = 100amgs,
c: Ag = bamngs,d: Ag = 10am,s.
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Figure 4. Dependence of TSO phonon energy on the quasiwave number at a fixed thickness of
HgS QD (Ao = 10amgs) for different thicknesses of CdS QD. (a): A1 = lacas, (b): A1 = 10acas,
(C): Ao = 20aCds,d: Ao = 40a0ds.
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with different dispersion. At Ay — oo (figure 3b) eight modes of T'SO vibrations again degenerate
into four. This is clear because the case of Ay — oo with the thickness A; of QD CdS (figure 3b)
is almost equivalent to the case of Ay = 0 (figure 3a) but with the thickness of 2A; of CdS QD.

The evolution of TSO phonon spectra as function of quasiwave number with the increase of QD
CdS thickness at a fixed thickness of QD HgS (Ao = 10an,s) is shown in figures 4a,b,c,d. It is clear
that there are also eight modes of TSO vibrations just like in the previous case. At the increase of
A; four of them are degenerated into two (figure 4d), because the energies of the symmetric and
antisymmetric vibrations the potential of which is localized at the plus or minus infinity coincide.

The obtained information about the frequencies of all types of phonons existing in the combined
cylindrical nanoheterosystem and their dispersion laws would be further used for the investigation
of electron-, hole- and exciton-phonon interaction.
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OOmexeHi Ta iHTepdeincHi GOHOHU B KOMOIHOBaAHUX
UUAIHAPWYHNX HaHOCUCTEeMax

0.M.MaxaHeub, O.M.Bowuexiscbka, A.M.IpuLLyk

YepHiBeLbkniA HaLioHaNbHWIA yHIBepcuTeT iM. IOpis deabkoBuya, Byn. KoubuHebkoro 2, 58012,
YepHiBui

OTpumaHo 31 6epesHs 2006 p., B OCTaTOHHOMY BUMMsSai — 2 yepBHa 2006 p.

Y Mopeni fienekTpuyHoro KOHTUHYYMY BMBYAKOTLCS CMEKTPU BCiX TUMNIB (POHOHIB, LLLO ICHYIOTb Y CKNIaaHiln
KOMOIHOBaHIn HAHOreTePOCUCTEMI, kA CKNaAAETbCs 3 TPbOX LUMIHAPUYHUX KBAHTOBMX TOYOK, YMILLEHNX
B UMNIHAPUYHUA KBAHTOBUIA APIT, AKWIA 3HAXOAUTbCS Yy Bakyymi. [MokasaHo, L0 y Takili HaHOCUCTEMI €
obmexeHi onTuyHi (LO) Ta iHTepdelicHi GOHOHM ABOX TUNIB: BEPLUMHHI NoBepxHeBi onTuyHi (TSO) Ta 6i-
YHi NoBepxHeBi oNTMYHI (SSO) Moaun KonmBaHb. JOCANIAXEHO 3aNeXHICTb eHeprii GOHOHIB Big, XBUIbOBUX
4yucen Ta reoMeTPUYHUX NapamMeTpiB KBAHTOBMX TOHOK.

KnwouoBi cnoBa: HaHocucTema, GOHOH, EHEPreTUYHWI CIEKTP

PACS: 68.65.Hb, 68.65.La, 74.25.Kc
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