Zhytomyr State University Library: No conditions. Results ordered -Date Deposited. 2020-04-08T22:30:53ZEPrintshttp://eprints.zu.edu.ua/images/logo2.gifhttp://eprints.zu.edu.ua/2019-03-04T14:56:28Z2019-03-04T14:56:28Zhttp://eprints.zu.edu.ua/id/eprint/28515This item is in the repository with the URL: http://eprints.zu.edu.ua/id/eprint/285152019-03-04T14:56:28ZGeneralized integral theorems for the quaternionic G-monogenic mappingsFor G-monogenic mappings taking values in the algebra of
complex quaternions we generalize some analogues of classical integral
theorems of the holomorphic function theory of a complex variable (the
surface and the curvilinear Cauchy integral theorems).T. S. KuzmenkoV. S. Shpakivskyi2019-03-04T10:48:59Z2019-03-04T10:48:59Zhttp://eprints.zu.edu.ua/id/eprint/28514This item is in the repository with the URL: http://eprints.zu.edu.ua/id/eprint/285142019-03-04T10:48:59ZQuaternionic G–Monogenic Mappings in EmWe consider a class of so-called quaternionic G-monogenic mappings associated with m-dimensional (m 2 f2; 3; 4g) partial differential equations and propose a description of all mappings
from this class by using four analytic functions of complex variable. For G-monogenic mappings we
generalize some analogues of classical integral theorems of the holomorphic function theory of the
complex variable (the surface and the curvilinear Cauchy integral theorems, the Cauchy integral formula,
the Morera theorem), and Taylor’s and Laurent’s expansions. Moreover, we investigated the
relation between G-monogenic and H-monogenic (differentiable in the sense of Hausdorff) quaternionic
mappings.V. S. ShpakivskyiT. S. Kuzmenko