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T-Convolution and its applications

to n-dimensional distributions
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Abstract. In this paper we introduce the notion of T-convolution, which is a generalization of

convolution to higher dimensions. By using T-convolution we construct n-dimensional distri-

butions having n + 1 axes of symmetry. In addition, we can generalize well-known symmetric

probability distributions in one dimension to higher dimensions. In particular, we consider

generalizations of Laplace and triangle continuous distributions and we show their plots in the

two-dimensional case. As an example of discrete distributions, we study the T-convolution of

Poisson distributions in the plane.
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1. Introduction

As usual, the distribution of a random n-dimensional vector is determined through

its distribution on n-dimensional rectangular parallelepipeds. In this work we con-

sider n-dimensional distributions of random vectors through their distribution in poly-

hedrons, which are distinct from parallelepipeds. For such a purpose we introduce

the so-called T-convolution which is a generalization of the convolution of two func-

tions. For n-dimensional distributions we consider polyhedrons which can pack the

n-dimensional space R
n.

2. T-Convolution on a plane

Let V
2 be the two-dimensional vector space. Denote by τ 1, τ 2, τ 3 three vectors be-

longing to V
2. Let us assume that these vectors have their origin in the center of

a regular or equilateral triangle and terminal points in the vertices. Let us also de-

note by ξ1, ξ2, ξ3 three independent random variables with corresponding probability

density functions (pdf) fξ1
(x), fξ2

(x), fξ3
(x).



350 Pogorui, Kovalenko, Rodrı́guez-Dagnino

Consider the random vector ξ = ξ1τ 1 + ξ2τ 2 + ξ3τ 3. The pdf of this vector in the

set {x1τ 1 + x2τ 2 ; x1, x2 ≥ 0} is determined as follows:

P{ξ ∈ (dx1τ 1 + dx2τ 2)}
= P{ξ1τ 1 + ξ2τ 2 + ξ3τ 3 ∈ (dx1τ 1 + dx2τ 2)}
= P{(ξ1 − ξ3)τ 1 + (ξ2 − ξ3)τ 2 ∈ (dx1τ 1 + dx2τ 2)}

=

∫ ∞

−∞
P{(ξ1 − u) ∈ dx1, (ξ2 − u) ∈ dx2 | ξ3 = u}P{ξ3 ∈ du}

=

( ∫ ∞

−∞
fξ1

(x1 + u)fξ2
(x2 + u)fξ3

(u) du

)

dx1dx2. (2.1)

Now, denote by fξ(x1, x2) the pdf of the random vector ξ. It is easy to see that

P{ξ ∈ (dx1τ 1 + dx2τ 2)} = fξ(x1, x2)dx1dx2 sin(τ 1, τ 2)

= fξ(x1, x2)dx1dx2

√
3/2.

Hence,

fξ(x1, x2) =
2√
3

∫ ∞

−∞
fξ1

(x1 + u)fξ2
(x2 + u)fξ3

(u) du. (2.2)

Similarly, for the set {τ 1x1 + τ 3x3 ; x1, x3 ≥ 0} the pdf is given by

fξ(x1, x3) =
2√
3

∫ ∞

−∞
fξ1

(x1 + u)fξ3
(x3 + u)fξ2

(u) du, (2.3)

and for the set {τ 2x2 + τ 3x3 ; x2, x3 ≥ 0} we have

fξ(x2, x3) =
2√
3

∫ ∞

−∞
fξ2

(x2 + u)fξ3
(x3 + u)fξ1

(u) du. (2.4)

Now, let us denote by H2(t) a regular hexagon where t > 0 is the distance from the

center to the vertices. The probability distribution of a random vector ξ in this hexagon

can be written as

P{ξ ∈ H2(t)} =
2√
3

∫ t

0

∫ t

0

∫ ∞

−∞
fξ1

(x1 + u)fξ2
(x2 + u)fξ3

(u) du dx1dx2

+
2√
3

∫ t

0

∫ t

0

∫ ∞

−∞
fξ2

(x2 + u)fξ3
(x3 + u)fξ1

(u) du dx2dx3

+
2√
3

∫ t

0

∫ t

0

∫ ∞

−∞
fξ1

(x1 + u)fξ3
(x3 + u)fξ2

(u) du dx1dx3.

(2.5)
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Definition 2.1. We define as the two-dimensional T-convolution the following opera-

tor of the three pdf fξ1
(x), fξ2

(x), fξ3
(x):

fξ1
⊛ fξ2

⊛ fξ3
(x1, x2, x3)

:=







2√
3

∫ ∞

−∞
fξ1

(x1 + u)fξ2
(x2 + u)fξ3

(u) du if x1 > 0, x2 ≥ 0,

2√
3

∫ ∞

−∞
fξ2

(x2 + u)fξ3
(x3 + u)fξ1

(u) du if x2 > 0, x3 ≥ 0,

2√
3

∫ ∞

−∞
fξ3

(x3 + u)fξ1
(x1 + u)fξ2

(u) du if x1 ≥ 0, x3 > 0.

(2.6)

Now, let us consider three independent discrete random variables η1, η2, η3 with

probability mass functions (pmf) pη1
(k), pη2

(k), pη3
(k), k ∈ N0 = {0, 1, 2, . . . ,∞},

respectively. The probability distribution of the random vector η = η1τ 1+η2τ 2+η3τ 3

on the lattice {m1τ 1 + m2τ 2 ; m1, m2 ∈ N0} is of the form

P{η = (m1τ 1 + m2τ 2)}

=

∞∑

k=0

P{(η1 − k)τ 1 + (η2 − k)τ 2 = m1τ 1 + m2τ 2 | η3 = k}P{η3 = k}

=
∞∑

k=0

P{η1 = m1 + k}P{η2 = m2 + k}P{η3 = k}

=

∞∑

k=0

pη1
(m1 + k) pη2

(m2 + k) pη3
(k). (2.7)

Similarly, for the lattice {m1τ 1 + m3τ 3 ; m1, m3 ∈ N0} we can write it as

P{η = (m1τ 1 + m3τ 3)}

=

∞∑

k=0

P{(η1 − k)τ 1 + (η3 − k)τ 3 = m1τ 1 + m3τ 3 | η2 = k}P{η2 = k}

=
∞∑

k=0

P{η1 = m1 + k}P{η3 = m3 + k}P{η2 = k}

=
∞∑

k=0

pη1
(m1 + k) pη3

(m3 + k) pη2
(k), (2.8)

and for the lattice {m2τ 2 + m3τ 3 ; m2, m3 ∈ N0} as

P{η = (m2τ 2 + m3τ 3)}

=
∞∑

k=0

P{(η2 − k)τ 2 + (η3 − k)τ 3 = m2τ 2 + m3τ 3 | η1 = k}P{η1 = k}
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=
∞∑

k=0

P{η2 = m2 + k}P{η3 = m3 + k}P{η1 = k}

=
∞∑

k=0

pη2
(m2 + k) pη3

(m3 + k) pη1
(k). (2.9)

Definition 2.2. We define as the two-dimensional discrete T-convolution the following

operator of the three pmf pη1
(k), pη2

(k), pη3
(k):

pη1
⊛ pη2

⊛ pη3
(m1, m2, m3)

:=







∞∑

k=0

pη1
(m1 + k)pη2

(m2 + k)pη3
(k) if m1 > 0, m2 ≥ 0,

∞∑

k=0

pη2
(m2 + k)pη3

(m3 + k)pη1
(k) if m2 > 0, m3 ≥ 0,

∞∑

k=0

pη3
(m3 + k)pη1

(m1 + k)pη2
(k) if m1 ≥ 0, m3 > 0,

∞∑

k=0

pη3
(k)pη2

(k)pη1
(k) if m1 = m2 = m3 = 0.

3. Generalized n-dimensional T-convolution

As it is stated in [1], the whole of space can be filled with congruent rhombic dodeca-

hedrons. We can sketch the basic procedure as follows. The whole of space can

be filled with cubes, which are alternatively black and white to get a kind of three-

dimensional chessboard and then the black ones are removed. The empty space is

decomposed into six pyramids that have square bases with a common vertex in the

center of the empty cubic space. Now, a single white cube with a pyramid based on

each of its faces forms a rhombic dodecahedron, it is obvious that these dodecahedrons

can fill the whole of space, for instance, see Figure 157 on p. 152 of [1] or Figure 22.4c

on p. 407 of [2]. Now, by knowing the probability distribution in the rhombic dodeca-

hedron we can calculate the probability distribution in the rest of the space by using

the polyhedron that fills the space.

Now, let us consider the filling of the space R
n with n-dimensional cubes having t

as their edge length. We will call adjacent cubes those cubes that have a common side.

Let us choose one of these cubes and consider the Cartesian coordinate system with

origin at the center of such a cube and coordinate axes passing through the centers of its

opposite sides. In this coordinate system, each of the cubes filling the whole of space

has coordinates divisible by t. All these cubes are classified into two classes. Cubes

belonging to the first class have coordinates (x1, x2, . . . , xn) for their centers and they

satisfy |x1, x2, . . . , xn|
... (2t). The cubes that do not satisfy this condition belong to theNote 1:

Please

explain

notation

|x1, x2, . . . , xn|
... (2t)
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second class. A cube of the first class is surrounded by 2n adjacent cubes of the second

class.

We can form an n-dimensional polyhedron Pn(t) by connecting the centers of every

adjacent cube of the second class to the vertices of a common side of a cube of the first

class. It is easily seen that R
n can be filled with such polyhedrons.

The number of vertices of a polyhedron Pn(t) equals 2n + 2n, this is the number

of vertices of the first class plus the number of centers of adjacent cubes of the second

class. The coordinates of these vertices are:

γ0

(
t
2
, t

2
, . . . , t

2

)
, γ1

(
− t

2
, t

2
, . . . , t

2

)
, γ2

(
t
2
,− t

2
, . . . , t

2

)
, γ3

(
− t

2
,− t

2
, . . . , t

2

)
, . . . ,

γ2n−1

(
− t

2
,− t

2
, . . . ,− t

2

)
, ς1(t, 0, . . . , 0), ς2(0, t, . . . , 0), . . . , ςn(0, 0, . . . , t),

ςn+1(−t, 0, . . . , 0), ςn+2(0,−t, . . . , 0), . . . , ς2n(0, 0, . . . ,−t),

where γi(·), i = 0, . . . , 2n − 1, are the vertices of a cube and ςj(·), j = 1, . . . , 2n,

are the symmetry centers of the adjacent cubes.

Assume that n = 2k, k ∈ N, and let us consider the vectors

ς1(t, 0, . . . , 0), ς2(0, t, . . . , 0), . . . , ςn−1(0, 0, . . . , t), γ2n−1−1

(

− t

2
, . . . ,− t

2
,
t

2

)

.

It is easy to verify, by using direct calculation, that the vectors are linearly independent

and ς1 + ς2 + · · · + ςn−1 + γ2n−1−1 + γ2n−1 = 0. The magnitudes of these vectors

are given by |ς1| = |ς2| = . . . = |ςn−1| = d, and |γ2n−1−1| = |γ2n−1| =
√

n
2

t. So,

we can define the normalized vectors in the following manner:

τ i =
ςi

|ςi|
, i = 1, 2, . . . , n − 1, τn =

γ2n−1−1

|γ2n−1−1|
, τn+1 =

γ2n−1

|γ2n−1|
.

Similarly, when n = 2k + 1, k ∈ N, we can consider the vectors (vertices of the

cube):

τ ∗
1

(

− t

2
,− t

2
, . . . ,− t

2
︸ ︷︷ ︸

k+1

,
t

2
,
t

2
, . . . ,

t

2

)

, τ ∗
2

( t

2
,− t

2
,− t

2
, . . . ,− t

2
︸ ︷︷ ︸

k+1

,
t

2
,
t

2
, . . . ,

t

2

)

,

. . . , τ ∗
n

( t

2
,
t

2
, . . . ,

t

2
,− t

2
,− t

2
, . . . ,− t

2
︸ ︷︷ ︸

k+1

)

, τ ∗
n+1

( t

2
,
t

2
,
t

2
, . . . ,

t

2

)

.

It can also be proved that these vectors are linearly independent, i.e. τ ∗
1 +τ ∗

2 +· · ·+
τ ∗

n + τ ∗
n+1 = 0. They have modulus |τ ∗

1 | = |τ ∗
2 | = . . . = |τ ∗

n | = |τ ∗
n+1| =

√
n

2
t,

then the normalized vectors are given by

τ i =
τ ∗

i√
n

2
t
, i = 1, 2, . . . , n, n + 1.
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Let ξi, i = 1, 2, . . . , n + 1, be independent random variables with pdf fξi
, i =

1, 2, . . . , n + 1, respectively. The pdf of the random vector ξ = ξ1τ 1 + ξ2τ 2 + · · · +
ξn+1τn+1 in the set

{x1τ 1 + x2τ 2 + · · · + xnτn ; x1, x2, . . . , xn ≥ 0}

is of the form

fξ(x1, x2, . . . , xn) =
1

Vn

∫ ∞

−∞
fξ1

(x1 + u)fξ2
(x2 + u) · · · fξn

(xn + u)fξn+1
(u) du,

(3.1)

where Vn = |(τ 1, τ 2, . . . , τn)| is the volume of the n-dimensional parallelepiped with

edges τ 1, τ 2, . . . , τn.

Equation (3.1) can be deduced in a similar manner as equation (2.2). By following

the same approach as above we can obtain the pdf of the vector ξ in sets of the formNote 2:

Layout as on

page 355? I.e.

“set n,

set n − 1,
...

set 1.”

{x1τ 1 + x2τ 2 + · · · + xn−1τn−1 + xn+1τn+1 ; x1, x2, . . . , xn−1, xn+1 ≥ 0}, . . . ,
{x2τ 2 + x3τ 3 + · · · + xnτn + xn+1τn+1 ; x2, x3, . . . , xn, xn+1 ≥ 0}.

Thus, by analogy to the three-dimensional case of the T-convolution in the plane we

can define an n-dimensional T-convolution.

Definition 3.1. We define as the n-dimensional T-convolution the following operator

of the n + 1 pdf fξ1
(x), fξ2

(x), . . . , fξn+1
(x):

fξ1
⊛ fξ2

⊛ · · · ⊛ fξn+1
(x1, x2, . . . , xn+1)

:=







1

Vn

∫ ∞

−∞
fξ2

(x2 + u)fξ3
(x3 + u) · · · fξn+1

(xn+1 + u)fξ1
(u) du

if x2 > 0, x3, x4, . . . , xn+1 ≥ 0,
1

Vn

∫ ∞

−∞
fξ1

(x1 + u)fξ3
(x3 + u) · · · fξn+1

(xn+1 + u)fξ2
(u) du

if x3 > 0, x1, x4, x5, . . . , xn+1 ≥ 0,
...

1

Vn

∫ ∞

−∞
fξ1

(x1 + u)fξ2
(x2 + u) · · · fξn

(xn + u)fξn+1
(u) du

if x1 > 0, x2, x3, . . . , xn ≥ 0.

Now, let us consider n + 1 independent discrete random variables η1, η2, . . . , ηn+1

with pmf

pη1
(k), pη2

(k), . . . , pηn+1
(k), k ∈ N0 = {0, 1, 2, . . . ,∞},

respectively. The probability distribution of the random vector η = η1τ 1 + η2τ 2 +
· · ·+ηn+1τn+1 on the lattice {m1τ 1 +m2τ 2 + · · ·+mnτn ; m1, m2, . . . , mn ∈ N0}
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is

P{η = (m1τ 1+m2τ 2+· · ·+mnτn)} =
∞∑

k=0

pη1
(m1+k) · · · pηn

(mn+k) pηn+1
(k).

(3.2)

Similarly, the corresponding distributions can be written for the lattices

{m1τ 1 + m2τ 2 + · · · + mn−1τn−1 + mn+1τn+1 ; m1, m2, . . . , mn−1, mn+1∈N0},
{m1τ 1 +· · ·+ mn−2τn−2 + mnτn + mn+1τn+1 ; m1, . . . , mn−2, mn, mn+1∈N0},

...

{m2τ 2 + m3τ 3 + · · · + mnτn + mn+1τn+1 ; m2, . . . , mn, mn+1∈N0}.

Definition 3.2. We define as the n-dimensional discrete T-convolution the following

operator of the n + 1 pmf pη1
(k), pη2

(k), . . . , pηn+1
(k):

pη1
⊛ pη2

⊛ · · · ⊛ pηn+1
(m1, m2, . . . , mn+1)

:=







∞∑

k=0

pη2
(m2 + k)pη3

(m3 + k) · · · pηn+1
(mn+1 + k)pη1

(k)

if m2 > 0, m3, m4, . . . , mn+1 ≥ 0,
∞∑

k=0

pη1
(m1 + k)pη3

(m3 + k) · · · pηn+1
(mn+1 + k)pη2

(k)

if m3 > 0, m1, m4, m5, . . . , mn+1 ≥ 0,
...

∞∑

k=0

pη1
(m1 + k)pη2

(m2 + k) · · · pηn
(mn + k)pηn+1

(k)

if m1 > 0, m2, m3, . . . , mn ≥ 0,
∞∑

k=0

pηn+1
(k)pηn

(k) · · · pη2
(k)pη1

(k)

if m1 = m2 = m3 = . . . = mn+1 = 0.

4. Application of T-convolution to the construction

of n-dimensional distributions

4.1. A generalization of the Laplace distribution to the plane

Let ξ1 and ξ2 be independent and exponentially distributed random variables with the

same parameter λ = 1, i.e. fξ1
(x) = fξ2

(x) = e−x I{x≥0}. Then the random variable
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ξ = ξ1 − ξ2 has the Laplace distribution,

fξ(x) =

∫ ∞

−∞
e−(x+u) I{x+u≥0} e−u I{u≥0} du =

1

2
e−|x|, x ∈ R.

In a similar manner, let us suppose that ξ1, ξ2, ξ3 are independent and exponentially

distributed random variables with the same parameter λ = 1. Then the random vec-

tor ξ = ξ1τ 1 + ξ2τ 2 + ξ3τ 3 has the distribution fξ = fξ1
⊛ fξ2

⊛ fξ3
(x, y, z), or

equivalently,

fξ(x, y, z)

=







2√
3

∫ ∞

−∞
e−(x+u) I{x+u≥0}e

−(y+u) I{y+u≥0} e−u I{u≥0} du =
2

3
√

3
e−(x+y)

for x > 0, y ≥ 0,
2√
3

∫ ∞

−∞
e−(y+u) I{y+u≥0}e

−(z+u) I{z+u≥0} e−u I{u≥0} du =
2

3
√

3
e−(y+z)

for y > 0, z ≥ 0,
2√
3

∫ ∞

−∞
e−(x+u) I{x+u≥0}e

−(z+u) I{z+u≥0} e−u I{u≥0} du =
2

3
√

3
e−(x+z)

for x ≥ 0, z > 0.
(4.1)

This distribution might be called the Laplace distribution in the plane. As usual,

in constructing multidimensional distributions from well-known one-dimensional dis-

tributions, it is assumed that the marginal distributions are distributed like the given

one-dimensional ones. We should notice that by intersecting the plot of the function

fξ(x, y, z) with a plane that is normal to its base and passing through the axis
−−→
OV

(O is the origin of vectors τ 1, τ 2, τ 3 and V is the vertex of the pdf), we will not

obtain the one-dimensional Laplace distribution. However, if this plane is orthogonal

to one of the axes τ 1, τ 2, τ 3, then the intersection is the function h(s) = 2

3
√

3
e−

√
3|s|

and 9
4
h(s) is the Laplace distribution function. Hence, fξ(x, y, z) might be called the

Laplace distribution in the plane. See the plot of this pdf in Figure 1, and its equal

levels or contours in Figure 2.

4.2. A generalization of the triangle distribution to the plane

Suppose ξ1 and ξ2 are independent and uniformly distributed random variables on

[0, 1]. Then the random variable ξ = ξ1 − ξ2 has the triangle distribution, namely

fξ(x) =

∫ ∞

−∞
I[0,1](x + u) I[0,1](u) du =







1 − |x| if |x| ≤ 1,

0 if |x| > 1.
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Figure 1. Laplace pdf in a 120◦ sector of the plane.

Figure 2. Contour of Laplace pdf in a 120◦ sector of the plane.
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Now, we can generalize this result to the plane by considering the random vector

ξ = ξ1τ 1 + ξ2τ 2 + ξ3τ 3 with pdf fξ(x1, x2, x3) = fξ1
⊛ fξ2

⊛ fξ3
(x1, x2, x3) given

by

fξ(x1, x2, x3) =







2√
3

(1 − sup(x1, x2)) if 0 < x1 < 1, 0 ≤ x2 ≤ 1,

2√
3

(1 − sup(x2, x3)) if 0 < x2 < 1, 0 ≤ x3 ≤ 1,

2√
3

(1 − sup(x1, x3)) if 0 < x3 < 1, 0 ≤ x1 ≤ 1,

(4.2)

and it is equal to 0 when x1 = x2 = x3 = 0 or x1 = x2 = 0, 0 ≤ x3 ≤ 0, and so on.Note 3:

Do you mean:

0 ≤ x3 ≤ 1?
Consider a function ‖·‖h on vectors x = x1τ 1+x2τ 2+x3τ 3 with ordinary addition

and scalar multiplication operations. This function is defined by

‖(x1, x2, x3)‖h =







sup(x1, x2) if 0 < x1 < 1, 0 ≤ x2 ≤ 1,

sup(x2, x3) if 0 < x2 < 1, 0 ≤ x3 ≤ 1,

sup(x1, x3) if 0 < x3 < 1, 0 ≤ x1 ≤ 1,

(4.3)

and it is equal to 0 when x1 = x2 = x3 = 0 or x1 = x2 = 0, 0 ≤ x3 ≤ 0, and so on.Note 4:

Dito. It is easy to verify that ‖ · ‖h is a norm, and by using this notation we can write

fξ(x1, x2, x3) =
2√
3

(
1 − ‖(x1, x2, x3)‖h

)
.

In this norm, ‖(x1, x2, x3‖h = r > 0 represents a regular hexagon, so we might call

it the hexagon norm. Hence, the pdf fξ(x1, x2, x3) has a pyramid shape and it might

be called the pyramid probability distribution. Intersections of this pyramid with threeNote 5:

Please check

sentence

starting with

“Inter-

sections. . .”.

planes, where each of these planes passes through the center of the hexagon; also, it

is perpendicular both to its base and to τ 1 or τ 2 or τ 3. See the plot of this pdf in

Figure 3, and its equal levels or contours in Figure 4. We only show one of the three

sectors in the plane, each of 120◦, and the pdf has a pyramid shape with a hexagon as

its base.

4.3. Discrete n-dimensional T-convolution of Poisson distributions

Let us consider the n-dimensional discrete T-convolution of the n + 1 independent

Poisson distributed random variables η1, η2, . . . , ηn+1 with parameters λ1, λ2, . . . ,
λn+1, respectively. Each of these Poisson distributions has a pmf

pηi
(mi) =

λmi

i

mi!
e−λi , i = 1, 2, . . . , n + 1.
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Figure 3. Triangle pdf in a 120◦ sector of the plane (or pyramid pdf).

Figure 4. Contour of triangle pdf in a 120◦ sector of the plane.
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Let us define the random vector η = η1τ 1 + η2τ 2 + · · · + ηn+1τn+1 on the lattice

{m1τ 1+m2τ 2 +· · ·+mn+1τn+1 ; m1, m2, . . . , mn+1 ∈ N0}, then the T-convolution

is given by

pη(m1, m2, . . . , mn+1) = pη1
(m1) ⊛ pη2

(m2) ⊛ · · · ⊛ pηn+1
(mn+1),

or equivalently,

pη(m1, m2, . . . , mn+1) =

∞∑

k=0

pη1
(m1 + k)pη2

(m2 + k) · · · pηn
(mn + k)pηn+1

(k)

=
∞∑

k=0

( n∏

i=1

λmi+k
i

(mi + k)!
e−λi

)
λk

n+1

k!
e−λn+1

=

n+1∏

i=1

e−λi

∞∑

k=0

( n∏

i=1

λmi+k
i

(mi + k)!

)
λk

n+1

k!

= exp

(

−
n+1∑

i=1

λi

) ∞∑

k=0

(∏n
i=1 λmi

i

∏n
j=1 λk

j
∏n

i=1(mi + k)!

)

λk
n+1

k!

=

( n∏

i=1

λmi

i

)

exp

(

−
n+1∑

i=1

λi

) ∞∑

k=0

( ( ∏n+1
j=1 λj

)k

k!
∏n

i=1(mi + k)!

)

= M
∞∑

k=0

( ( ∏n+1
j=1 λj

)k

k!
∏n

i=1(mi + k)!

)

,

where M =
( ∏n

i=1 λmi

i

)
exp

(
−∑n+1

i=1 λi

)
.

Furthermore, the pmf pη(m1, m2, . . . , mn+1) can be written as

M
∞∑

k=0

(−1)k

(
(

n+1

√

−∏n+1
i=1 λi

)(n+1)k+
∑

n

i=1(mi−1)

k!
∏n

i=1((mi − 1) + k + 1)!

1
(

n+1

√

−
∏n+1

i=1 λi

)∑
n

i=1(mi−1)

)

or

M
(

n+1

√

−∏n+1
i=1 λi

)∑
n

i=1(mi−1)

∞∑

k=0

(−1)k

(
(

n+1

√

−∏n+1
i=1 λi

)(n+1)k+
∑

n

i=1(mi−1)

k!
∏n

i=1((mi − 1) + k + 1)!

)

orNote 6:

Included:

“or” pη(m1, m2, . . . , mn+1)

=

(
∏n

i=1 λmi

i

)

exp
(

−
∑n+1

i=1 λi

)

(
n+1

√

−
∏n+1

i=1 λi

)∑
n

i=1(mi−1)
Z1,〈(m1−1),(m2−1),...,(mn−1)〉

(

n+1

√
√
√
√−

n+1∏

i=1

λi

)
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=

(

e−λn+1

n∏

i=1

λmi

i

mi!
e−λi

)

H〈〉,〈1+m1,1+m2,...,1+mn〉

( n+1∏

i=1

λi

)

,

where Z1,〈(m1−1),(m2−1),...,(mn−1)〉 is the Bessel type function of multi-index 〈(m1−1),
(m2 − 1), . . . , (mn − 1)〉 [3], and H〈〉,〈1+m1,1+m2,...,1+mn〉 is the Barnes function [4].

5. Application of T-convolution to the generalization of fading evolution

to higher dimensions

Suppose θk ≥ 0, k ≥ 0, is a random variable distributed with pdf fθk
(t) = d

dt
Fθk

(t).
Consider the stochastic flow τn =

∑n
k=0 θk, and denote by {ξ(t) , t > 0} the stochas-

tic renewal process ξ(t) = max{n : τn ≤ t}.

The process

x(t) =

∫ t

0

(−a)ξ(s)ds, 0 < a < 1,

is called the fading evolution in the random media ξ(t).
Now, consider the random variable σ defined by

σ =

∫ ∞

0

(−a)ξ(s)ds,

and denote by Fσ(x) = P{σ ≤ x} its cumulative distribution function (cdf).

It is easy to see that Fσ(x) satisfies the integral equation

Fσ(x) =

∫ ∞

0

fθk
(t) Fσ

{x − u

a2

}

du. (5.1)

The explicit solution of (5.1) when θk, k ≥ 0, are exponentially distributed was

obtained in [5], and when θk, k ≥ 0, are 2-Erlang distributed was obtained in [6].

Now, we will generalize the fading evolution to the plane by using T-convolution.

Denote by ξ1(t), ξ2(t) and ξ3(t) three independent renewal processes, which are de-

fined in a similar manner as the process ξ(t). Let us define the three corresponding

fading processes

x1(t) =

∫ t

0

a
ξ1(s)
1 ds, x2(t) =

∫ t

0

a
ξ2(s)
2 ds, x3(t) =

∫ t

0

a
ξ3(s)
3 ds,

where 0 < ak < 1, k = 1, 2, 3.

Let us define the vector process

x(t) = x1(t) e1 + x2(t) e2 + x3(t) e3,

where e1, e2, e3 are vectors for the T-convolution on the plane. Define

σ = lim
t→∞

x1(t) e1 + lim
t→∞

x2(t) e2 + lim
t→∞

x3(t) e3 = σ1 e1 + σ2 e2 + σ3 e3,
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and denote by

fσk
(x) =

d

dx
P{σk ≤ x}, k = 1, 2, 3,

the limiting distributions of the corresponding fading evolutions. Similarly, we can

define the vector case fσ(x) = d
dx

P{σ ≤ x}, where x = x1e1 + x2e2 + x3e3.

Thus, it is easy to verify that the pdf fσ(x) is the two-dimensional T-convolution

corresponding to fσk
(x), namely

fσ(x1, x2, x3) = fσ1
⊛ fσ2

⊛ fσ3
(x1, x2, x3).

By following similar derivations we can generalize the fading evolution to higher di-

mensions.

6. Conclusions

In this work we have introduced the definition of T-convolution and its application

for the construction of symmetrical distributions in the plane and multivariate gener-

alization of some well-known distributions. We think that T-convolutions might be

also applied for modeling electromagnetic field intensities for some communication

systems and it will be explored in our future investigation.
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