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STATIONARY EFFECTIVENESS OF AN INFORMATION
SERVER WITH A SINGLE BUFFER AND BURSTY DEMANDS
OF TWO DIFFERENT CUSTOMERS

Roberto D. Rodríguez-Said, A. A. Pogorui,
and Ramón M. Rodríguez-Dagnino

Tecnológico de Monterrey, Centro de Electrónica y Telecomunicaciones,
Monterrey, México

� In this article we study the stationary efficiency of a system consisting of a finite capacity
buffer connected to two different customers with bursty on-off demands. We assume that the
buffer is filled up at a constant rate. The dynamic of the overall system is modeled using
a semi-Markov evolution environment and we derive design formulae involving the main
parameters. It has been shown that it is possible to use the phase merging algorithm (PMA) to
reduce the semi-Markov process to an approximated Markov process. We apply the PMA to the
analysis of two different semi-Markov cases.

Keywords Data servers; Information buffer; Markov operators; Phase-merging
algorithm; Random evolutions; Semi-Markov processes.

Mathematics Subject Classification 60K20, 68M10.

1. INTRODUCTION

Random evolutions are the mathematical model of the evolutionary
systems under the influence of random factors. In a general form, these
models are described based on stochastic operator integral equations in
a separable Banach space[7,8]. In this case the model of the evolutionary
system is reduced to a first-order differential equation that determines the
random evolution of the system. One of the parameters of this differential
equation is a semi-Markov stochastic process which stands as the random
media that influences the evolution of the system.
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Stationary Effectiveness of Server with Single Buffer 247

As it is known, the theory of random evolutions was born after
the application of probabilistic methods to the solution of some partial
differential equations such as the heat and telegraph equations[4,5], after
a generalization of the work of Kac regarding the motion on the real
line. Then, the term was introduced by Reuben Hersh and Richard Griego
being suggested by Peter Lax. The theory was mostly developed by authors
such as Papanicolau, Hersh, Pinsky, Kertz, Watkins, and other important
researchers. There are articles covering broad aspects of evolutions such
as limit theorems[6,11], and diffusion processes and random motions[2,3].
The semi-Markov case has been considered by authors such as Swishchuk,
Turbin, and Korolyuk. Of course this list is far from complete.

On the other hand, the problem of the availability of information for
the supply of different customers normally involves a buffer. It is desirable
to optimize the amount of stored information according to the expected
customer needs and to the amount of incoming information (product)
from the supply line.

In this article, we consider the case of an information server with a
single buffer being filled at a constant rate while two different customers are
connected to it. These customers demand a product in random alternating
manner. We will assume that the alternating demands can be modeled by
a semi-Markov stochastic process. We will reduce the semi-Markov process
to a Markov process by lumping states according to the phase merging
algorithm (PMA)[8,9,15]. As examples, we consider the m -Erlang and hyper-
exponential probability distributions for the sojourn times.

The system functionality is as follows:
The customers switch from the active or “ON” state to the inactive or

“OFF” state, and we consider that the switching process of the customers
can be modeled as a semi-Markov process.

When active, one customer demands information at a rate f0, whereas
the other customer demands information at a rate f1. When both
customers are active, information is required at a rate f1 + f0. In each of
these cases, if the buffer is empty (v = 0), an unproductive situation is
considered. When no customer is active, then no product is required.
The filling aggregate provides the buffer with a product at a constant
rate F . This aggregate is active as long as the volume of information is
below the maximum capacity of the buffer (V ) (see Figure 1).

Let us denote I (T ) the amount of information delivered to customers
S1 and S2, in a time interval [0,T ]. Thus, we can define K = limT→∞ I (T )

T
as the steady state parameter for the system effectiveness (see Chapter 4
in Ref.[1]). Our main purpose in this work is to determine K as a function
of the system parameters: the expected inactive sojourn time of each of
the customers (consider 1/�0 and 1/�1), the expected active sojourn time
(1/�0 and 1/�1), the information demand (f0 and f1), and the incoming
stream (F ).

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
R
o
d
r
í
g
u
e
z
-
D
a
g
n
i
n
o
,
 
R
.
 
M
.
]
 
A
t
:
 
0
0
:
2
6
 
9
 
N
o
v
e
m
b
e
r
 
2
0
0
8



248 Rodríguez-Said et al.

FIGURE 1 A system of two independent random state switching customers and one buffer filled
up at a constant rate.

The dynamics of this linear system can be captured by a first-order
differential equation having a random component, or the so-called
random evolution process[7]. In Section 2, we elaborate our semi-Markov
mathematical modeling. In Sections 3 and 4, we deal with the special
Markov case. We obtain the stationary compound probability distribution
for the buffer content level and the mathematical expression of the
efficiency parameter in terms of the system values. Then, in Section 5, with
the help of some plots we analyze some numerical results for different
Markov and semi-Markov cases. In particular, we include the m -Erlang,
exponential, and hyperexponential distributions for the active periods.

2. SEMI-MARKOV MATHEMATICAL MODEL

Consider the semi-Markov process ��(t)�, which is the superposition
of two independent alternating semi-Markov processes with the phase
space � = {

(h, xi) : h ∈ �, xi ∈ �(2)
+

}
, where� = �h : h = (h1, h2), hi = 0, 1;

i = 1, 2�, and�(2)
+ = ��x : �x = (x , 0), x ≥ 0� ∪ {�x : �x = (0, x), x ≥ 0�. We have

defined hi as

hi =
{
1, if Si is active;
0, if Si is not active,

where Si stands for subsystem i . The component x of the vector (x , 0),
respectively, (0, x), is the residual life from the last state change of S1
(respectively, S2). The initial distribution of �(t) is P ��(0) = (1, 1; 0, 0)� = 1.

Let us write this in more detail:

(1, 1; 0, x) subsystem S1 starts to be active and subsystem S2 has been
active for the time x ,

(1, 1; x , 0) subsystem S2 starts to be active and subsystem S1 has been
active for the time x ,

(1, 0; 0, x) subsystem S1 starts to be active and subsystem S2 has been
inactive for the time x ,
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(1, 0; x , 0) subsystem S2 starts to be inactive and subsystem S1 has been
active for the time x ,

(0, 1; 0, x) subsystem S1 starts to be inactive and subsystem S2 has been
active for the time x ,

(0, 1; x , 0) subsystem S2 starts to be active and subsystem S1 has been
inactive for the time x ,

(0, 0; 0, x) subsystem S1 starts to be inactive and subsystem S2 has been
inactive for the time x ,

(0, 0; x , 0) subsystem S2 starts to be inactive and subsystem S1 has been
inactive for the time x .

The embedded Markov chain of this semi-Markov process has the
following transition probabilities[15]

P [(h1, h2; 0, x), �(h̄1, h2; 0,u),u ≤ y�] = 1

F
(2)
h2
(x)

∫ y−x

0
F

(2)
h2
(x + u)dF (1)

h1
(u),

P [(h1, h2; 0, x), �(h1, h̄2;u, 0),u ≤ y�] = 1

F
(2)
h2
(x)

∫ y+x

x
F

(1)
h1
(u − x)dF (2)

h2
(u),

P [(h1, h2; x , 0), �(h̄1, h2; 0,u),u ≤ y�] = 1

F
(1)
h1
(x)

∫ y+x

x
F

(2)
h2
(u − x)dF (1)

h1
(u),

P [(h1, h2; x , 0), �(h1, h̄2;u, 0),u ≤ y�] = 1

F
(1)
h1
(x)

∫ y−x

0
F

(1)
h1
(u + x)dF (2)

h2
(u),

(1)

where h̄i = 1 − hi , F (x) = 1 − F (x), and F (x) is the cumulative distribution
function.

The sojourn times corresponding to the stochastic process �(t) with
phase space �, have the following expected values

m(h1, h2; x , 0) = 1

F
(1)
h1
(x)

∫ ∞

0
F

(1)
h1
(x + y)F

(2)
h2
(y)dy,

m(h1, h2; 0, x) = 1

F
(2)
h2
(x)

∫ ∞

0
F

(1)
h1
(y)F

(2)
h2
(x + y)dy�

Let v(t) be the amount of information in the buffer at time t . It was
shown in Rodriguez-Said et al.[14] that we can use the PMA to reduce the
random evolution v(t) in the semi-Markov medium �(t) to the Markov
evolution v̄(t) in the Markov medium �̄(t). Then we have the following
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250 Rodríguez-Said et al.

transition probabilities of the embedded Markov chain:

P �(h1, h2)(h̄1, h2)�

=
∫ ∞
0

∫ ∞
0 F

(2)
h2
(x + u)dF (1)

h̄1
(u)dx + ∫ ∞

0

∫ ∞
0 F

(2)
h2
(u)duF (1)

h̄1
(x + u)dx∫ ∞

0 F
(1)
h1
(x)dx + ∫ ∞

0 F
(1)
h2
(x)dx

, (2)

P �(h1, h2)(h1, h̄2)�

=
∫ ∞
0

∫ ∞
0 F

(1)
h1
(x + u)dF (2)

h̄2
(u)dx + ∫ ∞

0

∫ ∞
0 F

(1)
h1
(u)duF (2)

h̄2
(x + u)dx∫ ∞

0 F
(1)
h1
(x)dx + ∫ ∞

0 F
(1)
h2
(x)dx

, (3)

where h̄i = 1 − hi , F (x) = 1 − F (x), and F (x) is the cumulative distribution
function.

The mean sojourn times of the process �̄(t) in states from � =
�00, 01, 10, 11� are given by

m(h1, h2) =
∫ ∞

0
�(h1, h2; x , 0)m(h1, h2; x , 0)dx

+
∫ ∞

0
�(h1, h2; 0, x)m(h1, h2; 0, x)dx , (4)

= cs0

( ∫ ∞

0

∫ ∞

0
F

(1)
h1
(y)F

(2)
h2
(x + y)dy dx

+
∫ ∞

0

∫ ∞

0
F

(1)
h1
(x + y)F

(2)
h2
(y)dy dx

)
, (5)

where

c−1
s0 (h1, h2) =

∫ ∞

0

(
F

(1)
h1
(x) + F

(2)
h2
(x)

)
dx �

Then, by using the PMA, the random evolution v(t) in the semi-Markov
medium �(t) can be reduced to the Markov evolution v̄(t) in the Markov
medium �̄(t).

In order to simplify notation, we make the following correspondence:
00 ⇔ 0, 01 ⇔ 1, 10 ⇔ 2, and 11 ⇔ 3. Consider � = �0, 1, 2, 3� = �.

Let us define the function f (w), where w ∈ � = � × [0,V ] as follows:

f (w) :=




f0, if w = �1, v�, 0 < v ≤ V ;

f1, if w = �2, v�, 0 < v ≤ V ;

f0 + f1, if w = �3, v�, 0 < v ≤ V ;

0 in other cases�

(6)

This is the productivity of the system.
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Stationary Effectiveness of Server with Single Buffer 251

Let us assume the joint stochastic process with a two-dimensional phase
space 	(t) = (�̄(t), v̄(t)). Then, we can state the following equality:

K = lim
T→∞

V (T )

T
= lim

T→∞
1
T

∫ T

0
f (	(t))dt � (7)

It follows from ergodic theory[13] that if the process 	(t) has a stationary
distribution �(·), then

lim
T→∞

1
T

∫ T

0
f (	(t))dt =

∫
�
f (w)d�(w)� (8)

Hence, by using equation (7) we obtain

K =
∫
�
f (w)d�(w) =

∫
�
f (w)�(dw)� (9)

In summary, by using the PMA, the random evolution v(t) in the
semi-Markov medium �(t) can be reduced to the Markov evolution v̄(t) in
the Markov medium �̄(t). So, as an example, we consider an evolution in a
Markov medium.

3. MARKOV MATHEMATICAL MODEL

Let us introduce the following stochastic process {�̄(t)} where

�̄(t) =



0, if no customer is active;
1, if customer S1 is active;
2, if customer S2 is active;
3, if customers S1 and S2 are active.

The stochastic process �̄(t) is a Markov process on the phase space (or
states) � = �0, 1, 2, 3�. Hence, the generating operator (or matrix) of �̄(t)
can be written as[13]:

Q = q[P − I ] =




−(�0 + �1) �0 �1 0
�0 −(�0 + �1) 0 �1

�1 0 −(�1 + �0) �0

0 �1 �0 −(�0 + �1)


 ,

where q = [qi
ij ; i , j ∈ �0, 1, 2, 3�] is a diagonal matrix of sojourn times
intensities of different states and q0 = �1 + �0, q1 = �1 + �0, q2 = �0 + �1, and
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252 Rodríguez-Said et al.

q3 = �1 + �0. Here, as usual, the Kronecker’s delta is defined as


ij =
{
1, i = j ;

0, i 	= j �

We should notice that q� = (
m(h1, h2)

)−1
, with the equivalence (h1h2) =

�00, 01, 10, 11� ⇔ �0, 1, 2, 3� = � 
 ��
The elements of the P matrix are the transition probabilities of the

Markov chain embedded in the Markov process �̄(t), i.e.,

P =




0 �0
�1+�0

�1
�1+�0

0
�0

�1+�0
0 0 �1

�1+�0
�1

�1+�0
0 0 �0

�1+�0

0 �1
�0+�1

�0
�0+�1

�0


 �

Consider a function C(w) on the space � = �0, 1, 2, 3� × [0,V ]
defined as

C(w) =




F w = �0, v�, 0 < v < V ;

F − f0 w = �1, v�, 0 < v < V ;

F − f1 w = �2, v�, 0 < v < V ;

F − (f0 + f1) w = �3, v�, 0 < v < V ;

0 in other cases.

(10)

Denote by v̄(t) the amount of information in the buffer at time t . It is
easily verified that v̄(t) satisfies the following equation:

dv̄(t)
dt

= C(�̄(t), v̄(t)), (11)

with the initial condition v̄(0) = v̄0 ∈ [0,V ]. Equation (11) determines the
random evolution of the system in the Markov medium �̄(t)[12].

Assume now the joint stochastic process with a two-dimensional phase
space 	 = (

�̄(t), v̄(t)
)
� Then, the parameter K can be calculated from the

stationary distribution � of the process 	(t), as it is shown in equations
(7)–(9).

4. STATIONARY DISTRIBUTION

The sojourn time distribution functions, say F�(t), have the following
form for the different states: F0(t) = 1 − e−(�1+�0)t , F1(t) = 1 − e−(�1+�0)t ,
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F2(t) = 1 − e−(�1+�0)t , and F3(t) = 1 − e−(�1+�0)t . Now, denote as f�(t) = dF�(t)
dt

and r� = f�(t)
1−F�(t)

for all � ∈ �, i.e., r0 = �1 + �0, r1 = �1 + �0, r2 = �1 + �0,
and r3 = �1 + �0. Then, the two component process 	(t) = (

�̄(t), v̄(t)
)
is a

Markov process with the generator[7,12]:

A�(�, v̄) = C(�, v̄)




v̄
�(�, v̄) + r�[P�(�, v̄) − �(�, v̄)],

where P�(�, v̄) = ∑
y∈� p�y�(y, v̄), or equivalently,

A�(�, v̄) = C(�, v̄)




v̄
�(�, v̄) + Q�(�, v̄),

where Q = r [P − I ].
Denote as � the stationary distribution of the process 	(t). Then, for

every function �(·) belonging to the domain of the operator A, we have∫
�
A�(z)�(dz) = 0� (12)

The analysis of the process 	(t) properties leads up to the conclusion
that, for the case max(f0, f1) < F < f1 + f0, the stationary distribution � has
atoms at points (3, 0), (0,V ), (1,V ), and (2,V ). We denote them as �[3, 0],
�[0,V ], �[1,V ], and �[2,V ]. We denote the continuous part of � as �(�, v).

Let us write equation (12) in more detail for the case, max(f0, f1) < F <
f1 + f0 as follows:∫

�
A�(z)�(dz)

=
∫ V −

0+

{[
F





v
�(0, v) − (�0 + �1)�(0, v) + �0�(1, v) + �1�(2, v)

]
�(0, v)

+
[
(F − f0)





v
�(1, v)+ �0�(0, v)− (�0 + �1)�(1, v)+ �1�(3, v)

]
�(1, v)

+
[
(F − f1)





v
�(2, v)+ �1�(0, v)− (�1 + �0)�(2, v)+ �0�(3, v)

]
�(2, v)

+
[
(F − f0 − f1)





v
�(3, v) + �1�(1, v) + �0�(2, v) − (�0 + �1)�(3, v)

]

× �(3, v)
}
dv

+ [−(�0 + �1)�(0,V ) + �0�(1,V ) + �1�(2,V )
]
�[0,V ]

+ [
�0�(0,V ) − (�0 + �1)�(1,V ) + �1�(3,V )

]
�[1,V ]
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254 Rodríguez-Said et al.

+ [
�1�(0,V ) − (�1 + �0)�(2,V ) + �0�(3,V )

]
�[2,V ]

+ [
�1�(1, 0) + �0�(2, 0) − (�0 + �1)�(3, 0)

]
�[3, 0] = 0 (13)

Let A∗ be the conjugate or adjoint operator of A. Then, by changing
the order of integration in equation (13), we can obtain the following
expressions for the continuous part of A∗�:


−F




v
�(0, v) − (�0 + �1)�(0, v) + �0�(1, v) + �1�(2, v) = 0

−(F − f0)




v
�(1, v) + �0�(0, v) − (�0 + �1)�(1, v) + �1�(3, v) = 0

−(F − f1)




v
�(2, v) + �1�(0, v) − (�1 + �0)�(2, v) + �0�(3, v) = 0

−(F − f0 − f1)




v
�(3, v) + �1�(1, v) + �0�(2, v) − (�0 + �1)�(3, v) = 0

�

(14)

The expressions for the atoms for the case max(f1, f0) < F < f1 + f0 are
given by




−F �(0, 0+) = 0

−(F − f0)�(1, 0+) + �1�[3, 0] = 0

−(F − f1)�(2, 0+) + �0�[3, 0] = 0

−(F − f0 − f1)�(3, 0+) − (�0 + �1)�[3, 0] = 0

(15)

and 


F �(0,V −) − (�0 + �1)�[0,V ] + �0�[1,V ] + �1�[2,V ] = 0

(F − f0)�(1,V −) + �0�[0,V ] − (�0 + �1)�[1,V ] = 0

(F − f1)�(2,V −) + �1�[0,V ] − (�1 + �0)�[2,V ] = 0

(F − f0 − f1)�(3,V −) + �1�[1,V ] + �0�[2,V ] = 0

� (16)

In these equations we have defined the notation

�(�, 0+) := lim
v↓0

�(�, v)

and

�(�,V −) := lim
v↑V

�(�, v)�
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It follows from equation (14) that

F �(0, v) + (F − f0)�(1, v) + (F − f1)�(2, v)

+ (F − f0 − f1)�(3, v) = c = constant� (17)

The constant c can be proved to be equal to 0 from equations (15)
and (16).

Using equations (14)–(17) we can solve for the complete expressions of
the continuous part of the stationary distribution �(�, v) and atoms �[3, 0],
�[0,V ], �[1,V ], and �[2,V ] obtaining the following:

�(0, v) = c1e 
1v + c2e 
2v + c3e 
3v ,

�(1, v) = k11c1e 
1v + k12c2e 
2v + k13c3e 
3v ,

�(2, v) = k21c1e 
1v + k22c2e 
2v + k23c3e 
3v ,

�(3, v) = k31c1e 
1v + k32c2e 
2v + k33c3e 
3v ,

�[0,V ] = K00�(0,V −) + K01�(1,V −) + K02�(2,V −),

�[1,V ] = K10�(0,V −) + K11�(1,V −) + K12�(2,V −),

�[2,V ] = K20�(0,V −) + K21�(1,V −) + K22�(2,V −),

�[3, 0] = K30�(3, 0+)�

The constants kij , i , j = 1, 2, 3 and Kij , i , j = 0, 1, 2 are known as well as cn ,
n = 1, 2, 3 and K30. See the Appendix.

5. NUMERICAL RESULTS AND STATIONARY EFFICIENCY

With the expression of c1, it is now possible to evaluate the complete
expression of the stationary distribution. For example, on the case
f0 = 3/2, f1 = 1, �0 = 3/10, �1 = 2/10, �0 = 1/10, �1 = 1/15, V = 100, F =
7/4 (max(f0, f1) < F < f0 + f1) we obtain from equation (27):

�(0, v) =
√
2
5

−2 + e16(−4+√
2)v/105 + e−16(4+√

2)v/105

−676
√
2 + (2

√
2 − 1)e−(320

√
2+1280)/21 + (2

√
2 + 1)e (320

√
2−1280)/21

�

We can define the following stationary distribution:

�(v) =



�(0, v) + �(1, v) + �(2, v), 0 < v < V

�[3, 0] v = 0

�[0,V ] + �[1,V ] + �[2,V ] v = V

�
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256 Rodríguez-Said et al.

We can plot both this analytical result and simulation results to illustrate
some common cases (see Figure 2). On these plots F = 7/4, F = 2 are
considered, and

F = f0�0
�0 + �0

+ f1�1
�1 + �1

= 15
8
, (18)

i.e., when F is equal to the expected average demand of the two customers.
In Figure 2 we can see three (solid) lines that correspond to the

stationary probability density of the level of the buffer for three different
cases. The case F = 7/4 is an example where the incoming stream is less
than the expected average demand of the customers. One can see from
the figure that this case is the one with the higher probability of finding
the buffer empty or nearly empty. The case F = 2 is an example where
the incoming stream is greater than the expected average demand of the
customers. One can see from the figure that this case is the one with
the higher probability of finding the buffer full or nearly full. The case
F = 15/8 is an example where the incoming information stream is equal to
the expected average demand of the customers. This case has some balance
tendency and is the one that uses more uniformly the whole dynamical
range of the buffer. We will see that only within the two latter cases is
it possible to reach the maximum buffer efficiency which is equal to the
expected average demand of the customers.

FIGURE 2 Stationary distribution of the buffer for the case max(f1, f2) < F < f1 + f2 for three
different values of F .
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The simulation model used here is based on discrete-event simulation.
We generate the sojourn time random variable for every state and customer.
The inverse distribution approach is used to achieve this goal from a
generated uniform distribution. At thebeginningof thesimulationandwhen
a customer changes state, the sojourn time is generated according to the
distribution of the actual state to establish the epoch of the next transition.
As the simulation evolves, the index that represents the level of the buffer
is refreshed according to the change that takes place regarding the state
of the customers (see equation (10)). The position of that index within
100 intervals inside [0,V ] is kept to obtain the relative frequency of the
localization of the index, i.e., the level of the buffer. The simulation runs
for 1 × 108 time units and we typically have more than 1 × 107 state changes
for each customer, although it shows convergence at 1 × 107 time units.

Some sort of perturbation close to v = 100 can be noticed in the curves
from the simulation in Figure 2. That perturbation comes from the system
functionality for the case max(f0, f1) < F < f0 + f1, i.e., if any of the two
customers are active, the level of the buffer can be increased. However,
the filling rate is expected to stop when the level of the buffer reaches its
maximum. The result is that, if any of the two customers are active, the level
of the buffer can be increased to its maximum; then the filling rate is turned
off and the level starts to decrease. At any moment that the level is sensed
not to be at its maximum again, then the filling rate is restored. On that
scenario, for the time that this single customer is active, the level in the
buffer swings between its maximum and some close point below. This is the
reason why some small peaks can be observed in the computer simulation
at some point close to V .

For the sake of the analytical solution, the atoms �[1,V ] and �[2,V ]
were considered as a more steady approximation of the real system behavior.
It is worth saying that this behavior is not observed for other choices of
F . For example, if we choose F < min(f1, f0), we obtain the exact analytical
solution.

Now we can recall the function f (w) and show some plots regarding the
efficiency parameter K from equation (9). Let us write this expression in
more detail for this system with max(f0, f1) < F < f0 + f1:

K =
∫ V

0
�f0�(1, v) + f1�(2, v) + (f0 + f1)�(3, v)�dv + f0�[1,V ] + f1�[2,V ]

= c1

(
e 
1V − 1


1

)
(f0 + f1K11 + f2K21 + f3K31)

+ c2

(
e 
2V − 1


2

)
(f0 + f1K11 + f2K21 + f3K31)

+ c3

(
e 
3V − 1


3

)
(f0 + f1K11 + f2K21 + f3K31)�
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K (V ) is shown in Figure 3, i.e., K as a function of the maximum capacity
of the buffer, for the same three cases of F from Figure 2.

Once again, the case F = 15/8 stands as an example where the
incoming information stream is equal to the expected average demand of
the customers. It is possible to see that this case is capable in reaching the
maximum system efficiency (equal to 15/8) as the buffer grows in capacity
V . The case of F = 7/4, where the incoming stream is less that the expected
average demand of the customers, never reaches the maximum efficiency
no matter what the size of the buffer is. The case of F = 2, where the
incoming stream is greater that the expected demand of the customers,
quickly reaches the maximum efficiency.

It can be proved that in every case

lim
V →∞

[K (V )]
F≥ f1�1

�1+�1
+ f0�0

�0+�0

= f1�1
�1 + �1

+ f0�0
�0 + �0

� (19)

In addition, it can be proven that in every case

lim
V →∞

[K (V )]
F<

f1�1
�1+�1

+ f0�0
�0+�0

< F <
f1�1

�1 + �1
+ f0�0

�0 + �0
� (20)

That is, if the buffer is big enough, no F larger than the average system
demand is required to meet the system maximum efficiency. On the other

FIGURE 3 Efficiency parameter as a function of the buffer capacity for the case max(f0, f1) < F <

f1 + f2 and three different values of F .
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hand, if the incoming stream F is smaller than the expected long-term
average system demand, the system efficiency K (V ) is even smaller than the
incoming stream.

These results are the same even for other choices of F besides
max(f0, f1) < F < f0 + f1. For example, if we choose F < min(f0, f1), we
obtain the same results as those in (19) and (20).

According to Section 2, the phase merging algorithm can be used to
obtain a random evolution v̄(t) in an approximated Markov environment
from an evolution v(t) in a semi-Markov environment. Then, some plots
regarding the semi-Markov case can be displayed. As a first example, we can
consider a m -Erlang scenario, where both active and inactive sojourn times
are considered with such distribution. This is for the actual sojourn time
distributions we have:

F 1
0 (u) =

∫ u

0

�0e−�0x(�0x)m
(1)
0 −1

(m(1)
0 − 1)! dx ,

F 1
1 (u) =

∫ u

0

�0e−�0x(�0x)m
(1)
1 −1

(m(1)
1 − 1)! dx ,

F 2
0 (u) =

∫ u

0

�1e−�1x(�1x)m
(2)
0 −1

(m(2)
0 − 1)! dx ,

F 2
1 (u) =

∫ u

0

�1e−�1x(�1x)m
(2)
1 −1

(m(2)
1 − 1)! dx �

Here, m(i)
j (i ∈ �1, 2�, j ∈ �0, 1�) stands for the number of exponentials

that form the m -Erlang distribution of the i subsystem in the j state. As we
know, if we make m(i)

j = 1, we get an exponential distribution.
We use equations (2) and (3) to calculate the transition probabilities of

the embedded Markov chain. We obtain

P =




0 m(2)
0 �0

m(2)
0 �0+m(1)

0 �1

m(1)
0 �1

m(2)
0 �0+m(1)

0 �1
0

m(2)
0 �0

m(1)
1 �1+m(2)

0 �0
0 0 m(1)

1 �1

m(1)
1 �1+m(2)

0 �0

m(1)
0 �1

m(2)
1 �0+m(1)

0 �1
0 0 m(2)

1 �0

m(2)
1 �0+m(1)

0 �1

0 m(1)
1 �1

m(2)
1 �0+m(1)

1 �1

m(2)
1 �0

m(2)
1 �0+m(1)

1 �1
0



�

After that, we use equation (5) to calculate the mean sojourn times and,
consequently, the sojourn time intensities. Let us remember that q� =
(m(h1, h2))−1 with the equivalence (h1, h2) = �00, 01, 10, 11� ⇔ �0, 1, 2, 3� =
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� 
 �. Also let us remember that q = [qi
ij ; i , j ∈ �0, 1, 2, 3�] is a diagonal
matrix. Then we obtain

q =




�0

m(1)
0

+ �1

m(2)
0

0 0 0

0 �1

m(2)
0

+ �0

m(1)
1

0 0

0 0 �0

m(1)
0

+ �1

m(2)
1

0

0 0 0 �0

m(1)
1

+ �1

m(2)
1


 �

Now we can calculate the generating operator Q = q[P − I ] and solve
for the continuous part and atoms of a stationary distribution just as we did
in Section 3 for an evolution in a Markov media.

We can consider the inactive sojourn time with an exponential
distribution

(
m(i)

0 = 1, i = 1, 2
)
and plot several m -Erlang cases for the active

sojourn time. This example is illustrated in Figures 4 and 5.
We considered as before

F = f0�0
�0 + �0

+ f1�1
�1 + �1

, (21)

max(f0, f1) < F < f0 + f1 � (22)

FIGURE 4 Stationary distribution of the buffer with m -Erlang distributed active sojourn time and
exponentially distributed inactive sojourn time.
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Stationary Effectiveness of Server with Single Buffer 261

FIGURE 5 A closer view of the stationary distribution of the buffer with m -Erlang distributed active
sojourn time and exponentially distributed inactive sojourn time.

We also used f0 = 3/2, f1 = 1, �0 = 3/10, �1 = 2/10, �0 = 1/10, �1 = 1/15,
and V = 100.

In Figures 4 and 5 we can see a good match between the analytical
solutions and simulations for every m -Erlang case. In Figure 4 one can see
the complete stationary distributions including the atoms of the distribution
at v = 0. Figure 5 is a close view of the low part of these distributions.

In this case we see that the behavior of the curves is modified as
the order of the m -Erlang distributions is increased. For active sojourn
times with higher order m -Erlang distribution, the expected values of these
sojourn times for subsystems S1 and S2 are longer. Therefore we can see in
Figures 4 and 5 that this causes the stationary distribution to be biased to
the empty side of the buffer.

Finally, we can introduce the hyperexponential semi-Markov case as
another example. For this case, the distribution of the active and inactive
sojourn times were taken as

F 1
0 (u) = 1 − p exp(−�0u) − (1 − p) exp(−�0bu),

F 1
1 (u) = 1 − p exp(−�0u) − (1 − p) exp(−�0bu),

F 2
0 (u) = 1 − p exp(−�1u) − (1 − p) exp(−�1bu),

F 2
1 (u) = 1 − p exp(−�1u) − (1 − p) exp(−�1bu)�
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The following choices were taken as an instance: �0b = n�0, �1b = n�1,
�0b = n�0, and �1b = n�1, n > 0. We use equations (2) and (3) to calculate
the transition probabilities of the embedded Markov chain. We obtain

P =




0 �0
�1+�0

�1
�1+�0

0

�0
�1+�0

0 0 �1
�1+�0

�1
�1+�0

0 0 �0
�1+�0

0 �1
�0+�1

�0
�0+�1

�0



�

This is the same transition probability matrix of the Markov case that does
not depend on the choice of n.

After that we use equation (5) to calculate the mean sojourn times and,
consequently, the sojourn time intensities. The result is

q =




n(�0+�1)

np+1−p 0 0 0

0 n(�1+�0)

np+1−p 0 0

0 0 n(�0+�1)

np+1−p 0

0 0 0 n(�0+�1)

np+1−p



�

Now we can calculate the generating operator Q = q[P − I ] and solve
for the continuous part and atoms of the stationary distribution just as we
did in Section 3 for the evolution in a Markov media.

We can make some plots for this semi-Markov example. In Figure 6,
the behavior of the approximation can be appreciated along with some
plots from simulations for this semi-Markov case. In Figure 6, we choose
n = 2 as an instance. Besides, we took again f0 = 3/2, f1 = 1, �0 = 3/10,
�1 = 2/10, �0 = 1/10, �1 = 1/15, and V = 100, as well as F from conditions
(21) and (22).

It can be noticed that we can use the stationary probability density
obtained before for the Markov case to obtain the approximated stationary
density for these semi-Markov cases. Meaning that for the m -Erlang case we
may only use the substitutions

�0 → �0

m(1)
0

, �1 → �1

m(2)
0

, �0 → �0

m(1)
1

, and �1 → �1

m(2)
1

directly in equations (27)–(30) as well as in the expressions for the atoms to
obtain the approximated stationary density for this semi-Markov case. For
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FIGURE 6 Stationary distribution of the hyperexponential semi-Markov case for the active and
inactive sojourn time.

the hyperexponential case, we should use the substitutions

�0 → �0

np + 1 − p
, �1 → �1

np + 1 − p
, �0 → �0

np + 1 − p
and

�1 → �1

np + 1 − p
�

Also, we can use the same substitutions in the expression (18) to obtain
the condition that leads to the best usage of the buffer in terms of the
stationary efficiency of the system.

6. CONCLUSIONS

It is possible to use the PMA to reduce a semi-Markov process to an
approximated Markov process. Once this is done, it is possible to find some
closed-form expression for the stationary distribution of the system. It has
been seen that the approximation that the algorithm gives may be good
enough for some applications. We showed plots of some analytical results
and computer simulations regarding the Markov and semi-Markov cases.

Also, it has been seen that the approximation can also be considered to
obtain expressions for the stationary efficiency of the system for some semi-
Markov cases. Besides the driving function C(w) given in equation (10)
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typical in the random evolution formulation[10], we introduce an additional
function f (w) in equation (6) to capture the functionality of our scheme.
Two cases were studied regarding the incoming stream F in terms of
the stationary efficiency K and we showed some typical cases for this
parameter. Some graphics of the performance parameter K were added
and we analyzed an optimization condition which is related to the long-term
average demand of the customers.

Our buffer is a subsystem aimed at increasing the availability of
information. It is worth mentioning that all the results shown here also
match those of a system with an overflowed buffer. This is a system where
the incoming information stream is not turned off when the buffer reaches
its maximum capacity and then the incoming information overflows the
buffer.

APPENDIX

Here, we find the stationary distribution of the system and atoms using
equations (14)–(17).

Using equation (14) we obtain


3


v3
�(0, v) = A0

D0


2


v2
�(0, v) + B0

D0





v
�(0, v) + G0

D0
�(0, v), (23)

�(1, v) = A1

D1


2


v2
�(0, v) + B1

D1





v
�(0, v) + G1

D1
�(0, v), (24)

�(2, v) = A2

D2





v
�(0, v) + B2

D2
�(0, v) + G2

D2
�(1, v), (25)

�(3, v) = A3

D3
�(0, v) + B3

D3
�(1, v) + G3

D3
�(2, v), (26)

where

A0 = F 3�1 + (F − f0)
(
F 2�2(�0 + �0 + �1) + �1

} − F �f0(2�0 + �1 + �1)

+ f1[2(�1 + �0 + �1) + 3�0]� + �0f 2
1 + �0f0f1

)
− (F − f1)

(
F [�1f0 + f1(2�1 + �0)

] − �1f0f1
) − �1f1f 2

0 ,

B0 = −F
(
�0�0f0 + f1[�1(�0 + �1) + �0�1]

) + (F − f0)
(
F ��1[2(�1 + �0)

+ 3�0 + �1] + 3�0�1� − �0f0(�0 + �1 + �1) − f1(2�0(�1 + �1) + �1�1)
)

+ (F − f1)
(
F

[
�21 + (�0 + �0)

2 + �0(3�1 + �1)
] − f0[�0(�0 + �0)

+ �1(�1 + 2�0)] − �1f1(�0 + �1 + �0)
)
,
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G0 = (�0 + �1 + �0 + �1)(�1 + �1)(�0 + �0)

(
F − �1f1

�1 + �1
− �0f0

�0 + �0

)
,

D0 = −F (F − f1)(F − f0)(F − f1 − f0),

and

A1 = F (F − f1)(F − f0)(F − f0 − f1),

B1 = (F − f0)
{
F 2(�1 + �1) − F [f0(2�0 + �1 + �1) + f1(�1 + �1)] + f0f1(�0 + �1)�

+ (F − f1)�F 2(2�0 + 2�0) − F [f0(2�0 + �0)

+ f1(�0 + �1 + �0)] + f0f1(�0 + �1)�,

G1 = (F − f0)
{
F

[
�20 + �0(�1 + �1)] − �0f0(�0 + �1 + �1) − f1(�20 + �1�0)

}
+(F − f1)

{
F

[
�0(�1 + �1) + �0(�0 + �1 + �1)

] − �0f0(�1 + �1) − �1�0f1
}
,

D1 = �0�−(F − f0)(�1F + �0f0) + (F − f1)

× [F (�0 − �1 + �0) − f0(�0 − �1) + f1�1]�,
as well as, A2 = F , B2 = �0 + �1, G2 = −�0, D2 = �1, and, A3 = −F , B3 =
−(F − f0), G3 = −(F − f1), and D3 = F − f0 − f1.

Solving equation (23) we obtain

�(0, v) = c1e 
1v + c2e 
2v + c3e 
3v , (27)

where 
1, 
2, and 
3 are the roots of the polynomial

x3 + A0

D0
x2 + B0

D0
x + G0

D0
= 0�

Using expression (27) into (24) we obtain

�(1, v) = k11c1e 
1v + k12c2e 
2v + k13c3e 
3v , (28)

where

k11 = G1 + B1
1 + A1

2
1

D1
, k12 = G1 + B1
2 + A1


2
2

D1
, and

k13 = G1 + B1
3 + A1

2
3

D1
�

Also, using expression (28) into (25) we obtain

�(2, v) = k21c1e 
1v + k22c2e 
2v + k23c3e 
3v , (29)
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where

k21 = B2D1 + G2G1 + (G2B1 + A2D1)
1 + G2A1

2
1

D1D2
,

k22 = B2D1 + G2G1 + (G2B1 + A2D1)
2 + G2A1

2
2

D1D2
,

k23 = B2D1 + G2G1 + (G2B1 + A2D1)
3 + G2A1

2
3

D1D2
�

Using expression (29) into (26) we obtain

�(3, v) = k31c1e 
1v + k32c2e 
2v + k33c3e 
3v , (30)

where

k31 = A3

D3
+ B3

G1 + B1
1 + A1

2
1

D1D3

+G3
B2D1 + G2G1 + (G2B1 + A2D1)
1 + G2A1


2
1

D1D2D3
,

k32 = A3

D3
+ B3

G1 + B1
2 + A1

2
2

D1D3

+G3
B2D1 + G2G1 + (A2D1 + G2B1)
2 + G2A1


2
2

D1D2D3
,

k33 = A3

D3
+ B3

G1 + B1
3 + A1

2
3

D1D3

+G3
G2G1 + B2D1 + (A2D1 + G2B1)
3 + G2A1


2
3

D1D2D3
�

In equations (27)–(30) the constants kij , i , j = 1, 2, 3 are known.
However c1, c2, and c3 need to be found. On the case where max(f1, f0) <
F < f1 + f0, we obtain from equation (15) that �(0, 0+) = 0, and then we
obtain

c3 = −c1 − c2� (31)

Using the second and third expressions from equations (15), we can
eliminate �[3, 0] and obtain c2 = c12c1 and c3 = c13c1 where

c12 = −F (�0(−k11 + k13) + �1(k21 − k23)) + f0�0(k11 − k13) + f1�1(−k21 + k23)
F (�0(−k12 + k13) + �1(k22 − k23)) + f0�0(k12 − k13) + f1�1(−k22 + k23)

,

c13 = F (�0(−k11 + k12) + �1(k21 − k22)) + f0�0(k11 − k12) + f1�1(−k21 + k22)
F (�0(−k12 + k13) + �1(k22 − k23)) + f0�0(k12 − k13) + f1�1(−k22 + k23)

�
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The constant c1 can be calculated from the normalization condition∫
�
�(z)dz = 1� (32)

c1 is a factor of every term in the continuous part of the stationary
distribution, �(·). Now, we need to find an expression for the atoms of
the stationary distribution in terms of the solutions in the continuous part.
Using the last expression of equation (15), we can see that

�[3, 0] = −(F − f0 − f1)
�0 + �1

�(3, 0+), (33)

for max(f1, f0) < F < f1 + f0.
Let us say �[3, 0] = K33�(3, 0+), where the constant K31 is known. For

the rest of the atoms we need to solve the system of equation (16). We can
use the first, second, and third expressions of (16) to find

�[0,V ] =
(�0 + �1)(�1 + �0)F �(0,V −) + �0(�0 + �1)(F − f0)�(1,V −)

+ �1(�1 + �0)(F − f1)�(2,V −)

�0�1(�0 + �1 + �0 + �1)
,

�[1,V ] =
(�0 + �1)F �(0,V −) + (�0 + �1 + �1)(F − f0)�(1,V −)

+ �1(F − f1)�(2,V −)

�1(�0 + �1 + �0 + �1)
,

�[2,V ] =
(�1 + �0)F �(0,V −) + �0(F − f0)�(1,V −)

+ (�0 + �1 + �0)(F − f1)�(2,V −)

�0(�0 + �1 + �0 + �1)
�

As a check, we can substitute these results into the last expression of
equation (16). We obtain

F �(0,V ) + (F − f0)�(1,V ) + (F − f1)�(2,V ) + (F − f0 − f1)�(3,V ) = 0,

which also comes after equation (17). So, these results seem to be correct.
Just as we did for equation (33), let us say,

�[0,V ] = K00�(0,V −) + K01�(1,V −) + K02�(2,V −),

�[1,V ] = K10�(0,V −) + K11�(1,V −) + K12�(2,V −),

�[2,V ] = K20�(0,V −) + K21�(1,V −) + K22�(2,V −),

where the constants Kij , i , j = 0, 1, 2 are known.
Now, we can use equation (32) to find c1.
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For the case max(f0, f1) < F < f0 + f1, we have∫ V

0
��(0, v) + �(1, v) + �(2, v) + �(3, v)�dv

+ �[0,V ] + �[1,V ] + �[2,V ] + �[3, 0] = 1� (34)

Writing equation (34) in more detail and solving for c1, we have

c−1
1 = (1 + k11 + k21 + k31)(e 
1V − 1)


1
+ c12(1 + k12 + k22 + k32)(e 
2V − 1)


2

+ c13(1 + k13 + k23 + k33)(e 
3V − 1)

3

+ K33(k31 + c12k32 + c13k33)

+ [K00 + K10 + K20 + k11(K01 + K11 + K21) + k21(K02 + K12 + K22)]e 
1V
+ c12[K00 + K10 + K20 + k12(K01 + K11 + K21) + k22(K02 + K12 + K22)]e 
2V
+ c13[K00 + K10 + K20 + k13(K01 + K11 + K21) + k23(K02 + K12 + K22)]e 
3V
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