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Given a PDE with real or complex partial derivatives and with constant coefficients, we propose a method of assigning to
it a set of algebra-valued functions in such a manner that the components of the latter are solutions of the PDE. Copyright
© 2013 John Wiley & Sons, Ltd.
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1. Introduction

It is well known that the real and imaginary parts of any holomorphic function are harmonic functions of two variables. In this paper,
we extend this idea to finite-dimensional commutative algebras; that is, we prove that if some basis of a subspace of a commutative
algebra satisfies a polynomial equation, then the components of a monogenic function on the subspace are solutions of the respective
partial differential equation (PDE). We illustrate these concepts with a few examples.

An algebra of analytical functions of complex variables is associated with the two-dimensional Laplace equation; that is, the real
and imaginary components of an analytic function are solutions of the two-dimensional Laplace equation. The algebra of functions
Ef : R3 ! R1, which is associated with the three-dimensional Laplace equation, was introduced by Ketchum [1, 2]. The so-called
biharmonic bases in commutative algebras and monogenic functions on these algebras associated with the biharmonic equation
are studied in [3, 4]. By using a similar technique, we study the biwave equation in Section 4.3. An interesting solution of the three-
dimensional Laplace equation has been elaborated in [5] by defining a related commutative and associative algebra over the field of
complex numbers, and other related developments can be consulted in [6–8]. In this work, we generalize these ideas.

In the paper [9], we study a one-dimensional random motion having a general m-Erlang distribution for the sojourn times. Let f .t, x/
be the probability density function (PDF) of a particle position at time t, provided that it exists. We obtained the following higher order
hyperbolic equations for f .t, x/: �

@

@t
� v

@

@x
C �

�m � @
@t
� v

@

@x
C �

�m

f .t, x/� �2mf .t, x/D 0,

where v > 0 is the velocity of the particle and � is the parameter of the m-Erlang distribution. It is assumed that a particle started at
x D 0 and, hence, f .0, x/ D ı.x/. For m D 1, this equation is the well-known telegraph equation, and its solution has been obtained
by using Riemann’s method. For m D 2, we have the so-called bi-telegraph equation, and up to our best knowledge, its solution is
unknown. By using our method, we obtain the solution up to the initial conditions. We also describe the algorithm for solving of PDEs
with non-constant coefficients.

2. Differentiability on finite-dimensional commutative algebras

Let A be a finite-dimensional commutative unitary algebra over K DR (or C); assume that the set of vectors Ee0, Ee1, : : : , Een is a basis of A
and that Ee0 is the unit of this algebra. Suppose that B is an .mC 1/-dimensional subspace of A with the basis Ee0, Ee1, : : : , Eem, m� n. Any

function Ef : B! A is of the form
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Ef .Ex/D
nX

kD0

Eekuk.Ex/,

where uk.Ex/D uk.x0, x1, : : : , xm/ are R-valued (or C-valued) functions of mC 1 variables xi 2 K .

Definition 1. Ef .Ex/ is called differentiable at a point Ex0 2 B if there exists a unique element Ef 0.Ex0/ 2 A such that for any Eh 2 B,

EhEf 0.Ex0/D lim
"!0

Ef .Ex0C "Eh/�Ef .Ex0/

"
. (1)

It should be kept in mind that " 2 K in accordance with the algebra A.
The existence of the limit at the right-hand side is equivalent to the condition that the map f : B �! A is Gateaux-differentiable along

any direction Eh. In addition, this definition includes another quite strong condition: the Gateaux derivative along Eh is proportional to Eh.
In the case when the algebra A is over C, Definition 1 implies Gateaux differentiability along complex lines.

Furthermore, the proportionality coefficient is the same for any direction Eh. It is denoted by Ef 0.Ex0/ and called as the derivative of Ef at

the point Ex0. For A D B D C, this definition is also equivalent to the (complex) differentiability of the complex function Ef , and Ef 0.Ex0/

becomes the usual complex derivative.
Thus, one can expect that the introduced functions inherit some important properties of holomorphic functions.

We say that Ef : B �! A is differentiable (in B) or monogenic if it is differentiable at any point of B.

Definition 1 includes the existence of all .mC1/ partial derivatives. Indeed, it is enough to take hD ek , k 2 f0, 1, 2, : : : , mg. Moreover,
it implies

@Ef

@xk
.Ex0/D ek

Ef 0.Ex0/ (2)

for all k but with the same coefficient Ef 0.Ex0/.
It turns out that Equation (1) is equivalent to the definition of differentiability.

Theorem 1

A function Ef .Ex/ D
Pn

kD0 Eekuk.Ex/ is differentiable at Ex0 if and only if it has all partial derivatives @Ef
@xk
.Ex0/ proportional, with the same

proportionality coefficient, to the respective basis vectors Eek :

@Ef

@xk
.Ex0/D Eek ˛.Ex0/; (3)

whenever it holds

˛.Ex0/D Ef 0.Ex0/. (4)

Proof
The necessary part is given already. The sufficient part is much the same as in [10], and we give it briefly for completeness. It follows
from Equation (3) that

˛.Ex0/D
@Ef

@x0
D

nX
kD0

Eek
@uk

@x0
,

Ee1 ˛.Ex0/D
@Ef

@x1
D

nX
kD0

Eek
@uk

@x1
D Ee1

nX
kD0

Eek
@uk

@x0
, (5)

...

Een ˛.Ex0/D
@Ef

@xn
D

nX
kD0

Eek
@uk

@xn
D Een

nX
kD0

Eek
@uk

@x0
.

Let EhD
nX

kD0

hkEek , then it follows from Equation (5)
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Eh˛.Ex0/D

nX
kD0

hkEek˛.Ex0/

D h0

nX
kD0

Eek
@uk

@x0
C h1Ee1

nX
kD0

Eek
@uk

@x0
C � � � C hnEen

nX
kD0

Eek
@uk

@x0

D h0

nX
kD0

hkEek
@uk

@x0
C h1

nX
kD0

hkEek
@uk

@x1
C � � � C hn

nX
kD0

hkEek
@uk

@xn

D lim
"!0

Ef .Ex0C "Eh/�Ef .Ex0/

"
.

Thus, we conclude that Ef is differentiable and ˛.Ex0/D Ef 0.Ex0/.
�

Equation (5) implies the following Cauchy–Riemann type of conditions for a differentiable function Ef :

nX
kD0

Eek
@uk

@x1
D Ee1

nX
kD0

Eek
@uk

@x0
,

nX
kD0

Eek
@uk

@x2
D Ee2

nX
kD0

Eek
@uk

@x0
,

...

nX
kD0

Eek
@uk

@xm
D Eem

nX
kD0

Eek
@uk

@x0
,

(6)

or in the vector form

@Ef

@xk
D Eek

@Ef

@x0
, kD 0, 1, : : : , m. (7)

Remark 1. It is easily verified that Theorem 1 remains true even for B with basis Ee 01, Ee 02, : : : , Ee 0mC1 that does not contain the unit Ee0

but having an invertible element among its basis vectors. In this case, the Cauchy–Riemann type of conditions can be stated as follows:

@Ef

@xk
D Ee 0k Ee 0

�1
l
@Ef

@xl
, k, lD 0, 1, : : : , m.

3. Differentiable functions providing solutions to PDEs

Consider the two-dimensional Laplace equation

�2 uD
@2u

@x2
0

C
@2u

@x2
1

D 0, (8)

where u is an R-valued function of the two real variables x0 and x1. Of course, Equation (8) makes sense even for functions u taking
values in a normed space, but we should remark that Equation (8) has a ‘real nature’ in a completely understandable meaning. At the
same time, it is trivial to say that solutions of Equation (8) can be provided by purely complex tools; for example, let f .z/D u0.z/C iu1.z/
be a holomorphic function of the variable z D x0 C ix1, then the functions u0 and u1 are solutions of Equation (8). That is, the real PDE
(8) has a commutative algebra on the complex numbers C such that complex holomorphic functions provide real solutions to it.

We will extend this idea to much more general situations. For given integers m, r � 1, let

P.�0, �1, : : : , �m/ :D
X

i0Ci1C���CimDr

Ci0,i1,:::,im�
i0
0 �

i1
1 : : : �

im
m , (9)

where Ci0,i1,:::,im are constant coefficients. Consider the following PDE

P.@0, @1, : : : , @m/ Œu.x0, x1, : : : , xm/�D 0. (10)

where @k :D
@k

@xk
.
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Theorem 2

Let P be a polynomial as in Equation (10). Let a function Ef : B �! A and its derivatives Ef 0, Ef 00, : : : , Ef r be differentiable, Ef .Ex/D
nX

kD0

Eekuk.Ex/.

Assume that the basis Ee0, Ee1, : : : , Eem of the subspace B of the algebra A is such that

P.Ee0, Ee1, : : : , Eem/D 0, (11)

then the functions uk.Ex/, kD 0, 1, : : : , n are solutions of Equation (10)

Proof
It follows from the Cauchy–Riemann type condition (7) that

@inEf

@xin
k

D . Eek/
in
@Ef

@x0
, kD 0, 1, : : : , m. (12)

This implies, for i0C i1C : : :C im � r, that

@i0Ci1C:::CimEf

@xi0
0 @xi1

1 : : : @xim
m

D .Ee0/
i0.Ee1/

i1 : : : .Eem/
im
@i0Ci1C:::CimEf

@xi0Ci1C:::Cim
0

. (13)

Therefore, we obtain

X
i0Ci1C:::CimDr

Ci0 i1:::im

@r

@xi0
0 @xi1

1 : : : @xim
m
Ef .x0, x1, : : : , xm/D

@rEf .x0, x1, : : : , xm/

@xr
0

X
i0Ci1C:::CimDr

Ci0 i1:::im.Ee0/
i0.Ee1/

i1 : : : .Eem/
im D 0.

Hence, it follows that every component uk.Ex/, kD 0, 1, : : : , n, of the function Ef is a solution of Equation (10). �

Remark 2. Similarly to Theorem 1, Theorem 2 remains true even if B does not contain the unit Ee0, but among its basis vectors, there is
an invertible element.

4. Examples

4.1. The Laplace equation

Given a polynomial P as in Equation (10), Theorem 2 suggests to look for non-real solutions of Equation (11). For instance, for the
two-dimensional Laplace equation, Equation (8), one has that P.�0, �1/D �

2
0 C �

2
1 ; hence, Equation (11) becomes

e2
0C e2

1 D 0;

that is, 1Ce2
1 D 0, and we arrive predictably at the fieldC of complex numbers. It is easy to see that, given a function f D uCiv : C �!C,

it is differentiable in a sense of Definition 1 if it is holomorphic. And, of course, its components u, v provide solutions to Equation (8).

4.2. The wave equation

It is given by �
@2

@x2
�
@2

@y2

�
u.x, y/D 0. (14)

Thus, we have P.�0, �1/D �
2
0 � �

2
1 . Hence, Equation (11) becomes

12 � e2 D 0,

because we are interested in non-real solutions, then we arrive to the algebra of hyperbolic numbers DD fa0Ca1e j a0, a1 2Rg, where
e2 D 1, e¤˙1; see [11].

A function f .x, y/D u.x, y/C ev.x, y/, where u, v : R2!R, is differentiable if the following Cauchy–Riemann conditions are fulfilled:

@u

@x
.x, y/D

@v

@y
.x, y/;

@

@y
u.x, y/D

@

@x
v.x, y/. (15)

Therefore, the functions u, v are solutions to the wave equation.

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2013
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For hyperbolic functions f D uCev, an analogue of the complex holomorphic function theory is known, see [11], where the derivative
of f is introduced in the usual way; that is, if zD xC ey, hD h1C eh2, then

f 0.z0/D lim
h!0

f .z0C h/� f .z/

h

without intersecting zero divisors of D. The function f is hyperbolic holomorphic (that is, it has a derivative everywhere) if and only if

@f

@Nz
:D

�
@f

@x
C e

@f

@y

�
D 0, (16)

which is equivalent to Equation (15). Thus, the differentiability in hyperbolic number’s case turns out to be equivalent to a more classic
approach.

Remark 3. Using hyperbolic numbers, the wave operator in Equation (14) admits a factorization

@2

@x2
�
@2

@y2
D

�
@

@x
C e

@

@y

��
@

@x
� e

@

@y

�
,

in a similar manner as the Laplace operator in complex case.

4.3. The biwave equation

The biwave equation is given by

�
@2

@x2
�
@2

@y2

�2

u.x, y/D 0, (17)

and it has been obtained in [9] in the context of random evolutions and studied in [12]. In this case, we have P.�0, �1/D
�
�2

0 � �
2
1

�2
.

It is easy to see that for this case, we can consider the algebra of dual numbers [13], PD fa0C a1� j a0, a1 2Rg, where �2 D 0.

According to Theorem 2, we have to find a basis Ee1, Ee2 such that
�
Ee 2

1 � Ee
2

2

�2
D E0. For this purpose, the case Ee 2

1 � Ee
2

2 ¤
E0

results interesting.
Let us define Ee1 D ˛1C ˛2� and Ee2 D ˇ1C ˇ2�, then we obtain

Ee 2
1 D ˛

2
1 C 2˛1˛2�, Ee 2

2 D ˇ
2
1 C 2ˇ1ˇ2�. (18)

Now, suppose that Ee 2
1 � Ee

2
2 D �. Then, it follows from Equation (18) that

˛1 D˙ˇ1

˛1.ˇ2˙ ˛2/D
1

2
,

or

Ee1 D ˛1C ˛2 �

Ee2 D˙

�
˛1C

�
˛2 �

1

2˛1

��
.

Assume a function Ef : P! P, such that

Ef .x, y/D u1.x, y/Ee1C u2.x, y/Ee2, x, y 2R.

In accordance to Remark 1, the function Ef .x, y/ is monogenic if

Ee1
@

@y
u1.x, y/C Ee2

@

@y
u2.x, y/D Ee2Ee

�1

1

�
Ee1
@

@x
u1.x, y/C Ee2

@

@x
u1.x, y/

�
.

For the particular case ˛1 D ˛2 D 1, we have Ee1 D 1C �, Ee2 D 1C �=2, and consequently

@

@y
u1.x, y/C

@

@y
u2.x, y/D

@

@x
u1.x, y/C

@

@x
u2.x, y/;

@

@y
u1.x, y/C

1

2

@

@y
u2.x, y/D

1

2

@

@x
u1.x, y/.

If we consider distinct real numbers ˛1 ¤ 0 and ˛2, then we can obtain different systems of first-order linear PDEs whose solutions
are solutions of the biwave equation (17).

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2013
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4.4. The three-dimensional Laplace equation

The three-dimensional Laplace equation is given by�
@2

@x2
C
@2

@y2
C
@2

@z2

�
u.x, y, z/D 0. (19)

This equation implies the polynomial P.�0, �1, �2/ D �
2
0 C �

2
1 C �

2
2 , and Equation (11) has the following view 1C e2

1 C e2
2 D 0. In this

case, we can use the bicomplex algebra BD fa0 C a1iC a2jC a3ej ai 2Rg.

It is easy to see that 1C 1
2 i2C 1

2 j2 D 0. So, we should consider B with the basis Ee0 D 1, Ee1 D
1p

2
i, Ee2 D

1p
2

j, and Ee3 D
1p

2
e.

Now, suppose Bo D
˚

a0Ee0C a1Ee1C a2Ee2j ak 2R
�

is a subspace of B.

Consider a function Ef : Bo! B, namely,

Ef .x, y, z/D u0.x, y, z/C u1.x, y, z/
1
p

2
iC u2.x, y, z/

1
p

2
jC u3.x, y, z/

1
p

2
e

where x, y, z 2R and uk : R3!R, kD 0, 1, 2, 3.

According to Theorem 2, if the function Ef is monogenic, then uk.x, y, z/ are solutions of Equation (19).

So, let us write the Cauchy–Riemann type of conditions for Ef :

@

@y
u0.x, y, z/C

1
p

2
i
@

@y
u1.x, y, z/C

1
p

2
j
@

@y
u2.x, y, z/C

1
p

2
e
@

@y
u3.x, y, z/

D
1
p

2
i
@

@x
u0.x, y, z/�

1

2

@

@x
u1.x, y, z/C

1

2
e
@

@x
u2.x, y, z/�

1

2
j
@

@x
u3.x, y, z/;

@

@z
u0.x, y, z/C

1
p

2
i
@

@z
u1.x, y, z/C

1
p

2
j
@

@z
u2.x, y, z/C

1
p

2
e
@

@z
u3.x, y, z/

D
1
p

2
j
@

@x
u0.x, y, z/C

1
p

2
e
@

@x
u1.x, y, z/�

@

@x
u2.x, y, z/�

1
p

2
i
@

@x
u3.x, y, z/.

Therefore, we have four pairs of equations:

1.
@

@y
u0.x, y, z/D�

1

2

@

@x
u1.x, y, z/,

@

@y
u1.x, y, z/D

@

@x
u0.x, y, z/;

2.
@

@y
u2.x, y, z/D�

1
p

2

@

@x
u3.x, y, z/,

@

@y
u3.x, y, z/D

1
p

2

@

@x
u2.x, y, z/;

3.
@

@z
u0.x, y, z/D�

@

@x
u2.x, y, z/,

@

@z
u2.x, y, z/D

@

@x
u0.x, y, z/;

4.
@

@z
u1.x, y, z/D�

@

@x
u3.x, y, z/,

@

@z
u3.x, y, z/D

@

@x
u1.x, y, z/.

It is interesting to observe that cases (3) and (4) are Cauchy–Riemann conditions with respect to the corresponding variables. For
instance, case (3) is a Cauchy–Riemann condition for u0.x, y, z/ and u1.x, y, z/with respect to the variables x and z. Hence, we obtain the
two-dimensional Laplace equations

@2

@x2
u0.x, y, z/C

@2

@z2
u0.x, y, z/D 0,

@2

@x2
u2.x, y, z/C

@2

@z2
u2.x, y, z/D 0.

Furthermore, it follows from case (1) that

@2

@x2
u0.x, y, z/C 2

@2

@y2
u0.x, y, z/D 0,

2
@2

@x2
u1.x, y, z/C

@2

@y2
u1.x, y, z/D 0.

In addition, from case (2), we have

@2

@x2
u2.x, y, z/C 2

@2

@y2
u2.x, y, z/D 0,

@2

@x2
u3.x, y, z/C 2

@2

@y2
u3.x, y, z/D 0.

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2013
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Much in the same way, we can study the four-dimensional Laplace equation.
Now, let us consider the example of a complex differential equation.

4.4.1. The two-dimensional complex wave equation. The two-dimensional complex wave equation is given by 
@2

@z2
1

�
@2

@z2
2

!
u.z1, z2/D 0, (20)

where z1, z2 are complex. Thus, we have P.�0, �1/D �
2
0 � �

2
1 , and Equation (11) has the following view 1� e2

1 D 0. For this case, we can
use the bicomplex algebra as a two-dimensional commutative algebra over C of the following presentation faC ebg, where a, b 2 C,
e2 D 1, ie D ei. By stating that e1 D e, we obtain a function f .z1, z2/ D u.z1, z2/C ev.z1, z2/, where u, v : C2 ! C, is monogenic if the
following Cauchy–Riemann conditions are fulfilled:

@

@z1
u.z1, z2/D

@

@z1
v.z1, z2/;

@

@z2
u.z1, z2/D

@

@z1
v.z1, z2/.

We should recall that these are complex derivatives.

5. Infinite-dimensional case

Let us consider the case when A is an infinite-dimensional commutative unital algebra over K , with the basis ek , k D 0, 1, 2 : : :, and B is
an .mC 1/-dimensional subspace of A (similarly to the finite-dimensional case).

Now, consider a function f : B! A of the following form

f .Ex/D
1X

kD0

uk.Ex/ ek ,

where uk.Ex/D uk.x0, x1, : : : , xm/ are real or complex functions.
Similarly to Theorem 1, it can be proved that the function f is monogenic if and only if

@f

@xk
D ek

@f

@x0
, kD 0, 1, 2, : : : . (21)

5.1. Example: Fourier algebra

Suppose that A is the R-algebra of Fourier series with the basis ek D cos kt, k D 0, 1, 2, : : :, and B is the following subspace
BD f

Pm
kD0 xk ek , xk 2Rg. It is easily verified that ekem D

1
2 .ek�m C ekCm/, k �m.

The Cauchy–Riemann type conditions for this case follows from Equation (21)

@u0

@x1
D

1

2

@u1

@x0
,

@u1

@x1
D
@u0

@x0
C

1

2

@u2

@x0
,

and

@uk

@x1
D

1

2

�
@uk�1

@x0
C
@ukC1

@x0

�
, kD 2, 3, : : : ;

similarly,

@u0

@x2
D

1

2

@u2

@x0
,

@u1

@x2
D

1

2

�
@u1

@x0
C
@u3

@x0

�
,

@u2

@x2
D
@u0

@x0
C

1

2

@u4

@x0
, and

@uk

@x2
D
@uk�2

@x0
C

1

2

@ukC2

@x0
, kD 2, 3, : : : ;

and so on.
Now, let us consider the case when mD 1, hence BD fxC y cos t, x, y 2Rg. Then,

f .w/D f .xC y cos t/D u0.x, y/C
1X

kD1

uk.x, y/ cos kt.

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2013



A. POGORUI, R. M. RODRíGUEZ-DAGNINO AND M. SHAPIRO

Therefore,

uk.x, y/D
2

�

Z �

0
f .xC y cos t/ cos kt dt (22)

and the Cauchy–Riemann conditions can be written as

@u0

@y
D

1

2

@u1

@x
,

@u1

@y
D
@u0

@x
C

1

2

@u2

@x
,

@uk

@y
D

1

2

�
@uk�1

@x
C
@ukC1

@x

�
, kD 2, 3, : : : .

In order to find the solutions for u0 and u1, let us define

p.x, y/ :D u0.x, y/ and q.x, y/ :D
y u1.x, y/

2
.

Hence, we have

y
@p.x, y/

@y
D
@q.x, y/

@x
. (23)

Next, let us show that

@u2

@x
D
@u1

@y
�

u1

y
. (24)

Indeed, taking into account Equation (21), we have to show that

2

�

Z �

0
f 0.w/ cos 2t dt�

2

�

Z �

0
f 0.w/ cos2 t dtC

2

y�

Z �

0
f .w/ cos t dtD 0.

Integrating by parts, we have

2

y�

Z �

0
f .w/ cos t dtD

2

�

Z �

0
f 0.w/ sin2 t dt

that proves Equation (23).
Substituting Equation (24) in the second equation of the Cauchy–Riemann conditions, we have

@u1

@y
� 2

@u0

@x
C

u1

y
D 0.

Whence

@

@y

�
2

y
q.x, y/

�
� 2

@p.x, y/

@x
C

2

y2
q.x, y/D 0

or

y
@p.x, y/

@x
D
@q.x, y/

@y
. (25)

It follows from Equations (24) and (25) that

y

�
@2p.x, y/

@x2
�
@2p.x, y/

@y2

�
�
@p.x, y/

@y
D 0. (26)

and

y

�
@2q.x, y/

@x2
�
@2q.x, y/

@y2

�
C
@q.x, y/

@y
D 0. (27)

Thus, by defining f .w/D ew D exCy cos t , we obtain the following solution for Equation (26)

p.x, y/D ex
Z �

0
ey cos tdt

and

q.x, y/D ex
Z �

0
ey cos t cos t dt

for Equation (27).
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6. The bi-telegraph equation

Consider the following equation

�
@2

@t2
�
@2

@y2

�2

gc .t, y/� �4gc .t, y/D 0, (28)

This equation is called the bi-telegraph equation, and it was obtained in [9] after finding the distribution of the position of a particle
that moves on the line driven by a point process with two-Erlang sojourn times.

By applying the transformation f .t, x/D e�tg .t, x/ and changing the variable y D x
v , we reduce Equation (28) to

�
@2

@t2
�
@2

@y2

�2

f .t, y, z/�
@4

@z4
f .t, y, z/D 0. (29)

We will seek for solutions of Equation (29) by using the theory of differentiable functions on commutative algebras.
Let A0 be a four-dimensional commutative algebra over R, assume that the set fe0, e1, e2, e3g is a basis of A0 with the Cayley table,

ei ej D ei˚j ,

where i˚ jD iC j .mod 4/.
The algebra A0 has the following matrix representation:

ek ! Pk D Pk
1,

where the basis el D el , lD 0, 1, 2, 3, and e has the following matrix representation

e! P1 D

2
664

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

3
775 .

Let us state

� l
0 D el , lD 0, 1, 2, 3,

� l
1 D el i sin s, lD 0, 1, 2, 3,

� l
2 D el cos s, lD 0, 1, 2, 3,

� l
2k D el cos ks, � l

2kC1 D el i sin.kC 1/s, lD 0, 1, 2, 3,

kD 0, 1, 2, : : : .

Thus,

�0
2n�

0
2k D

1

2

	
�0

2.n�k/C �
0
2.nCk/



, n� k,

�
l1
2nC1�

l2
2kC1 D

1

2

	
�

l1
L

l2
2.n�k/ � �

l1
L

l2
2.nCk/



, n� k,

�
l1
2nC1�

l2
2k D

1

2

	
�

l1
L

l2
2.n�k/C1C �

l1
L

l2
2.nCk/C1



, n� k.

Let us introduce the following algebra

AD

(
C1X
kD0

3X
lD0

	
al

2k�
l
2k C al

2kC1�
l
2kC1


 ˇ̌̌ˇ̌ al
j 2R

)
,

where
PC1

kD0

P3
lD0

�ˇ̌
al

2k

ˇ̌2
C
ˇ̌̌
al

2kC1

ˇ̌̌2�
<C1. It is easily verified that A is commutative.
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We consider the subspace BD
˚

a0�
1
1 C a1�

1
2 C a2�

0
0

ˇ̌
ai 2R

�
of the algebra A.

Let us introduce the function

f : B! A

(f .t, y, z/D f .e1 .t cos sC y i sin s/C z// as follows

f .t, y, z/D
C1X
kD0

3X
lD0

	
vl

2k .t, y, z/ � l
2k C vl

2kC1 .t, y, z/ � l
2kC1



.

The function f is called B=A differentiable at x0 2 B if there exists f
0

.x0/ 2 A such that for any h 2 B,

f
0

.x0/hD lim
"!0

f .x0C "h/� f .x0/

"
.

It is easily seen that if f is B=A differentiable, then

@

@t
fD e1cos s

@

@z
f (30)

and

@

@y
fD e1 i sin s

@

@z
f. (31)

In this case, all vl
2k .t, y, z/ are solutions of Equation (29). Indeed,

�
@2

@t2
�
@2

@y2

�2

f�
@4

@z4
fD e4

1

	
cos2s� .i sin s/2


2
� 1D 0.

In the sequel, we denote by e the element e1.
We will seek for a solution of Equation (29) in the following form

gc .e .t cos sC y i sin s//D ee.t cos sCy i sin s/.

Because f .e .t cos sC y i sin s/C z/D gc.e .t cos sC y i sin s// ez , we have

vl
k .t, y, z/D ul

k .t, y/ ez , lD 0, 1, 2, 3, kD 0, 1, 2, : : : ,

where gc .t, y/D
PC1

kD0

P3
lD0

	
ul

2k .t, y/ � l
2k C ul

2kC1 .t, y/ � l
2kC1



.

Therefore, we obtain functions ul
0 .t, y/ for t � jyj from the following equation

3X
lD0

ul
0 .t, y/ � l

0 D

3X
lD0

ul
0 .t, y/ el D

1

2�

Z �

��
ee.t cos sCy i sin s/ dsD J0

�
e i
q

y2 � t2

�
D I0

�
e
q

t2 � y2

�
,

where Ik (respectively, Jk) is the modified Bessel (respectively, Bessel) function of the first kind and kth order.
It follows from Equations (30) and (31), the following Cauchy–Riemann type conditions

@

@t
ul
L

1
0 D

1

2
ul

2,

@

@t
ul
L

1
1 D

1

2
ul

3,

@

@t
ul
L

1
2 D ul

0C
1

2
ul

4,

@

@t
ul
L

1
2k�1 D

1

2

	
ul

2k�3C ul
2kC1



,

@

@t
ul
L

1
2k D

1

2

	
ul

2.k�1/C ul
2.kC1/



,

kD 2, 3, : : : ;

(32)
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and

@

@y
ul
L

1
0 D�

1

2
ul

1,

@

@y
ul
L

1
1 D ul

0 �
1

2
ul

4,

@

@y
ul
L

1
2 D�

1

2
ul

3,

@

@y
ul
L

1
2kC1 D

1

2

	
ul

2k � ul
2.kC2/



,

@

@y
ul
L

1
2kC2 D

1

2

	
ul

2k�1 � ul
2kC3



,

kD 1, 2, : : : .

(33)

By using Equations (32) and (33) and functions ul
0 .t, y/, we can obtain recursively function ul

k .t, y/ for any k � 1, which will be used
for solution of Equation (28).

Taking into account that gc .e .t cos sC y i sin s//D ee.t cos sCy i sin s/, we have

u0
0 .t, y/C eu1

0 .t, y/C e2u2
0 .t, y/C e3u3

0 .t, y/ D
1

2�

Z �

��
ee.t cos sCy i sin s/ dsD I0

�
e
q

t2 � y2

�
.

It is easily seen that

I0

�
e
q

t2 � y2

�
D

I0
	p

t2 � y2


C I0

	
i
p

t2 � y2



2
C e2

0
@ I0

	p
t2 � y2



� I0

	
i
p

t2 � y2



2

1
A

D
I0
	p

t2 � y2


C J0

	p
t2 � y2



2

C e2
I0
	p

t2 � y2


� J0

	p
t2 � y2



2

.

Therefore, for t � jyj, we have u1
0 .t, y/D u3

0 .t, y/D 0 and

u0
0 .t, y/D

I0
	p

t2 � y2


C J0

	p
t2 � y2



2

,

u2
0 .t, y/D

I0
	p

t2 � y2


� J0

	p
t2 � y2



2

.

It follows from the first two equations of Equation (33) that

u1
1 D�2

@

@y
u2

0 D�
@
h

I0
	p

t2 � y2


� J0

	p
t2 � y2


i
@y

D
yp

t2 � y2

�
I1

�q
t2 � y2

�
C J1

�q
t2 � y2

��
,

u3
1 D�2

@

@y
u0

0 D�
@
h

I0
	p

t2 � y2


C J0

	p
t2 � y2


i
@y

D
yp

t2 � y2

�
I1

�q
t2 � y2

�
� J1

�q
t2 � y2

��
,

u0
1 D�2

@

@y
u1

0 D 0,

u2
1 D�2

@

@y
u3

0 D 0.

Then it follows from the Cauchy–Riemann type conditions (32) that

u0
2 .t, y/D 2

@ u1
0 .t, y/

@t
D 0;

u1
2 .t, y/D 2

@ u2
0 .t, y/

@t
D
@
	

I0
	p

t2 � y2


� J0

	p
t2 � y2




@t

D
tp

t2 � y2

�
I1

�q
t2 � y2

�
C J1

�q
t2 � y2

��
;

u2
2 .t, y/D 2

@ u3
0 .t, y/

@y
D 0;

u3
2 .t, y/D 2

@ u0
0 .t, y/

@t
D
@
h

I0
	p

t2 � y2


C J0

	p
t2 � y2


i
@t

D
tp

t2 � y2

�
I1

�q
t2 � y2

�
� J1

�q
t2 � y2

��
.
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Similarly, for ul
3, we have

u0
3 D 2

@

@t
u1

1 D 2
@

@t

"
yp

t2 � y2

�
I1

�q
t2 � y2

�
C J1

�q
t2 � y2

��#
D�

2tyq�
t2 � y2

�3

�
I1

�q
t2 � y2

�
C J1

�q
t2 � y2

��

C
ty

t2 � y2

�
I0

�q
t2 � y2

�
C I2

�q
t2 � y2

�
C J0

�q
t2 � y2

�
� J2

�q
t2 � y2

��
;

u2
3 D 2

@

@t
u3

1 D 2
@

@t

"
yp

t2 � y2

�
I1

�q
t2 � y2

�
� J1

�q
t2 � y2

��#
D�

2tyq�
t2 � y2

�3

�
I1

�q
t2 � y2

�
� J1

�q
t2 � y2

��

C
2ty

t2 � y2

�
I0

�q
t2 � y2

�
C I2

�q
t2 � y2

�
� J0

�q
t2 � y2

�
C J2

�q
t2 � y2

��
.

It is easily seen that u1
3 D u3

3 D 0.
Next, it follows from Equation (32) that

u0
4 D 2

@ u1
2

@t
� 2u0

0 D 2
@

@t

tp
t2 � y2

�
I1

�q
t2 � y2

�
C J1

�q
t2 � y2

��
� 2u0

0 D
�2y2q�
t2 � y2

�3

�
I1

�q
t2 � y2

�
C J1

�q
t2 � y2

��

C
t2

t2 � y2

�
I0

�q
t2 � y2

�
C I2

�q
t2 � y2

�
C J0

�q
t2 � y2

�
� J2

�q
t2 � y2

��
� I0

�q
t2 � y2

�
� J0

�q
t2 � y2

�
;

u2
4 D 2

 
@ u3

2

@t
� u2

0

!
D

�2y2q�
t2 � y2

�3

�
I1

�q
t2 � y2

�
� J1

�q
t2 � y2

��

C
t2

t2 � y2

�
I0

�q
t2 � y2

�
C I2

�q
t2 � y2

�
� J0

�q
t2 � y2

�
C J2

�q
t2 � y2

��
� I0

�q
t2 � y2

�
C J0

�q
t2 � y2

�
.

In addition, it is easily verified that u1
4 D u3

4 D 0.
Continuing this process, we can calculate um

k , m D 0, 1, 2, 3 for any k � 1. The number of um
k in the extension of a solution of the

equation depends on the initial conditions for the solution.
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