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Abstract 
 
In this paper we study a continuous time random walk in the line with two boundaries [a,b], a < b. The par-
ticle can move in any of two directions with different velocities v1 and v2. We consider a special type of 
boundary which can trap the particle for a random time. We found closed-form expressions for the stationary 
distribution of the position of the particle not only for the alternating Markov process but also for a broad 
class of semi-Markov processes. 
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1. Introduction 
 
In this paper we study the stationary distribution of a 
one-dimensional random motion performed with two 
velocities, where the random times separating consecu-
tive velocity changes perform an alternating Markov 
process. The sojourn times of this process are exponen-
tially distributed random variables. There are many pa-
pers on random motion devoted to analysis of models in 
which motions are driven by a homogeneous Poisson 
process [1-4], however we have not found any paper 
investigating the stationary distribution of these proc-
esses. 

We assume that the particle moves on the line   in 
the following manner: At each instant it moves according 
to one of two velocities, namely 1 0v   or 2 0v   
Starting at the position 0x   the particle continues its 
motion with velocity 1 0v   during random time 1τ , 
where 1τ  is an exponential random variable with pa-
rameter 1λ ,then the particle moves with velocity 2 0v   
during random time 2τ , where 2τ  is an exponential 
distributed random variable with parameter 2λ . Fur-
thermore, the particle moves with velocity 1 0v   and 
so on. When the particle reaches boundary a or b it will 
stay at that boundary a random time given by the time 
the particle remains in the same direction up to the time 
such a particle changes direction. Similar partly reflect-
ing (or trapping) boundaries have been considered in [5], 
and they may be found in optical photon propagation in 

turbid medium or chemical processes with sticky layers 
or boundaries. 

We also consider a generalization of these results for 
semi-Markov processes, i.e., when the random variables 

1τ  and 2τ  are different from exponential. This paper is 
divided in two main parts, namely the Markov case and 
the generalization to the semi-Markov modeling. Our 
main result, in the first part of this paper, consists on 
finding the stationary distribution of the well-known 
telegrapher process on the line with delays in reflecting 
boundaries. In the second part, we find the stationary 
distribution of a more general continuous time random 
walk when the sojourn times are generally distributed. 
 
2. Markov Case 
 
2.1. Mathematical Modeling 
 
Let us set the probability space (Ω,  , P). On the phase 
space E = {1,2} consider an alternating Markov process 
{ (t); t   0} having the sojourn time iτ  correspond-

ing to the state iE , and transition probability matrix 
of the embedded 

Markov chain 

0 1

1 0
P .

 
  
 

                 (1) 

Denote by {x(t); t ≥ 0} the position of the particle at 
time t. Consider the function ( )C x  on the space E 
which is defined as *We thank ITESM through the Research Chair in Telecommunications.
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  1

2

if 1

if 2

v x
C x

v x .


  

            (2) 

The position of the particle at any time t can be ex-
pressed as 

    0 0
,

t
x t x C ξ s ds              (3) 

where the starting point 0 [ , ].x a b   

Equation (3) determines the random evolution of the 
particle in the alternating Markov medium {  ξ t ; t   

0} [6,7]. So, x(t) is the well-known one-dimensional 
telegraph process [1,2]. We assume that a < b are two 
delaying or adhesive boundaries on the line such that if a 
particle reaches boundary a or b then it is delayed until 
the instant that the process changes velocity. 

Now, consider the two-component stochastic process 

     { ( , }ζ t x t ξ t  on the phase space   = [a,b] 

 {1,2}. The process  ζ t  is a homogeneous Markov 

process with the following generating operator [6,7]: 

         , , , , , , 1, 2,i

d
A x i C x i x i λ P x i x i i

dx
          

(4) 

where    ,1 ,2P x x  and    , 2 ,1P x x .    

 
2.2. Stationary Distribution 
 
Denote by ( )π  the stationary distribution of ( )ζ t . The 

analysis of the properties of the process ( )ζ t leads up to 

the conclusion that the stationary distribution π  has 
atoms at points (a, 2) and (b, 1), and we denote them as 

[ , 2]π a and [ ,1]π b respectively. The continuous part of 

 π  is denoted as  , ,π x i iE .  

Since  π  is the stationary distribution of ( )ζ t then 

for any function ( )  from the domain of the operator A 

we have 

    0A z dπ z 


               (5) 

Now, let *A  be the conjugate or adjoint operator of 
A. Then by changing the order of integration in (5) (inte-
grating by parts), we can obtain the following expres-

sions for the continuous part of 0*A π   

     

     

1 1 2

2 2 1

,1 ,1 , 2 0

, 2 , 2 ,1 0

   

   


d
v π x λ π x λ π x

dx
d

v π x λ π x λ π x .
dx

    (6) 

Similarly, from (5) we obtain  

   
   
   
   

1 1

1 2

2 2

2 1

,1 ,1 0

,1 , 2 0

, 2 ,2 0

, 2 ,1 0

λ π b v π b

λ π b v π b

λ π a v π a

λ π a v π a .









  

  


 


 

             (7) 

where    , : lim ,x bπ b i π x i
 and  , :π a i  lim x a↓  

 ,π x i  for i=1,2.  

It follows from the set (6) that 

   1 2,1 , 2 0,
d d

v π x v π x
dx dx

   

or equivalently    1 2,1 ,2 constantv π x v π x k .    

By using (7), we get  1 ,1v π b   2 ,2 0,v π b 
 

consequently 0 andk   

   1 2,1 ,2 0v π x v π x             (8) 

for all  ,x a b . 

By obtaining  , 2π x  from (8) and substituting such 

a result into the first equation in the set (6) we have 

     1
1 1 2

2

,1 ,1 ,1 0  
vd

v π x λ π x λ π x .
dx v

    (9) 

Solving (9) we obtain for the continuous part of π  

 ,1 μxπ x Ce              (10) 

And 

  1

2

, 2 ,μxv
π x C e

v
             (11) 

where 1 2

1 2

λ λ
μ .

v v
    

Now, from (7) we obtain for atoms 

1

2

[ ,2]  μav
π a Ce

λ
            (12) 

and 

1

1

[ ,1]  μbv
π b Ce .

λ
          (13) 

The factor C  can be calculated from the normaliza-
tion equation 

  1,π z dz 


           (14) 

or equivalently 

     ,1 , 2 , 2 [ ,1] 1
b b

a a

π x dx π x dx π a π b .         (15) 

It follows from (15) that 
1

1 2 1 1 1 2

1 2 2 2

1 1


      
       
     

μb μav v v v v v
C e e .

λ μ v λ μ v
 

(16) 
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We should notice that the stationary distribution ( )x  

of the process ( )x t  over the interval ( , )a b  is  x  

   ,1 ,2π x π x .   

 
2.3. Balanced and One-Boundary Cases 

 
2.3.1. Balanced Case 

Let us call the balanced case when 1 2

1 2

0
λ λ

μ .
v v

    In 

this case we can observe that  ,1π x  and  , 2π x  do 

not depend on x. Hence, the continuous part of the sta-
tionary distribution of the process ( )x t  is uniform over 

the open interval ( , )a b . Now, the factor C , say BC , 

reduces to 

2

2 1

,
( )( )B

v
C

v v b a δ


  
           (17) 

where 1 2

1 2

v v
δ .

λ λ
     

Therefore, the stationary distribution can be expressed 
as 

    1

2

,1 and ,2B B

v
π x C π x C .

v
           (18) 

Thus,  

      1
,1 , 2 ,x π x π x

b a δ
  

 
       (19) 

and the atoms are given by 

  1

2

,2 and [ ,1] B B

v
π a δ C π b δC .

v
           (20) 

 
2.3.2. One-Boundary Case 
Now, suppose that there is just the left boundary a, and 
the starting position of the process ( )x t  is 

 0 ,x a .   Then for 0μ   we have the factor C , 

say OC , given by 

2

1 2 1 2

2

( )

μa

O

v e
C .

v v v v

λ μ





           (21) 

Hence, 

    1

2

 ,1 and , 2 ,μx μx
O O

v
π x C e π x C e

v
       (22) 

with the atom 

  1 2

2 1 2
1 2

, 2
( )






v v
π a .

λ v v
v v

μ

         (23) 

3. Semi-Markov Case 
 
3.1. Mathematical Model 
 
The particle movement is given by the equation  

  0
0

( ( ))
t

x t x C ψ s ds.               (24) 

where 0 [ , ]x a b  is the particle starting point inside the 

two reflecting boundaries a b , and ( )ψ s  is an alter-

nating semi-Markov process with phase space E = {1,2} 
and embedded transition probability matrix P given in 

(1). The sojourn time at state  is a random variable 
with a common cumulative distribution function (cdf) 

  ,iG t iE . We assume that  1G t  and  2G t  are 

not degenerated, and that their probability density func-
tion (pdf) and first moment, say  

( )
( ) i

i

dG t
g t

dt
  and 

0

( )i im tg t dt


   respectively, exist. 

Now, the hazard rates are given by 
 

( )
( )

1
i

i
i

g t
r t

G t



, and 

assume   11 0C v   and   22 0C v  .  

Define   sup{0 : ( ) ( )}τ t := t u t ψ u ψ t    and con-

sider the three-component process      ( , ,χ t τ t x t
 

 )ψ t  on the phase space    0, , {1,2}a b   W . It 

is well-known that  χ t  is a Markov process with the 

following infinitesimal operator [8,9] 

   

       

, , , ,

0, , , , ( , ) , ,i

Aφ τ x i φ τ x i
τ

r τ Pφ x i φ τ b i C x i φ τ x i
x


 



    

  (25) 

with boundary conditions say 
( , , 2)φ τ b

τ





( , ,1)φ τ a

τ


  

0 and  , ,τ x i W . The function  , ,φ τ x i  is con-

tinuously differentiable on τ  and x . We also have that 

   0, ,1 0, ,2Pφ x φ x  and  0, , 2Pφ x   0, ,1φ x .  

 
3.2. Stationary Distribution 
 
Denote by  ρ   the stationary distribution of the sto-

chastic process  x t .  This stationary distribution has 

atoms at points  , , 2τ a  and  , ,1τ b , and we denote 

them as [ , ,2]ρ τ a  and [ , ,1]ρ τ b , respectively. The con-

tinuous part of ρ  is denoted as  , ,ρ τ x i , i .E  

For any function  φ   belonging to the domain of the 

operator A  we have  
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   
w

0Aφ z ρ dz .             (26) 

By changing the order of integration (integration by 

parts), we obtain expressions for *A  , where *A  is the 

adjoint operator of A , namely 

     , , , , , , 0, 1,2,i iρ τ x i r ρ τ x i v ρ τ x i i
τ x

 
   

 
 

(27) 
and 

     
0

, , 0, , ; , , 1, 2,ir τ ρ τ x i dτ ρ x j i j i j


      (28) 

with the limiting behavior  , , 0,ρ x i  for all 

 ,x a b . 

For the atoms we have 

       2 2, , 2 , , 2 , , 2 0ρ τ a r τ ρ τ a v ρ τ a
τ


  


  (29) 

       1 1, ,1 , ,1 , ,1 0ρ τ b r τ ρ τ b v ρ τ b
τ


  


   (30) 

where  

   , , : lim , ,
x b

ρ τ b i ρ τ x i


  and 

   , , : lim , , ,
x a

ρ τ a i ρ τ x i


 for 1, 2i .  We also have 

     , , 2 0, ,2 , ,1ρ a ρ a ρ b      0, ,1 0ρ b    

Now, by taking into account boundary conditions we 
have 

   1 20 0
, ,1 ( , ,, 2)r τ ρ τ b dτ v ρ τ b dτ

          (31) 

and 

   2 10 0
, , 2 ( , ,1)r τ ρ τ a dτ v ρ τ a dτ.

          (32) 

By solving (27) we obtain 

    0
( , , ) exp , 1, 2,

τ

i i iρ τ x i f x v τ r t dt i       (33) 

where 1
if  .  

By substituting (33) into (28) and by noting that  

    
0

exp 1
τ

i ir t dt G τ    

we obtain 

     
0

, , , 1, 2i i i jf x v τ g τ dτ f x i j i j .


       (34) 

It follows from (34) that 

       1 2 1 20 0 i if x v τ v t g τ g t dτdt f x .
 

       (35) 

From (34) and (35) we can assume that the functions 

 if x  are of the form 

  λ , 1,2x
i if x c e i .              (36) 

Now, by substituting (36) into (35), we obtain 

   1 1 2 2ˆ ˆ 1g λv g λv             (37) 

where    
0

ˆ st
i ig s g t e dt

   is the Laplace transform of 

  , 1,2ig t i . The set of pdf’s for which (37) exists is 

similar to the set of functions which satisfies the Cramér 
condition. 

Lemma 3.2.1 If 1 1 2 2 0,v m v m   where 1m   

 
0

,itg t dt


  and there exist 1 2 1 2 1, , 0p p σ     and 

2 0σ   such that      1 1 1 2 2, , ,g t σ t g t     2 ,σ
 

 1 2,t p p and  1 1 2 2 1 1 2 10 ,0v v p v v p      . 

Then, there exists 0 0λ   which satisfies (37). 

Proof Let us define      1 1 2 2ˆ ˆ ,p λ g λv g λv  so 

   1 1 2 20 0p v m v m .      

Now, suppose    1 1 2 20 0p v m v m .      then  

     2 21 2

1 1
1 2 ,

pv λt v λt

p
p λ e g t dt e g t dt   




 

hence 

    1 1 1 2 2 1 2 21 2

1 2

asλ .

v λ v λ v λp v λpσ σ
p λ e e e e

v v
     

   

 

 

The case    1 1 2 20 0p v m v m .      can be reduced 

to the previous one by assuming s t   and using 

1 2 2 20 v v p  . 

Theorem 3.2.1 
A) If 1 1 2 2 0v m v m   and 0 0λ   is the solution for 

(37), and   0 1
10

1λ v τe G τ dτ
     , then there exists a 

stationary distribution of  x t  with the following con-

tinuous part: 

      0 1
1 1, ,1 1 ,λ x v τρ τ x c e G τ         (38) 

        0 2
1 1 0 1 2ˆ, , 2 1 λ x v τρ τ x c g λ v e G τ     (39) 

and atoms 

  
0 1

0
1 1 1

0 1

1
[ , ,1] 1 ,

λ v τ
λ b e

ρ τ b c v e G τ
λ v


        (40) 

      
0 2

0
1 2 1 0 1 2

0 2

1
ˆ, , 2 1


 

λ v τ
λ a e

ρ τ x c v g λ v e G τ .
λ v

  (41) 

The normalization factor c1 can be calculated from 

 
w

1ρ dz .  

B) If 1 1 2 2 0v m v m   and there exists the second 

moment  2

0 it g t dt


 , iE , then the stationary measure 

of  x t  is as follows 
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         2 1 2 2, ,1 1 , , , 2 1ρ τ x c G τ ρ τ x c G τ     (42) 

with atoms 

         2 1 1 2 2 2, ,1 1 , , , 2 1ρ τ b c v τ G τ ρ τ a c v τ G τ     

(43) 

where 

 
1(2) (2)

1 2
2 1 2 1 2( )

2 2

m m
c m m b a v v .


 

     
 

 

Proof It is easy to see that   0λ
1 1

xf x c e  and 

    0
2 1 1 0 1ˆ λ xf x c g λ v e  satisfy (34). Substituting these 

functions fi into (33) we obtain (38) and (39). Therefore 
we substitute (38) and (39) into (29) and (30), then by 
solving these equations we obtain (40) and (41). 

It can be easily verified that if 1 1 2 2 0v m v m   then 

the value 0 0,λ   such that    1 0 1 2 0 2ˆ ˆ 1,g λ v g λ v  also 

satisfies (31) and (32). 
Similarly, for 1 1 2 2 0v m v m   we obtain (42) and (43) 

in the same manner as for the case 1 1 2 2 0v m v m   

when it is considered that 0 0λ .  

We should notice that the stationary measure of the 
particle position  x t  is determined by the following 

relations  

        
0

, ,1 , , 2 , for , ,ρ x ρ τ x ρ τ x dτ x a b


  
 

(44) 

       
0 0

, 2 , , 2 , ,1 , ,1ρ a ρ τ a dτ ρ b ρ τ b dτ.
 

      (45) 

Example  Markov Case 

Suppose   , 0, 1,2; 0iλ t
i i ig t λ e λ i t .     Then, 

    1 2
1 0 1 2 0 2

1 0 1 2 0 2

ˆ ˆ 1
λ λ

g λ v g λ v .
λ λ v λ λ v

  
        

Therefore, 1 2
0

1 2

,
λ λ

λ
v v

   and this case is the same as 

the one in the first part of this paper. 
Example Erlang Case 

Let    1 2
1 1 2 1, , 0, 0,λ t ptg t λ e g t p te λ p      and 

0t .  Then,  

   
2

1
1 0 1 2 0 2

1 0 1 0 2

ˆ ˆ 1,
  

      

λ p
g λ v g λ v

λ λ v p λ v
  (46) 

where we have the conditions 1 0 1 0 2an d λ λ v p λ v .   

Now, by solving (46) and taking into account the previ-
ous conditions, we obtain a unique solution for (46) 

   2

1 2 1 1 2 1 1
0

1 2

2 4

2

λ v pv v v pλ pλ
λ

v v

    



 

Since    
2

2 1 10, , ,
1

p t
r t p as t and r t λ

pt
     


 

then the Theorem 3.2.1 is applicable. 
 
4. Conclusions 
 
The two-state continuous time random walk has been 
studied by many researchers for the Markov case and 
only a few have studied for non-Markovian processes 
[10]. This basic model has many applications in physics, 
biology, chemistry, and engineering. Most of the former 
models were oriented to solve the boundary-free particle 
motion. Recently this basic model has been extended in 
several directions, such as two and three dimensions, 
with reflecting and absorbing boundaries. Only a few of 
these works consider partly reflecting boundaries [5,10], 
and references therein. However, in none of these previ-
ous works a stationary distribution for the particle posi-
tion is presented, as we did in this paper. We have in-
cluded the Markov case since it is illustrative and it mo-
tivates our analysis of the semi-Markov process.   
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