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In this article, we study properties of hyperholomorphic functions on commutative
finite-dimensional algebras. The Cauchy–Riemann type conditions for hyperholomorphic
functions is investigated. We prove that a hyperholomorphic function on a commutative finite-
dimensional algebra can be expanded in a Taylor series. We also present a technique for
computing zeros of polynomials in commutative algebras.
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1. Introduction

The development of hyperholomorphic function analysis has renewed interest in
mathematics and physics because of fruitful applications. One of the most
popular hypercomplex analysis is quaternionic analysis; however, noncommutativity
of quaternion algebra causes many intractable problems, for instance, the problem
of expansion of a hyperholomorphic quaternionic function in a Taylor series. In this
regard, hyperholomorphic analysis on commutative unitary algebras is a natural
extension of complex analysis, despite the fact that in these algebras we have the
problem of zero divisors. There are many commutative generalizations of complex
numbers, say, hyperbolic numbers, bicomplex algebra etc. [1]. In [2], it is proved
that hyperholomorphic functions on bicomplex algebra can be expanded in a
Taylor series. In this article, we generalize this result to any finite-dimensional
commutative algebra.
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2. Differentiation in finite-dimensional commutative algebra

Let A be a finite-dimensional commutative unitary algebra over K ¼ R (or C), a set of

vectors ~e0, ~e1, . . . , ~en be a basis of A, and ~e0 be algebra identity. Consider a function
~f : A! A of the following form

~f ð~x Þ ¼
Xn

k¼0

~ekukð~xÞ,

where ukð~xÞ ¼ ukðx0, x1, . . . , xnÞ are real (or complex) functions of nþ 1 arguments.

Definition 2.1 ~f ð~x Þ is called A-differentiable at a point ~x0 2 A if there exists the

function ~f 0 :A! A such that for any ~h 2 A

~h ~f 0ð~x0Þ ¼ lim
"!0

~f ~x0 þ " ~h
� �

� ~f ~x0
� �

"
, ð2:1Þ

where ~f 0 doesn’t depend on ~h.
A function ~f is said to be A-holomorphic if ~f is A-differentiable at every point of A.

Theorem 2.2 A function ~f ð~xÞ ¼
Pn

k¼0 ~ekukð~xÞ A-holomorphic if and only if there exists

the function ~f 0 :A! A such that for all k¼ 0, 1, . . . , n, and 8~x 2 A

~ek~f
0ð~xÞ ¼ lim

"!0

~f ~xþ "~ek
� �

� ~f ð~xÞ

"
, ð2:2Þ

where ~f 0 does not depend on ~ek.

Proof Suppose that (2.2) is fulfilled, then it is easily verified that

~f 0 ¼ lim
"!0

~f ~xþ "~e0
� �

� ~f ~x
� �

"
¼
Xn

k¼0

~ek
@uk
@x0

,

~e1 ~f
0 ¼ lim

"!0

~f ~xþ "~e1
� �

� ~f ð~xÞ

"
¼
Xn

k¼0

~ek
@uk
@x1
¼ ~e1

Xn

k¼0

~ek
@uk
@x0

,

..

.

~en ~f
0 ¼ lim

"!0

~f ~xþ "~en
� �

� ~f ð~xÞ

"
¼
Xn

k¼0

~ek
@uk
@xn
¼ ~en

Xn

k¼0

~ek
@uk
@x0

:

ð2:3Þ

Consider ~h ¼
Pn

k¼0 hk~ek. It follows from equation (2.3) that

h0 ~f
0 ¼ h0

Pn
k¼0

~ek
@uk
@x0

,

h1~e1 ~f
0 ¼ h1

Pn
k¼0

~ek
@uk
@x1

,

..

.

hn~en ~f
0 ¼ hn

Pn
k¼0

~ek
@uk
@xn

:
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This implies that

~h ~f 0 ¼ h0
Xn

k¼0

~ek
@uk
@x0
þ h1

Xn

k¼0

~ek
@uk
@x1
þ � � � þ hn

Xn

k¼0

~ek
@uk
@xn

¼ lim
"!0

~f ~x0 þ " ~h
� �

� ~f ~x0
� �

"
:

Furthermore, it follows from equation (2.3) that

h0
Xn

k¼0

~ek
@uk
@x0
þ h1

Xn

k¼0

~ek
@uk
@x1
þ � � � þ hn

Xn

k¼0

~ek
@uk
@xn

¼ h0
Xn

k¼0

~ek
@uk
@x0
þ h1~e1

Xn

k¼0

~ek
@uk
@x0
þ � � � þ hn~en

Xn

k¼0

~ek
@uk
@x0

:

Therefore, for every ~h 2 A

~h
Xn

k¼0

~ek
@uk
@x0
¼ lim

"!0

~f ~x0 þ " ~h
� �

� ~f ~x0
� �

"

or

~f 0 ¼
Xn

k¼0

~ek
@uk
@x0

: ð2:4Þ

g

By using equation (2.3), we have

Pn
k¼0

~ek
@uk
@x1
¼ ~e1

Xn

k¼0

~ek
@uk
@x0

,

Pn
k¼0

~ek
@uk
@x2
¼ ~e2

Xn

k¼0

~ek
@uk
@x0

,

..

.

Pn
k¼0

~ek
@uk
@xn
¼ ~en

Xn

k¼0

~ek
@uk
@x0

:

ð2:5Þ

Equation (2.5) will be called the Cauchy-Riemann type conditions. It follows from

Theorem 1.2 that if ~f ð~xÞ ¼
Pn

k¼0 ~ekukð~xÞ satisfies (1.5) then
~f is A-holomorphic.

Theorem 2.3 If ~f is A-holomorphic and uk 2 C1, k ¼ 1, . . . , n, then for all l� 1 there

exists ~f ðlÞ, which is A-holomorphic and ~f ðlÞ ¼
Pn

k¼0 ~ekð@
luk=@x

l
0Þ.

Proof It is easy to see that functions u0k ¼ ð@uk=@~x0Þ, k ¼ 1, . . . , n, satisfy conditions

(2.5) since uk 2 C1. So ~f 0 is A-holomorphic and ~f 0 ¼
Pn

k¼0 ~ekð@
2uk=@x

2
0Þ (see (2.4)).

In complete analogy with this we can show that ~f ðlÞ is A-holomorphic and ~f ðlÞ ¼Pn
k¼0 ~ekð@

luk=@x
l
0Þ. g
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Theorem 2.4 Suppose ~f is an A-holomorphic function with uk 2 C1, k ¼ 0, 1, . . . , n and

for fixed ~x, ~h 2 A there exists K40 such that k~f ðlÞ ~hkKl for l¼ 1, 2, . . .. Then ~f can be

expanded in a Taylor series

~f ~xþ ~h
� �

¼ ~f ~x
� �
þ ~f 0 ~x

� �
~hþ

1

2!
~f 0ð~xÞ ~h2 þ � � �

Proof Consider the function ~FðtÞ ¼ ~fð~xþ t ~hÞ. It is easily verified that

dl ~Fð0Þ=dtl ¼ ~flð~xÞ ~hl. Taking into account that k~f ðlÞ ~hkKl for 4l¼ 1, 2, . . . , it follows

that the function ~FðtÞ can be expanded in a Taylor series as follows

~FðtÞ ¼ ~Fð0Þ þ
X
l�1

1

l!

dl ~Fð0Þ

dtl
tl:

Putting t¼ 1, we get (2.6). g

In the particular case where a bicomplex (or hyperbolic) function is hyperholo-

morphic and satisfies Theorem 2.4, it can be expanded in a Taylor series (2.6) [1, 2].

3. Zeros of polynomials in commutative algebras

Since on numerous occasions A-holomorphic function can be approximated by its

Taylor polynomial of finite degree, zeros of such functions might be studied if we can

calculate zeros of polynomials. Let pm(w)¼ amw
m
þ am�1w

m�1
þ � � � þ a0 be a poly-

nomial in the algebra A. Our purpose is to investigate the structure of the set of zeros of

the equation

pmðwÞ ¼ 0: ð3:1Þ

Theorem 3.1 If A has nþ 1 non trivial idempotents i0, i1, . . . , in such that ipir¼ 0 for

p 6¼ r, and
Pn

l¼0 il ¼ 1, then equation 3.1 can be reduced to the system of polynomial

equations in the field K.

Proof As a preliminary to the proof of the theorem, we shall prove several auxiliary

lemmas. g

Lemma 3.2 Idempotents i0, i1, . . . , in are linearly independent vectors.

Proof Suppose the contrary, then there exist k0, k1, . . . , kn 2 K such that
Pn

p¼0 jkpj > 0

and
Pn

p¼0 kpip ¼ 0. By using the properties of idempotents, we have kpip¼ 0 for all

p¼ 0, 1, . . . , n, but this is impossible. Indeed, if kpip¼ 0 for kp 6¼ 0, then

k�1p ðkpipÞ ¼ ip ¼ 0. g

Denote by Il ¼ failja 2 Ag the principal ideal generated by il, l¼ 0, 1, . . . , n. It follows

from Theorem 2.3 that the algebra A can be decomposed in the direct sum (the Pierce

decomposition): A ¼ I0 � I1 � � � � � In.

Lemma 3.3 If a 2 Il then there exists k 2 K such that a¼ kil, i.e., the ideal Il can be

represented in the following form Il ¼ fkiljk 2 Kg.
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Proof For a 2 Il there exists b 2 A such that a¼ bil. Since i0, i1, . . . , in are linearly
independent, there exist k0, k1, . . . , kn 2 K such that b ¼

Pn
p¼0 kpip.

Thus, a ¼ bil ¼ ð
Pn

p¼0 kpipÞil ¼ klil. g
Let us consider decompositions

ar ¼ að0Þr þ � � � þ aðnÞr , r ¼ 0, 1, . . .m,

w ¼ w0 þ � � � þ wn,
ð3:2Þ

where aðpÞr ,wp 2 Ip. Plugging (3.2) into (3.1), we obtain the following system
of polynomial equations

að0Þm wm
0 þ a

ð0Þ
m�1w

m�1
0 þ � � � þ a

ð0Þ
0 ¼ 0,

að1Þm wm
1 þ a

ð1Þ
m�1w

m�1
1 þ � � � þ a

ð1Þ
0 ¼ 0,

..

.

aðnÞm wm
n þ a

ðnÞ
m�1w

m�1
n þ � � � þ a

ðnÞ
0 ¼ 0:

ð3:3Þ

It follows from Lemma 1.3 that aðsÞr ¼ kðsÞr is,w
r
s ¼ xis, where kðsÞr , x 2 K.

Therefore, taking is out of the expression aðsÞm wm
s þ a

ðsÞ
m�1w

m�1
s þ � � � þ a

ðsÞ
0 ¼

0, s ¼ 0, . . . , n, the system (3.3) can be reduced to the system of nþ 1 polynomial
equations in K with coefficients kðsÞr . g

Example 3.4 Let A be the bicomplex algebra, i.e., A ¼ fc0 þ ec1jc0, c1 2 Cg, where
e2¼ 1 and A is commutative. The bicomplex algebra has two idempotents i0 ¼ ð1þ eÞ=2
and i1 ¼ ð1� eÞ=2. It is easy to see that i0i1¼ 0 and i0þ i1¼ 1. Thus, in this case
polynomial equation (3.1) can be reduced to the system of two polynomial equations
in C [3]. Many properties of quarternionic polynomials have been presented in [4].

Example 3.5 Suppose A is the commutative algebra of the following form
A ¼ fa0 þ ea1 þ fa2 þ ga3jak 2 Rg, where e2¼ f2¼ g2¼ 1 and efg¼ 1. This algebra has
four idempotents: i0 ¼ ð1þ eþ fþ gÞ=4, i1 ¼ ð1� e� fþ gÞ=4, i2 ¼ ð1þ e� f� gÞ=4,
i3 ¼ ð1� eþ f� gÞ=4. It is easy to see that ikil¼ 0 for k 6¼ l, and i0þ i1þ i2þ i3¼ 1.
Therefore, in this case polynomial equation (3.1) can be reduced to the system of four
polynomial equations in R.
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