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On inner dilatations of the mappings with unbounded characteristic
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Presented by V. Ya. Gutlyanskĭı

Abstract. For the mappings f : D → D′, D, D′ ⊂ R
n, n ≥ 2, satisfying certain geometric conditions

in the fixed domain D, we have proved estimates of the form KI(x, f) ≤ Q(x) almost everywhere, where
KI(x, f) is the inner dilatation of f at a point x, and Q(x) is a fixed real-valued function responsible for
the “control” over a distortion of the families of curves in D at a mapping f .
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1. Introduction

In what follows, D is a domain in R
n, n ≥ 2, m is the Lebesgue measure of R

n, and the no-
tation f : D → R

n assumes that the mapping f given in a domain D is continuous. Hereafter,
by a curve γ, we call a continuous mapping of the segment [a, b] (or an open interval (a, b)) in
R

n, γ : [a, b] → R
n. The family of curves Γ means some fixed collection of curves γ, and f(Γ) =

{f ◦ γ|γ ∈ Γ} . We recall that a homeomorphism f : D → Rn in the domain D ⊂ R
n, n ≥ 2,

Rn = R
n ∪ {∞}, is called a quasiconformal mapping, if

(1/K)M(Γ) ≤ M(f(Γ)) ≤ K M(Γ) (1.1)

for any family Γ of curves γ in a domain D, where M is the conformal modulus of the family of curves
(the outer measure defined on families of curves in R

n), and K ≥ 1 is some constant (see Definition 13.1
in [16, Sect. 13, Chapt. II]). In other words, the modulus of any family of curves is distorted by at most
K times. In this case, for the mapping f to be quasiconformal, it is sufficient that only one inequality
on the right-hand side of relation (1.1) be satisfied. Namely, the homeomorphism f is a quasiconformal
mapping, as soon as

M(f(Γ)) ≤ K M(Γ) (1.2)

for any family Γ of curves γ in a domain D (see Theorem 34.3 in [16, Chapt. IV]). As known, the
homeomorphisms satisfying relation (1.2) in D have an almost everywhere nondegenerate Jacobian
J(x, f) (see, e.g., Theorem 34.4 in [16]). We define the inner dilatation KI(x, f) of a mapping f at a
point x by the ratio

KI(x, f) =
|J(x, f)|
l (f ′(x))n ,

if the Jacobian J(x, f) := det f ′(x) 	= 0; KI(x, f) = 1 if f ′(x) = 0, and KI(x, f) = ∞. The following
proposition is valid (see Theorem 34.6 in [16, Chapt. IV]).
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Statement 1.1. Assume that the homeomorphism f : D → Rn, n ≥ 2, satisfies relation (1.2) in a
domain D for any family of curves Γ. Then, for almost all x ∈ D, the estimate

|J(x, f)| ≤ K · l (f ′(x)
)
, (1.3)

where J(x, f) means the Jacobian of a mapping f at a point x, and l (f ′(x)) := minh∈Rn\{0}
|f ′(x)h|

|h| ,
is true.

With the regard for the above remark that J(x, f) 	= 0 almost everywhere, relation (1.3) can be
written in the equivalent form KI(x, f) ≤ K for almost all x ∈ D.

Let us now replace relation (1.1) in the definition of the class of mappings under study by an
inequality of the form

M(f(Γ)) ≤
∫

D

Q(x) · ρn(x) dm(x), (1.4)

where ρ is an arbitrary nonnegative Borel function such that any curve γ of the family Γ has length
of at least 1 in the metric ρ. In other words, a curvilinear first-kind integral along the curve γ satisfies
the condition ∫

γ

ρ(x) |dx| ≥ 1 (1.5)

for all curves γ ∈ Γ, and Q : D → [1,∞] is a given function measurable by Lebesgue (see, e.g., [8, Sect.
4.1, Chapt. IV]). The study of inequalities of type (1.4) goes back to L. V. Ahlfors (see, e.g., Theorem 3
in [1, Sect. D, Chapt. I] and to O. Lehto and K. Virtanen (see inequality (6.6) in [7, Sect. 6.3, Chapt. V]).
Inequality (1.4) was mentioned by Yu. F. Strugov in [14] in the context of the study of mappings that
are quasiconformal in the mean. In the spatial case, the inequality of type (1.4) was established by
V. Ya. Gutlyanskii jointly with C. J. Bishop, O. Martio, and M. Vuorinen in work [2] for quasiconformal
mappings with the use of detailed strict arguments; in this case, Q is equal to the inner dilatation
KI(x, f). In this context, V. M. Miklyukov studied some similar classes, but on the basis of capacities
(see [9]). In the case where Q(x) ≤ K almost everywhere, relation (1.4) yields inequality (1.2). In the
general case where Q(x) can be unbounded, inequality (1.4) means that a distortion of the modulus of
the initial family Γ occurs, as is said, “with some weight Q(x)”, M(f(Γ)) ≤ MQ(Γ) (see, e.g., works by
A. C. Cazacu [3] and M. Cristea [4]). We note that it is quite sufficient sometimes to restrict oneself
to some specific families Γ in order to determine properties of the mapping f satisfying relations of
the form (1.4), rather than to consider all families Γ of curves γ without exclusion. The main results
of the present work are the following two propositions.

Statement 1.2. Let f : D → Rn be an open discrete mapping satisfying an estimate of the form (1.4)
in a domain D for any family Γ of curves γ in D and any ρ ∈ adm Γ. We assume that Q ∈ L1

loc(D).
Then, for almost all x ∈ D, the inequality

KI(x, f) ≤ Q(x)

is valid.

Let E and F ⊂ Rn be any sets. By Γ(E, F, D), we denote the family of all curves γ : [a, b] → Rn

which join E and F in D, i.e., γ(a) ∈ E, γ(b) ∈ F and γ(t) ∈ D at t ∈ (a, b). In [5, Sect. 13],
F. W. Gehring defined a K-quasiconformal mapping as a homeomorphism varying the modulus of a
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ring domain by at most K times. In view of the above definition, we consider the following notion.
They say that the mapping f : D → Rn is a ring Q-mapping at a point x0 ∈ D, if the relation

M (f (Γ (S1, S2, A))) ≤
∫

A

Q(x) · ηn(|x − x0|) dm(x) (1.6)

is satisfied for any ring A = A(r1, r2, x0) = {x ∈ R
n : r1 < |x − x0| < r2}, 0 < r1 < r2 < r0, and for

any measurable function η : (r1, r2) → [0,∞] such that
r2∫

r1

η(r) dr ≥ 1. (1.7)

We note that condition (1.7) plays the same role as the function ρ in inequality (1.5). Namely,
(1.7) is simply a condition of admissibility for a special family of curves Γ (S1, S2, A) . They say that
the mapping f : D → Rn is a ring Q mapping in D, if relations (1.6)–(1.7) are satisfied at every point
x0 ∈ D.

Statement 1.3. Let f : D → Rn be an open discrete mapping that satisfies relations of the form
(1.6)–(1.7) at every point x0 of a domain D. We assume that Q ∈ L1

loc(D) and J(x, f) 	= 0 almost
everywhere in D. Then, for almost all x ∈ D, the relation

KI(x, f) ≤ cn · Q(x),

where the constant cn depends only on n, is satisfied.

2. Preliminary information

Everywhere below, B(x0, r) = {x ∈ R
n : |x − x0| < r} . The mapping f : D → Rn is called discrete,

if the preimage f−1 (y) of every point y ∈ R
n consists of isolated points, and it is open, if the image of

any open set U ⊂ D is an open set in R
n. The following definitions can be found e.g., in [16, Sect. 1–6,

Chapt. I]. A Borel function ρ : R
n → [0,∞] is called admissible for the family Γ of curves γ in R

n, if
relation (1.5) is satisfied for all curves γ ∈ Γ. In this case, we write ρ ∈ adm Γ. By the modulus of a
family of curves Γ, we call the quantity

M(Γ) = inf
ρ∈adm Γ

∫

D

ρn(x) dm(x).

To a some extent, the properties of a modulus are analogous to those of the Lebesgue measure m in
R

n. Namely, the modulus of an empty family of curves is equal to zero, M(∅) = 0, has the property
of monotonicity relative to the families of curves Γ1 and Γ2, Γ1 ⊂ Γ2 ⇒ M(Γ1) ≤ M(Γ2), and has the
property of semiadditivity:

M

( ∞⋃

i=1

Γi

)
≤

∞∑

i=1

M(Γi)

(see Theorem 6.2 in [16]). They say that the family of curves Γ1 is minorized by a family Γ2, i.e.,
Γ1 > Γ2, if, for any curve γ ∈ Γ1, there exists a subcurve that belongs to the family Γ2. It is well
known that

Γ1 > Γ2 ⇒ M(Γ1) ≤ M(Γ2) (2.1)

(see Theorem 6.4 in [16]).
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The following important definitions can be found in [11, Sect. 3, Chapt. II]. Let f : D → R
n, β :

[a, b) → R
n be some curve, and let x ∈ f−1 (β(a)) . The curve α : [a, c) → D is called a maximal lifting

of the curve β at the mapping f started at a point x, if

(i) α(a) = x;

(ii) f ◦ α = β|[a, c);

(iii) if c < c′ ≤ b, then there exists no curve α′ : [a, c′) → D such that α = α′|[a, c) and f ◦α ′ = β|[a, c′).

Let f be an open discrete mapping, and let x ∈ f−1 (β(a)) . Then the curve β : [a, b) → R
n has a

maximal lifting at the mapping f started at a point x (see Corollary 3.3 in [11, Chapt. II]). The
pair E = (A, C) , where A is an open set in R

n and C is a compact subset A, is called a condenser
in R

n, n ≥ 2. The mapping f : D → R
n is called absolutely continuous on lines, i.e., f ∈ ACL, if

all coordinate functions f = (f1, . . . , fn) are absolutely continuous on almost all lines parallel to the
coordinate axes in any n-dimensional parallelepiped P such that P ⊂ D and its edges are parallel to
the coordinate axes. It is known that if f ∈ ACL, then f has almost everywhere partial derivatives in
D. As the capacity of a condenser E, we call the quantity

cap E = cap (A, C) = inf
u∈W0(E)

∫

A

|∇u|n dm(x),

where W0(E) = W0 (A, C) is the family of nonnegative continuous functions u : A → R with compact
support in A and such that u(x) ≥ 1 at x ∈ C and u ∈ ACL. It is known that, for an arbitrary
condenser E = (A, C), the following relation is true:

cap E ≥ (inf mn−1 S)n

[m(A \ C)]n−1 . (2.2)

Here, mn−1 S is the (n−1)-dimensional Lebesgue measure of a C ∞-manifold S which is the boundary
S = ∂U of a bounded open set U that contains C and is contained together with its closure U in A.
In (2.2), the infimum was taken over such all S (see Proposition 5 in [6]).

Let E = (A, C) be any condenser in R
n. Then, by ΓE , we denote the family of all curves of the

type γ : [a, b) → A with γ(a) ∈ C such that |γ| ∩ (A \ F ) 	= ∅ for any compact set F ⊂ A. In other
words, the family ΓE for the condenser E = (A, C) consists of those and only those curves that start
in C, lie in A, and, at the same time, belong completely to none of the fixed compact sets inside A.
For a bounded set A, such curves must “approach” the boundary of A. However, they should not be
rectifiable and, generally speaking, should not tend to something.

Proposition 2.1 (see [11, Proposition 10.2, Chapt. II]). The equality

cap E = M (ΓE)

holds.

For a mapping f : D → R
n having partial derivatives in D almost everywhere,

‖f ′(x)‖ = max
h∈Rn\{0}

|f ′(x)h|
|h| .
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The outer dilatation of the mapping f at a point x is the quantity

KO(x, f) =
‖f ′(x)‖n

|J(x, f)| ,

if J(x, f) 	= 0, KO(x, f) = 1, if f ′(x) = 0, and KO(x, f) = ∞ at the rest points. The linear dilatation
f at a point x is the quantity

H(x, f) = n
√

KI(x, f)KO(x, f).

We assume that the mapping f : D → R
n is differentiable at the point x0 ∈ D, and the Jacobi matrix

f ′(x0) is nonsingular, J(x, f) = det f ′(x0) 	= 0. Then there exist the systems of vectors e1, . . . , en and
ẽ1, . . . , ẽn and the positive numbers λ1(x0), . . . , λn(x0), λ1(x0) ≤ · · · ≤ λn(x0), such that f ′(x0)ei =
λi(x0)ẽi (see Theorem 2.1 in [10, Chapt. I]). In this case, λ2

1(x0), . . . , λ2
n(x0) are the eigenvalues of the

symmetric mapping (f ′(x0))
∗ f ′(x0) (see Theorem 2.2 in [10, Chapt. I]),

|J(x0, f)| = λ1(x0) . . . λn(x0), ‖f ′(x0)‖ = λn(x0),

l
(
f ′(x0)

)
= λ1(x0),

(2.3)

KO(x0, f) =
λn

n(x0)
λ1(x0) · · ·λn(x0)

, KI(x0, f) =
λ1(x0) · · ·λn(x0)

λn
1 (x0)

(see relation (2.5) and additional comments on p. 21 in [10, Sect. 2.1, Chapt. I]). In addition, the
above-presented formulas yield

KI(x, f) ≤ Kn−1
O (x, f), KO(x, f) ≤ Kn−1

I (x, f)

(see relations (2.7) and (2.8) in [10, Sect. 2.1, Chapt. I]), and KI(x, f) ≥ 1 and KO(x, f) ≥ 1 in all
domains, where these quantities are well-defined.

The above-mentioned numbers λ1(x0), . . . λn(x0) are called principal values, and the vectors e1, . . . ,
en and ẽ1, . . . , ẽn are called principal vectors of the mapping f ′(x0) (see the relevant comment in [10,
Sect. 2.1, Chapt. I] after the proof of Theorem 2.2). Of course, the principal vectors and the principal
values depend on the point x0 and on the mapping f . However, in order to simplify the representation,
we will omit “(x0)” in what follows, if no misunderstanding occurs.

3. On the estimate of the inner dilatation of open discrete ring Q-mappings

Theorem 3.1. Let f : D → Rn be an open discrete mapping that satisfies relations of the form
(1.6)–(1.7) at every point x0 of the domain D. We assume that Q ∈ L1

loc(D) and J(x, f) 	= 0 almost
everywhere. Then, at almost all x ∈ D, the relation

KI(x, f) ≤ cn · Q(x), (3.1)

where the constant cn depends only on n, is true.

Proof. According to Theorem 3.2 in [13], f is differentiable almost everywhere in D. Without any
loss of generality, we consider that ∞ /∈ D ′ = f(D). At every point x ∈ D where the mapping f is
differentiable and J(x, f) 	= 0, we consider the condenser Er = (Ar, Gr), where Ar = {y : |x − y| < 2r}
and Gr = {y : |x − y| ≤ r} . Since f is an open continuous mapping, f(Er) is also a condenser in R

n. Let
ΓEr and Γf(Er) be the families of curves in the meaning of designations given prior to Proposition 2.1,
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and let Γ ∗
r be the family of maximal lifting of Γf(Er) at the mapping f started in Gr. We will show

that Γ ∗
r ⊂ ΓEr .

Assume the contrary. Let there exist a curve β : [a, b) → R
n of the family Γf(Er) for which the

corresponding maximal lifting α : [a, c) → Ar belongs to some compact set K inside of Ar. Hence, its
closure α is a compact set in Ar. We note that c 	= b, since β is a compact set in f(Ar) otherwise,
which contradicts the condition β ∈ Γf(Er). Let us consider the limit set of a curve α(t) at t → c− 0 :

G =
{

x ∈ R
n : x = lim

k→∞
α(tk)

}
, tk ∈ [a, c), lim

k→∞
tk = c,

where tk → c− 0 monotonically. For x ∈ G by virtue of the continuity of f, we have f (α(tk)) → f(x)
as k → ∞, where tk ∈ [a, c), tk → c as k → ∞. However, f (α(tk)) = β(tk) → β(c) as k → ∞.
This allows us to conclude that f is constant on G in Ar. On the other hand, in the compact set α
(see [17, Chapt. I]),

G =
∞⋂

k=1

α ([tk, c)) = lim sup
k→∞

α ([tk, c)) = lim inf
k→∞

α ([tk, c)) 	= ∅

by the Cantor condition in view of the monotonicity relative a sequence of connected sets α ([tk, c)) .
Hence, G is connected (see [17, Sect. 9.12, Chapt. I]). Thus, by virtue of the discreteness of f, the set
G cannot consist of two and more points, and the curve α : [a, c) → Ar is continued to the closed curve
α : [a, c] → K ⊂ Ar, and f (α(c)) = β(c). Again by Corollary 3.3 in [11, Chapt. II], we can construct
the maximal lifting α ′ of a curve β|[c, b) started at the point α(c). Joining the liftings α and α ′, we
obtain a new lifting α ′′ of the curve β that is defined on [a, c′), c ′ ∈ (c, b), which contradicts the
maximality of the lifting α. Thus, Γ∗

r ⊂ ΓEr . We note that Γf(Er) > f(Γ∗
r), and, hence, Proposition 2.1

and the property of minorizing (2.1) yield

cap f(Er) = M
(
Γf(Er)

) ≤ M (f(Γ∗
r)) ≤ M (f(ΓEr)) . (3.2)

We note that the mapping f satisfies, by condition, relations (1.6)–(1.7), i.e., it is a ring Q-mapping.
Then relation (3.2) yields

cap f(Er) ≤
∫

r<|x−y|<2r

Q(y) η n(|x − y|) dm(y)

for any nonnegative measurable function η : (r, 2r) → [0,∞] such that
∫ 2r
r η(t)dt ≥ 1. In particular,

let us consider the one-parameter family of real-valued functions

ηr(t) =

{
1
r , ift ∈ (r, 2r),
0, ift ∈ R \ (r, 2r).

Then
cap f(Er) ≤ 2nΩn

m(Ar)

∫

Ar

Q(y) dm(y). (3.3)

Here Ωn denotes a volume of the unit ball B
n in R

n. On the other hand, with regard for inequality
(2.2), we obtain

cap f(Er) ≥ (inf mn−1 S)n

[m (f(Ar) \ f(Gr))]
n−1 , (3.4)
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where inf is taken over all possible C ∞-manifolds S which are the boundary S = ∂U of a bounded
open set U that contains f(Gr) and is contained along with its closure U in f(Ar). Combining (3.3)
and (3.4), we obtain

(inf mn−1 S)n ≤ 2nΩn [m(f(Ar) \ f(Gr))]
n−1

m(Ar)

∫

Ar

Q(y) dm(y). (3.5)

At r → 0, the set f (Gr) is, to within o(r), an ellipsoid f ′(Gr) that is the image of the ball Gr at
the linear mapping f ′. If the given ellipsoid has semiaxes 0 < a1r ≤ · · · ≤ anr, then m (f ′(Gr)) =
Ωna1 · · · anrn = ΩnJ(x, f)rn (see relations (2.3)). Let us position the ellipsoid so that its center
coincides with the coordinate origin, and the principal directions coincide with the coordinate axes
e1, . . . , en. Then the area of its surface admits a lower bound

mn−1

(
∂f ′(Gr)

) ≥ 2mn−1

(
Pr1

(
f ′(Gr)

))
= 2Ωn−1 · a2 · · · anr n−1 = 2Ωn−1 · J(x, f)

l (f ′(x))
r n−1, (3.6)

where Pr1(·) means the projection onto a hyperplane perpendicular to the vector e1. Hence, in view
of (3.5), (3.6), and the relation J(x, f) 	= 0, we obtain

[
2Ωn−1 · J(x, f)

l (f ′(x))
rn−1 − o(r n−1)

]n

≤ [
mn−1∂f ′ (Gr) − o

(
rn−1

)]n

≤ 2nΩn [m (f(Ar) \ f(Gr))]
n−1

m(Ar)

∫

Ar

Q(y) dm(y). (3.7)

Dividing inequality (3.7) by r n(n−1), turning r to 0, and applying the Lebesgue theorem of the differ-
entiability of indefinite integrals (see Theorem 5.4 in [12, Chapt. IV]), we obtain

[
J(x, f)
l (f ′(x))

]n

≤ [J(x, f)]n−1 cn · Q(x)

for almost all x ∈ D. By condition, J(x, f) 	= 0 almost everywhere. Hence,

KI(x, f) =
J(x, f)

(l (f ′(x)))n ≤ cn · Q(x)

for almost all x ∈ D. Theorem 3.1 is proved.

Corollary 3.1. Let f : D → Rn be an open discrete mapping that satisfies relations of the form
(1.6)–(1.7) at every point x0 of the domain D. We assume that Q ∈ L1

loc(D) and J(x, f) 	= 0 almost
everywhere. Then

H(x, f) ≤ cn · Q(x)

almost everywhere, where the constant cn depends only on n.

Corollary 3.2. Let f : D → Rn be an open discrete mapping that satisfies relations of the form
(1.6)–(1.7) at every point x0 of the domain D. We assume that Q ∈ L1

loc(D) and J(x, f) 	= 0 almost
everywhere. Then H(x, f) ∈ L1

loc(D) and KI(x, f) ∈ L1
loc(D).
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4. On the estimate of the inner dilatation of open discrete Q-mappings

In this section, we will study the mappings satisfying an estimate of the form (1.4) which is stronger
than (1.6). Below, we will show that, for the above-indicated mappings, we can take cn ≡ 1 in an
inequality of the form (3.1) which is also valid for mappings of the form (1.4). Such an estimate will
be exact since the inner dilatation is always greater or equal than 1 (see Section 2).

Theorem 4.1. Let f : D → Rn be an open discrete mapping that satisfies an estimate of the form
(1.4) in the domain D for any family Γ of curves γ in the domain D and arbitrary ρ ∈ adm Γ. We
assume that Q ∈ L1

loc(D). Then, for almost all x ∈ D, the relation

KI(x, f) ≤ Q(x) (4.1)

is satisfied.

Proof. Without any loss of generality, we may consider that ∞ /∈ D ′ = f(D). According to Theo-
rem 3.2 and Corollary 4.4 in [13], f is differentiable almost everywhere, and J(x, f) 	= 0. By Φ(A), we
denote a function of the set A ⊂ D defined as follows:

Φ(A) =
∫

A

Q(x) dm(x).

We note that, by condition, the function Q ∈ L1
loc(D). Then, by the Lebesgue theorem, the function

Φ is differentiable in the generalized sense at almost every point x0 ∈ D (see, e.g., Theorem 5.4
in [12, Chapt. IV]), and the derivative DΦ(x) = Q(x) for almost all x ∈ D (there, see Theorem 6.3
and the notion of generalized differentiability of a function of the set at a point). By E1, we denote
the set of all x ∈ D where Φ is differentiable in the generalized sense and DΦ(x) = Q(x). By E2, we
denote the set of all x ∈ D where the mapping itself f is differentiable and nondegenerate. To prove
the assertion of the theorem, it is sufficient to show that (4.1) is valid for all x ∈ E0 = E1 ∪ E2.

Let us fix an arbitrary point x0 ∈ E0. Without any loss of generality, we may consider that x0 = 0
and f(x0) = 0. Let e1, . . . , en, ẽ1, . . . , ẽn and λ1, . . . , λn be, respectively, the principal vectors and
principal values of the mapping f ′(0), λn ≥ λn−1 ≥ · · · ≥ λ1 > 0. By the rotation transformation of
the image and the preimage, we can obtain ei = (0, . . . , 0, 1︸︷︷︸

i

, 0, . . . , 0) = ẽi. We should verify that

λ2 · · ·λn

λn−1
1

≤ Q(0),

since |J(0, f)| = λ1 · · ·λn and l (f ′(0)) = λ1. Let us fix the parameter t > 0 arbitrarily, and let us
choose a number r > 0 so that the condenser E := (A, C), where C = {x : x1 = 0, |xi| ≤ r, i =
2, . . . , n} and A = {x : |x1| < rtλ1, |xi| < r + rtλi, i = 2, . . . , n} lies in the domain D. We note that

m(A) = 2nλ1rt
n∏

i=2

(r + rtλi) (4.2)

and
dist (C, ∂A) = rtλ1. (4.3)

Since E = (A, C) is a condenser in D, we have that f(E) = (f(A), f(C)) is a condenser in D ′ = f(D)
due to the openness and continuity of f. Let ΓE and Γf(E) be the families of curves in the meaning of
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Proposition 2.1, and let Γ ∗ be the family of maximal liftings Γf(E) at a mapping f started in C. As
in the proof of Theorem 3.1, we have Γ ∗ ⊂ ΓE . We note that Γf(E) > f(Γ∗), and, hence, the mapping
f satisfies relation (1.4) by the condition of the theorem. Then the relation

cap f(E) = M
(
Γf(E)

) ≤ M (f(Γ∗)) ≤ M (f(ΓE))

yields

cap (f(A), f(C)) ≤
∫

D

Q(x) · ρn(x) dm(x) (4.4)

for any admissible function ρ ∈ adm ΓE . We note that the function

ρ(x) =

{
1

dist (C, ∂A) , x ∈ A \ C,

0, x 	∈ A \ C

is admissible for the family ΓE . Thus, by virtue of (4.4),

cap (f(A), f(C)) ≤ 1
(dist (C, ∂A))n

∫

A

Q(x) dm(x). (4.5)

On the other hand, in view of inequality (2.2), relation (4.5) yields

(inf mn−1S)n

[m(f(A))]n−1 ≤ 1
(dist (C, ∂A))n

∫

A

Q(x) dm(x), (4.6)

where mn−1 S means the (n − 1)-dimensional area of a C∞-manifold S which is the boundary of an
open set U that contains f(C) and is contained together with its closure U in f(A). In this case, the
infimum in (4.6) is taken over all such S. Let us estimate the fraction in inequality (4.6), by basing on
the property of the differentiability of the mapping f at zero. Fixing 0 < ε < λ1 arbitrarily, we choose
r > 0 so small that |f(x)−f ′(0)x| < εr at x ∈ A. Then the set f(A) is contained in the parallelepiped

V =
{
y : |y1| ≤ rtλ2

1 + εr, |yi| ≤ rλi + rtλ2
i + εr, i = 2, . . . , n

}
,

and the projection of the set f(C) onto the subspace y1 = 0 contains an (n − 1)-dimensional paral-
lelepiped

V0 = {y : y1 = 0, |yi| ≤ rλi − εr, i = 2, . . . , n} .

Therefore,

m (f(A)) ≤ m(V ) = 2nrn
(
tλ2

1 + ε
) n∏

i=2

(
λi + tλ2

i + ε
)

and

mn−1 S ≥ 2mn−1 V0 = 2nrn−1
n∏

i=2

(λi − ε) .

Hence, substituting the obtained estimates of the above-indicated quantities in inequality (4.6) and
taking (4.2) and (4.3) into account, we obtain

(
2nrn−1

n∏

i=2
(λi − ε)

)n

(
2nrn(tλ2

1 + ε)
n∏

i=2
(λi + tλ2

i + ε)
)n−1

≤
2nλ1rt

n∏

i=2
(r + rtλi)

rntnλn
1

1
m(A)

∫

A

Q(x) dm(x).
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This yields ( n∏

i=2
(λi − ε)

)n

(
(tλ2

1 + ε)
n∏

i=2
(λi + tλ2

i + ε)
)n−1

≤

n∏

i=2
(1 + tλi)

tn−1λn−1
1

1
m(A)

∫

A

Q(x) dm(x).

As r → 0, we have ( n∏

i=2
(λi − ε)

)n

(
(tλ2

1 + ε)
n∏

i=2
(λi + tλ2

i + ε)
)n−1

≤

n∏

i=2
(1 + tλi)

tn−1λn−1
1

Q(0).

As ε → 0, we obtain ( n∏

i=2
λi

)n

(
tλ2

1

n∏

i=2
(λi + tλ2

i )
)n−1

≤

n∏

i=2
(1 + tλi)

tn−1λn−1
1

Q(0).

Then, by multiplying both sides of the inequality by tn−1 and by passing to the limit as t → 0, we
obtain

n∏

i=2
λi

λn−1
1

≤ Q(0).

Hence, Theorem 4.1 is completely proved.

Corollary 4.1. Let f : D → Rn be an open discrete mapping that satisfies an estimate of the form
(1.4) in the domain D for any family Γ of curves γ in the domain D and arbitrary ρ ∈ adm Γ. We
assume that Q ∈ L1

loc(D). Then Q(x) ≥ 1 for almost all x ∈ D.

Corollary 4.2. Let f : D → Rn be an open discrete mapping that satisfies an estimate of the form
(1.4) in the domain D for any family Γ of curves γ in the domain D and arbitrary ρ ∈ adm Γ. We
assume that Q ∈ L1

loc(D). Then KO(x, f) ≤ Qn−1(x) for almost all x ∈ D.

Corollary 4.3. Let f : D → Rn be an open discrete mapping that satisfies an estimate of the form
(1.4) in the domain D for any family of curves Γ in the domain D and arbitrary ρ ∈ adm Γ. We
assume that Q ∈ L1

loc(D). Then, for almost all x ∈ D,

H(x, f) ≤ Q(x).

5. Final remarks

We assume that the inequality KO(x, f) ≤ Cn · Qn−1(x) with Cn = 1 (see, e.g., [13]) and the
inequality KI(x, f) ≤ cnQ(x) with cn = 1 for the mappings that satisfy (1.6)–(1.7) at every point
x0 ∈ D are no true, generally speaking. In other words, we assume that the class of ring Q-mappings
is wider than the class of Q-mappings. Another open question consists in the present conditions for
“openness” and “discreteness” of the mapping f. The studies of the dilatations of mappings that are
not open and discrete will require to apply a technique that is different from the modulus-based one.

P.S. The present work is carried out in the fairway of the studies initiated by the famous mathematician
G. D. Suvorov who considered that “the ideal (and purpose !) of the theory of functions should be the
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attainment of such a situation where we shall possess a large number of various classes of functions
and a developed catalog of properties (metric and topological ones) for each class” (see [15, p. 325]).
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