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Abstract—We consider the solvability problem for the equation fz = ν(z, f(z))fz, where the
function ν(z, w) of two variables may be close to unity. Such equations are called quasilinear
Beltrami-type equations with ellipticity degeneration. We prove that, under some rather general
conditions on ν(z, w), the above equation has a regular homeomorphic solution in the Sobolev
class W 1,1

loc . Moreover, such solutions f satisfy the inclusion f −1 ∈ W 1,2
loc .
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1. INTRODUCTION

One of the first most informative works concerned with quasilinear Beltrami-type equations belongs
to the outstanding scientist, Academician Boyarskii; see [1]. In that paper, already classical in this field
of research, the author formulated several fundamental theorems, and a particular case of one of these
theorems is considered below. For a complex-valued function f : D → C defined on the domain D ⊂ C

and having partial derivatives with respect to x and y for almost all z = x + iy, we set

∂f = fz =
fx + ify

2
and ∂f = fz =

fx − ify

2
.

A function ν = ν(z,w) : D × C → D is said to satisfy the Carathéodory conditions if ν is measurable
in z ∈ D for each fixed w ∈ C and continuous in w ∈ C for almost all z ∈ D. We consider the unit disk
D = {z ∈ C : |z| < 1} and, in it, we study the equation

fz = ν(z, f(z))fz , (1.1)

which will be called a quasilinear Beltrami-type equation below. We assume that the function ν(z,w)
satisfies the Carathéodory conditions and

|ν(z,w)| ≤ k < 1 (1.2)

for almost all z ∈ D for each fixed w ∈ C. Then Eq. (1.1) has a homeomorphic solution f : D → C

satisfying the normalization conditions f(0) = 0 and f(1) = 1 (see Theorem 8.2 in [1]). From now
on, a solution of Eq. (1.1) is understood as a mapping f : D → C of class ACL satisfying Eq. (1.1) for
almost all z ∈ D. We recall that a mapping f : D → C, D ⊂ C, is said to be absolutely continuous on
the lines f ∈ ACL if, in any rectangle P whose edges are parallel to the coordinate axes and P ⊂ D,
the function f is absolutely continuous on almost all (almost all) segments in P that are parallel to the
coordinate axes. It is well known that

ACP p
loc = W 1,p

loc , 1 ≤ p < ∞,
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where ACP p
loc denotes the class of all ACL-mappings whose first-order partial derivatives raised to

the corresponding power p are locally integrable (see, e.g., [2, p. 8]. In particular, W 1,1
loc ⊂ ACL. Any

homeomorphism f : D → C of class ACL is differentiable a.e. (see, e.g., [3, p. 128]). Thus, for
homeomorphisms of class ACL, the notation (1.1) is meaningful; in what follows, we shall consider
solutions of Eq. (1.1) in the above sense only in the class ACL of homeomorphisms.

The main goal of the present paper is to prove existence theorems for Eq. (1.1) without using
conditions of the form (1.2). As far as we know, degenerate Beltrami-type equations, i.e., equations
where the complex coefficient ν may be close to unity, have been studied rather intensively (see, e.g., [4]–
[8], etc.). At the same time, it is well known that, in the context of the solvability of Eq. (1.1) in the class
ACL of homeomorphisms and even in the simple case where ν depends only on z, the condition that
the left-hand side of (1.2) is bounded cannot be replaced, for example, by the condition that ν raised to
an arbitrarily large power p ≥ 1 is locally integrable. The conditions for the existence of solutions to the
equation mentioned above require a more precise analysis related, in particular, to functions of bounded
mean oscillation, see [9], and to more general function classes that will be discussed later.

2. MAIN DEFINITIONS

From now on, D is a domain in the complex plane C, Q : D → [0,∞] is a Lebesgue measurable
function, and m is the Lebesgue measure in C; for a set A ⊂ C, the notation m(A) stands for the
Lebesgue measure in C, and dist(A,B) is the Euclidean distance between the sets A,B ⊂ C. The
notation f : D → C means that the mapping f is continuous. We also assume that the mapping
f : D → C preserves orientation, i.e., the topological index μ(y, f,G) is positive for an arbitrary domain
G ⊂ D such that G ⊂ D and for an arbitrary y ∈ f(G) \ f(∂G). The Jacobian of an (orientation
preserving) homeomorphism f : D → C of class ACL is nonnegative a.e.:

Jf (z) = |fz|2 − |fz|2 ≥ 0, (2.1)

see [3, p. 10]. A homeomorphism f : D → C of class ACL is said to be regular if the inequality for this
homeomorphism in (2.1) is strict. Similarly, a solution f : D → C of Eq. (1.1) is said to be regular if,
for this solution, Jf (z) is positive a.e. in D. The complex dilatation of a homeomorphism f : D → C of
class ACL at a point z is defined as

μ(z) = μf (z) =
fz

fz
if fz �= 0

and μ(z) = 0 otherwise. The maximum dilatation is defined as

Kμ(z) =
1 + |μ(z)|
1 − |μ(z)| .

We note that condition (2.1) always implies that |μ(z)| ≤ 1 a.e. and Kμ ≥ 1 a.e. Moreover, we note
that any homeomorphism of class ACL satisfies Eq. (1.1), where ν(z, f(z)) = μf (z). We shall say that
a homeomorphism f : D → C of class ACL is Q(z)-quasiconformal if Kμ(z) ≤ Q(z) for almost all
z ∈ D. In what follows, in the extended space C = C ∪ {∞}, we use the spherical (chordal) metric

h(x, y) = |π(x) − π(y)|,

where π is the stereographic projection of C on the sphere S3(e3/2, 1/2), e3 = (0, 0, 1), in R
3:

h(x,∞) =
1√

1 + |x|2
, h(x, y) =

|x − y|√
1 + |x|2

√
1 + |y|2

, x �= ∞ �= y.

We let h(E) = supx,y∈E h(x, y) be the “chordal” (spherical) diameter of the set E ⊂ C. We recall that a
Borel function ρ : C → [0,∞] is said to be admissible for a family Γ of curves γ in C if

´
γ ρ(z) |dz| ≥ 1

for all curves γ ∈ Γ. In this case, we write ρ ∈ adm Γ. The modulus of a family Γ of curves is

M(Γ) = inf
ρ∈adm Γ

ˆ

D
ρ2(z) dm(z).
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Let E,F ⊂ C be arbitrary sets. By Γ(E,F,D) we denote the family of all curves γ : [a, b] → C

connecting E and F in D, i.e.,

γ(a) ∈ E, γ(b) ∈ F , and γ(t) ∈ D for t ∈ (a, b).

Let r0 = dist(z0, ∂D), and let

A(r1, r2, z0) = {z ∈ C : r1 < |z − z0| < r2}, Si = S(z0, ri) = {z ∈ C : |z − z0| = ri}.
A homeomorphism f : D → C is said to be an annulus Q-homeomorphism at a point z0 ∈ D (see,
e.g., Secs. 7 and 11 in [6], also see [8] and [10]) if the relation

M(f(Γ(S1, S2, A))) ≤
ˆ

A
Q(z) · η2(|z − z0|) dm(z) (2.2)

holds for any annulus

A = A(r1, r2, z0), 0 < r1 < r2 < r0,

and for each measurable function η : (r1, r2) → [0,∞] such that
ˆ r2

r1

η(r) dr ≥ 1. (2.3)

Moreover, the homeomorphism f : D → C is called a annulus Q-homeomorphism in the domain D
if relation (2.2) holds at each point z0 ∈ D and for each function η in (2.3). We need one more
definition. Let Q(z) : D → [1,∞] be a real-valued function. A homeomorphism f : D → C is called
a Q-homeomorphism if

M(f(Γ)) ≤
ˆ

D
Q(z) · ρ2(z) dm(z) (2.4)

for any family Γ of paths γ in D and for each admissible function ρ ∈ adm Γ. We note that relations (2.2)
and (2.4) are a part of the definition of q-quasiconformal mappings if Q(z) ≡ q = const. In the general
case, these “weighted” relations with weight Q(z) are not equivalent (see, e.g., [6]) and we need them as
an apparatus for studying equations of the form (1.1).

Proposition 1. Let fm : D → C be a sequence of Q(z)-homeomorphisms in D, where Q(z) is a fixed
function, which is the same for all m. Assume that the sequence fm converges to a mapping f in D
locally uniformly. Then f is either an annulus Q-homeomorphism or a constant in D under the
condition that Q(z) ∈ L1

loc(D) (see Theorem 7.7 in [6]).

Remark 1. We note that, in the statement of Proposition 1, we generally cannot use a sequence of
“annulus” homeomorphisms, because the above statement is not generally proved in this case. Similarly,
we cannot state that the limit mapping f in Proposition 1 is a Q-homeomorphism (for more details, see
Sec. 7 in [6]).

Proposition 2. Let f : D → C be an annulus Q-homeomorphism at a point z0 ∈ D such that

h(C \ f(D)) ≥ δ > 0.

If, for some positive ε0 not greater than dist(z0, ∂D),
ˆ

ε<|z−z0|<ε0

Q(z) · ψ2(|z − z0|) dm(z) ≤ c · Ip(ε) for all ε ∈ (0, ε0), (2.5)

where p ≤ 2 and ψ(t) is a nonnegative measurable function on (0,∞) such that

0 < I(ε) =
ˆ ε0

ε
ψ(t) dt < ∞ for all ε ∈ (0, ε0),

then, for z ∈ B(z0, ε0),

h(f(z), f(z0)) ≤
α

δ
exp{−βIγp(|z − z0|)}, (2.6)
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where α, β, and γp are some constants, the first two of which are absolute constants and the last
depends only on p (see Lemma 7.6 in [6]).

Remark 2. In particular, by the well-known Arzela–Ascoli theorem, an estimate of the form (2.6)
implies that the class of all annulus Q-homeomorphisms HQ,δ = {f : D → C} in D satisfying the
inequality

h(C \ f(D)) ≥ δ > 0 (2.7)

and condition (2.5) for Q is a normal family of mappings with respect to the metric h provided I(ε) → ∞
as ε → 0, i.e., from any sequence fm ∈ HQ,δ, it is possible to choose a subsequence fmk

such that

sup
z∈E

h(fmk
(z), f(z)) → 0 as k → ∞

for a continuous mapping f : D → C and any compact set E ⊂ D (for more details, see Sec. 7.5
in [6]). Finally, it is easy to see that the conclusion that the corresponding family of homeomorphisms is
equicontinuous and normal remains valid if the condition of the form (2.7) in Proposition 2 is replaced
by the condition that f(z1) = y1 and f(z2) = y2 for some fixed (independent of f ) elements z1, y1, z2,
and y2.

Proposition 3. Let D ⊂ C, and let fn : D → C be a sequence of homeomorphisms of class ACL
that have complex dilatations μn(z) satisfying the condition

1 + |μn(z)|
1 − |μn(z)| ≤ Q(z) ∈ L1

loc for all n = 1, 2, . . . .

If fn → f is locally uniform in D as n → ∞ and f is a homeomorphism in D, then f ∈ ACL and
the sequences ∂fn and ∂fn converge weakly in L1

loc to ∂f and ∂f , respectively. In this case, the
mapping f is Q(z)-quasiconformal. Moreover, if μn → μ as n → ∞, then ∂f = μ∂f a.e. (see, e.g.,
Theorem 3.1 and Remark 3.1 in [8]).

3. MAIN LEMMA

Lemma 1. Assume that a function ν = ν(z,w) : D × C → D satisfies the Carathéodory conditions
and

Kν(z,w) :=
1 + |ν(z,w)|
1 − |ν(z,w)| ≤ Q(z) ∈ L1

loc(D) (3.1)

for almost all z ∈ D and for any w ∈ C. Assume also that, for any z0 ∈ D and some number
ε0 < dist(z0, ∂D),

ˆ

ε<|z−z0|<ε0

Q(z) · ψ2(|z − z0|) dm(z) ≤ c · Ip(ε), (3.2)

where I(ε) → ∞ as ε → 0, p is a constant such that 0 < p ≤ 2, and ψ(t) is a nonnegative
measurable function on (0,∞) such that

0 < I(ε) =
ˆ ε0

ε
ψ(t) dt < ∞, ε ∈ (0, ε0).

Then Eq. (1.1) has a regular homeomorphic solution f of class W 1,1
loc in D such that f−1 ∈

W 1,2
loc (f(D)).

Proof. We consider the sequence of functions

νn(z,w) =

{
ν(z,w), Q(z) ≤ n,w ∈ C,

0, Q(z) > n,w ∈ C.
(3.3)
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We note that Kνn(z,w) ≤ n for almost all z ∈ D and for all w ∈ C. Therefore, we have

νn(z,w) ≤ n − 1
n + 1

< 1,

and hence Eq. (1.1), where ν in the right-hand side is replaced by ν := νn and νn is defined by rela-
tions (3.3), has a homeomorphic solution fn : D → C satisfying the normalization conditions fn(0) = 0
and fn(1) = 1. This solution is n-quasiconformal in D (see Theorem 8.2 in [1]). At the same time, the fn

are Q(z)-quasiconformal because of relation (3.1) and the fact that

Kνn(z,w) ≤ Kν(z,w).

Therefore, according to relation (6.6) in Chap. V in [3], each fn is a Q-homeomorphism and hence an
annulus Q-homeomorphism. By Proposition 2, Remark 2, and relation (3.2), we see that the sequence
{fn}∞n=1 has a subsequence fnk

that locally uniformly converges to a mapping f . By Propositions 1 and 3
and the normalization conditions fn(0) = 0 and fn(1) = 1, the limit mapping f is Q(z)-quasiconformal.
We note that, for almost all z ∈ D, there exists a number k0 = k0(z) such that

νnk
(z,w) = ν(z,w) for nk ≥ nk0(z) and all w ∈ C.

Therefore, for almost all z,

μnk
(z) = νnk

(z, fnk
(z)) → ν(z, f(z)) as k → ∞.

Let μf (z) be a characteristic of the limit mapping f . Again, it follows from Proposition 3 that
ν(z, f(z)) = μf (z) a.e. But this just means that the mapping f is a solution of the initial equation (1.1).

It remains to show that the mapping is f-regular and f−1 ∈ W 1,2
loc . Since f is a homeomorphism,

f−1
n converges to f−1 locally uniformly as n → ∞. We write gn = f−1

n . Now we note that the complex
characteristic of the inverse mapping g = f−1 is related to the characteristic of f as μg = −μf ◦ g, (see,
e.g., relation 4 in Sec. C in Chap. I in [11]). Then, for sufficiently large n, we have

ˆ

B
|∂gn(w)|2 dm(w) =

ˆ

B
(|∂gn(w)|2 − |∂gn(w)|2) · |∂gn(w)|2 dm(w)

(|∂gn(w)|2 − |∂gn(w)|2)

=
ˆ

B
Jgn(w) · 1

1 − |∂gn(w)/∂gn(w)|2
dm(w) =

ˆ

gn(B)

dm(z)
1 − |μn(z)|2

≤
ˆ

B∗
Q(z) dm(z) < ∞,

where B and B∗ are relatively compact domains in D and f(D), respectively, and satisfy the condition
g(B) ⊂ B∗. The change of variables in the integrals is valid, because gn, fn ∈ W 1,2

loc . It follows from
the last estimate that f−1 ∈ W 1,2

loc (f(D)) (see [12, Chap. III, Lemma 3.5]). This implies that f has the
(N−1)-property (see Remark 8.4 (3) in Sec. 8.4 in [6]), which, in turn, is equivalent to the fact that
Jf (z) �= 0 a.e. (see [13]). Finally, for an arbitrary compact set C ⊂ D, it follows from the Schwartz
inequality that the norm of the derivatives ∂f and ∂f in L1(C) can be estimated as follows:

‖∂f‖ ≤ ‖∂f‖ ≤ ‖Q(z)‖1/2 · ‖Jf (z)‖1/2 ≤ ‖Q(z)‖1/2 · m(f(C)),

which implies that f ∈ W 1,1
loc (D) (see [2, p. 8]). The proof of Lemma 1 is complete.

4. IMPORTANT CONSEQUENCES

Lemma 1 formulated and proved above is one of the most important tools that now allows us to
state the main results of the present paper. First, we formulate sufficient conditions for the existence of
homeomorphic solutions to Eq. (1.1) on the basis of the condition that a certain integral diverges. Such
a condition is considered not at random. The divergence conditions for integrals of the form

´
dt

tK(t) ,

where K(t) is a certain function, were considered by many prominent scientists, for example, by Shabat
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and Zorich (see, e.g., [14], [15]; also see Secs. 11.4–11.6 in [6]). By qz0(r) we denote the mean value of
a function Q(z) over the circle {|z − z0| = r}:

qz0(r) =
1
2π

ˆ 2π

0
Q(z0 + reiθ) dθ.

Theorem 1. Assume that a function ν(z,w) : D × C → D satisfies the Carathéodory conditions
and Kν(z,w) ≤ Q(z) ∈ L1

loc(D). Assume also that
ˆ δ(z0)

0

dr

rqz0(r)
= ∞,

where δ(z0) is a positive number and δ(z0) < dist(z0, ∂D). Then Eq. (1.1) has a regular homeomor-
phic solution f of class W 1,1

loc in D such that f−1 ∈ W 1,2
loc (f(D)).

Proof. We note that Q(z) is no less than 1, because, by definition, Kν(z,w) ≥ 1 for almost all z and
each fixed w. Therefore, we have qz0(t) ≥ 1 for almost all t. We set

ψ(t) =

⎧
⎨
⎩

1
tqz0(t)

, t ∈ (0, δ(z0)),

0, t /∈ (0, δ(z0)),

and note that
´ δ(z0)
ε ψ(t) dt > 0 for all ε ∈ (0, δ(z0)), because, otherwise, qz0(t) = ∞ for almost all t ∈

(0, δ(z0)), which is impossible, because Q(z) ∈ L1
loc(D) by the assumptions of the theorem. Moreover,

ˆ δ(z0)

ε
ψ(t) dt ≤

ˆ δ(z0)

ε

dt

t
< ∞ for all ε ∈ (0, δ(z0)).

Thus, it is possible to apply Lemma 1 to the function ψ mentioned above and to obtain the desired
conclusion.

In the next important section of the present paper, we consider some functions of a special form. We
recall that a function ϕ : D → R, ϕ ∈ L1

loc(D), is of bounded mean oscillation in the domain D, which
can be written as ϕ ∈ BMO, if

‖ϕ‖∗ = sup
B⊂D

1
m(B)

ˆ

B
|ϕ(z) − ϕB | dm(z) < ∞, (4.1)

where sup is taken over all circles B ⊂ D and

ϕB =
1

m(B)

ˆ

B
ϕ(z) dm(z)

is the mean value of the function ϕ over the circle B (see, e.g., [9]). It is well known that

L∞(D) ⊂ BMO(D) ⊂ Lp
loc(D)

(see, e.g., [9]). We consider the following definition generalizing the notion of bounded mean oscillation
to the case in which the variable in the sup symbol in (4.1) is not “uniform” over a given domain (see,
e.g., Sec. 6.1 in [6]). We shall say that a function ϕ : D → R is of finite mean oscillation at a point
z0 ∈ D and write ϕ ∈ FMO(z0) if

lim sup
ε→0

1
πε2

ˆ

B(z0,ε)
|ϕ(z) − ϕε| dm(z) < ∞, (4.2)

where

ϕε =
1

πε2

ˆ

B(z0,ε)
ϕ(z) dm(z).
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We note that if condition (4.2) is satisfied, then it is possible that ϕε → ∞ as ε → 0. We shall also say
that ϕ : D → R is a function of finite mean oscillation in the domain D and write ϕ ∈ FMO(D)
if ϕ is of finite mean oscillation at each point z0 ∈ D. Obviously, BMO ⊂ FMO. We note that
FMO �= BMOloc (see, e.g., Sec. 11.2 in [6]).

Proposition 4. Assume that 0 ∈ D ⊂ C and ϕ : D → R is a nonnegative function of finite mean
oscillation at a point z0 = 0. Then

ˆ

ε<|z|<ε0

ϕ(z) dm(z)
(|z| log(1/|z|))2 = O

(
log log

1
ε

)

as ε → 0 and for some ε0 ≤ dist(0, ∂D) (see Corollary 6.3 in [6]).

In particular, we note that each constant function ϕ(z) ≡ c always satisfies a relation of the form (4.2).
At the same time, functions of finite mean oscillation are generally integrable only in the first power; it is
possible to construct an example of a function of class FMO that is locally integrable in the first power
and is not locally integrable in any power p > 1 (see, e.g., Sec. 11.3 in [6]).

Theorem 2. Assume that a function ν(z,w) : D × C → D satisfies the Carathéodory conditions.
Assume also that Kν(z,w) ≤ Q(z) ∈ FMO(D). Then Eq. (1.1) has a regular homeomorphic
solution f of class W 1,1

loc in D such that f−1 ∈ W 1,2
loc (f(D)).

Proof. Let z0 ∈ D, and let ε0 < min{dist(z0, ∂D), e−1}. By Proposition 4, for the function ψ(t),

0 < ψ(t) =
1

t log(1/t)
,

we have
ˆ

ε<|z−z0|<ε0

Q(z) · ψ2(|z − z0|) dm(z) = O

(
log log

1
ε

)
.

We also note that

I(ε, ε0) :=
ˆ ε0

ε
ψ(t) dt = log

(
log(1/ε)
log(1/ε0)

)
.

Now the statement of Theorem 2 follows from Lemma 1.

Corollary 1. In particular, if

lim sup
ε→0

1
πε2

ˆ

B(z0,ε)
Q(z) dm(z) < ∞

at each point z0 ∈ D, then Eq. (1.1) has a regular homeomorphic solution f of class W 1,1
loc in D such

that f−1 ∈ W 1,2
loc (f(D)).

Theorem 3. Assume that a function ν(z,w) : D × C → D satisfies the Carathéodory conditions.
Assume also that Kν(z,w) ≤ Q(z), where

qz0(r) = O

(
log

1
r

)
for all z0 ∈ D as r → 0. (4.3)

Then Eq. (1.1) has a regular homeomorphic solution f of class W 1,1
loc in D such that

f−1 ∈ W 1,2
loc (f(D)).
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Proof. To prove the theorem, it suffices to choose an arbitrary ε0 < dist(z0, ∂D) and the function
ψ(t) = 1(t log(1/t)) in Lemma 1. We note that

ˆ

ε<|z−z0|<ε0

Q(z) dm(z)
(|z − z0| log(1/|z − z0|))2

=
ˆ ε0

ε

(ˆ

|z−z0|=r

Q(z) dm(z)
(|z − z0| log(1/|z − z0|))2

dS

)
dr

≤ 2π
ˆ ε0

ε

dr

r log(1/r)
= 2π log

log(1/ε)
log(1/ε0)

= 2π · I(ε, ε0),

where I(ε, ε0) :=
ˆ ε0

ε
ψ(t) dt. The statement of the theorem now follows from Lemma 1.

Corollary 2. Condition (4.3) and the statement of Theorem 3 are satisfied if it is required that, at
each point z0 ∈ D,

Q(z) ≤ C · log 1
|z − z0|

for some constant C (that can depend on z0) as z → z0.

Remark 3. We note that the solutions of the quasilinear Beltrami equation studied in the present paper
are generally not unique. The uniqueness of solutions of the Beltrami equation requires a separate study
based on the use of different methods that are not related to the theory of convergence of mappings.
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