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ON CONVERGENCE AND COMPACTNESS

OF SPATIAL HOMEOMORPHISMS

V. RYAZANOV and E. SEVOST'YANOV

Communicated by the former editorial board

Various theorems on convergence of general space homeomorphisms are proved
and, on this basis, theorems on convergence and compactness for classes of the
so-called ring Q-homeomorphisms are obtained. In particular, it was established
by us that a family of all ring Q-homeomorphisms f in Rn �xing two points is
compact provided that the function Q is of �nite mean oscillation. These results
will have broad applications to Sobolev's mappings.
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1. INTRODUCTION

We give here the foundations of the convergence theory for general homeo-
morphisms in space and then develope the compactness theory for the so-called
ring Q-homeomorphisms. The ring Q-homeomorphisms have been introduced
�rst in the plane in the connection with the study of the degenerate Beltrami
equations, see e.g. the papers [28]�[33] and the monographs [12] and [20]. The
theory of ringQ-homeomorphisms is applied to various classes of mappings with
�nite distortion intensively investigated in many recent works, see e.g. [17] and
[20] and further references therein. The present paper is a natural continuation
of our previous works [25] and [36].

Given a family Γ of locally recti�able paths γ in Rn , n ≥ 2 , a Borel
function ρ : Rn → [0,∞] is called admissible for Γ, abbr. ρ ∈ adm Γ, if∫

γ

ρ(x) |dx| ≥ 1 ∀ γ ∈ Γ .

The modulus of Γ is the quantity

M(Γ) = inf
ρ∈adm Γ

∫
Rn

ρn(x) dm(x) .
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Given a domain D and two sets E and F in Rn, n ≥ 2, Γ(E,F,D)
denotes the family of all recti�able paths γ : [a, b] → Rn which join E and
F in D, i.e., γ(a) ∈ E, γ(b) ∈ F and γ(t) ∈ D for a < t < b. We set
Γ(E,F ) = Γ(E,F,Rn) if D = Rn. A ring domain, or shortly a ring in Rn , is a
domain R in Rn whose complement has two connected components. Let R be
a ring in Rn. If C1 and C2 are the connected components of Rn \ R, we write
R = R(C1, C2). The capacity of the ring R can be de�ned by the equality

capR(C1, C2) = M(Γ(C1, C2, R)) ,

see e.g. 5.49 in [36]. Note also that

M(Γ(C1, C2, R)) = M(Γ(C1, C2)) ,

see e.g. Theorem 11.3 in [35]. A conformal modulus of a ring R(C0, C1) is
de�ned by

modR(C0, C1) =

(
ωn−1

M(Γ(C0, C1))

)1/(n−1)

,

where ωn−1 denotes the area of the unit sphere in Rn, see e.g. (5.50) in [36].

Let D be a domain in Rn, n ≥ 2, and let Q : D → (0,∞) be a (Lebesgue)
measurable function. Set

A(x0, r1, r2) = {x ∈ Rn : r1 < |x− x0| < r2} ,

S(x0, ri) = {x ∈ Rn : |x− x0| = ri} , i = 1, 2.

We say, see [25] for the spatial case, that a homeomorphism f of D into Rn is
a ring Q-homeomorphism at a point x0 ∈ D if

(1) M (Γ (f(S1), f(S2))) ≤
∫
A

Q(x) · ηn(|x− x0|) dm(x)

for every ring A = A(x0, r1, r2), 0 < r1 < r2 < r0 = dist(x0, ∂D), Si =
S(x0, ri), i = 1, 2, and for every Lebesgue measurable function η : (r1, r2) →
[0,∞] such that

r2∫
r1

η(r) dr ≥ 1 .

If the condition (1) holds at every point x0 ∈ D, then we also say that f is a
ring Q-homeomorphism in the domain D.

The notion of ring Q-homeomorphisms was motivated by the ring de�ni-
tion of Gehring for quasiconformal mappings, see e.g. [11], and it is closely re-
lated to the concept of moduli with weights essentially due to Andreian Cazacu,
see e.g. [1]�[3], cf. also the recent work [8].
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2. ON BMO AND FMO FUNCTIONS

Recall that a real valued function ϕ ∈ L1
loc(D) given a domain D ⊂ Rn

is said to be of bounded mean oscillation by John and Nierenberg, abbr. ϕ ∈
BMO(D) or simply ϕ ∈ BMO, if

‖ϕ‖∗ = sup
B⊂D

−
∫
B

|ϕ(x)− ϕB| dm(x) < ∞

where the supremum is taken over all balls B in D and

ϕB = −
∫
B

ϕ(x) dm(x) :=
1

|B|

∫
B

ϕ(x) dm(x)

is the average of the function ϕ over B. For connections of BMO functions with
quasiconformal and quasiregular mappings, see e.g. [4], [5], [15], [21] and [23].

Following [13], we say that a function ϕ : D → R has �nite mean oscilla-

tion at a point x0 ∈ D if

(2) lim
ε→0

−
∫
B(x0,ε)

|ϕ(x)− ϕ̃ε| dm(x) < ∞

where

ϕ̃ε = −
∫
B(x0,ε)

ϕ(x) dm(x)

is the average of the function ϕ(x) over the ball B(x0, ε) = {x ∈ Rn : |x−x0| <
ε}. Note that under (2) it is possible that ϕ̃ε →∞ as ε→ 0.

We also say that a function ϕ : D → R is of �nite mean oscillation in
the domain D, abbr. ϕ ∈ FMO(D) or simply ϕ ∈ FMO, if ϕ has �nite mean
oscillation at every point x ∈ D. Note that FMO is not BMOloc, see examples
in [20], p. 211. It is well-known that L∞(D) ⊂ BMO(D) ⊂ Lploc(D) for all
1 ≤ p <∞, see e.g. [14] and [23], but FMO(D) 6⊆ Lploc(D) for any p > 1.

Recall some facts on �nite mean oscillation from [13], see also 6.2 in [20].

Proposition 2.1. If, for some numbers ϕε ∈ R, ε ∈ (0, ε0],

lim
ε→0

−
∫
B(x0,ε)

|ϕ(x)− ϕε| dm(x) <∞ ,

then ϕ has �nite mean oscillation at x0.

Corollary 2.1. If, for a point x0 ∈ D,

lim
ε→0

−
∫
B(x0,ε)

|ϕ(x)| dm(x) <∞ ,

then ϕ has �nite mean oscillation at x0.
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Lemma 2.1. Let ϕ : D → R, n ≥ 2, be a nonnegative function with a �nite

mean oscillation at 0 ∈ D. Then∫
ε<|x|<ε0

ϕ(x) dm(x)

(|x| log 1
|x|)

n
= O

(
log log

1

ε

)
as ε→ 0 for a positive ε0 ≤ dist (0, ∂D).

This lemma takes an important part in many applications to the mapping
theory as well as to the theory of the Beltrami equations, see e.g. the mono-
graphs [12] and [20].

3. CONVERGENCE OF GENERAL HOMEOMORPHISMS

In what follows, we use in Rn = Rn
⋃
{∞} the spherical (chordal) metric

h(x, y) = |π(x)− π(y)| where π is the stereographic projection of Rn onto the
sphere Sn(1

2en+1,
1
2) in Rn+1, i.e.

h(x, y) =
|x− y|√

1 + |x|2
√

1 + |y|2
, x 6=∞ 6= y,

h(x,∞) =
1√

1 + |x|2
.

It is clear that Rn is homeomorphic to the unit sphere Sn in Rn+1.
The spherical (chordal) diameter of a set E ⊂ Rn is

h(E) = sup
x,y∈E

h(x, y) .

We also de�ne h(z, E) for z ∈ Rn and E ⊆ Rn as a in�mum of h(z, y) over
all y ∈ E and h(F,E) for F ⊆ Rn and E ⊆ Rn as a in�mum of h(z, y) over
all z ∈ F and y ∈ E. Later on, we also use the notation B ∗(x0, ρ), x0 ∈ Rn,
ρ ∈ (0, 1), for the balls {x ∈ Rn : h(x, x0) < ρ} with respect to the spherical
metric.

Let us start from the simple consequence of the well-known Brouwer the-
orem on invariance of domains.

Corollary 3.1. Let U be an open set in Rn and let f : U → Rn be

continuous and injective. Then f is a homeomorphism U onto V = f(U).

Proof. Let y0 ∈ f(D) and x0 := f −1(y0). Set B = B ∗(x0, ε0) where
0 < ε0 < h(x0, ∂D). Then B ⊂ D. Note that a mapping f0 := f |B is injective
and continuous and maps the compactum B into the Hausdor� topological
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space Rn. Consequently, f0 is a homeomorphism of B onto the topological
space f0(B) with the topology induced by topology of Rn (see Theorem 41.III.3
in [19]). By the Brouwer theorem on invariance domains (see e.g. Theorem
4.7.16 in [34]), f maps the ball B onto a domain in Rn as a homeomorphism.
Hence, it follows that the mapping f −1(y) is continuous at the point y0. Thus,
f : D → Rn is a homeomorphism. �

The kernel of a sequence of open sets Ωl ⊂ Rn, l = 1, 2, . . . is the open set

Ω0 = Kern Ωl : =
∞⋃
m=1

Int

( ∞⋂
l=m

Ωl

)
,

where Int A denotes the set consisting of all inner points of A; in other words,
Int A is the union of all open balls in A with respect to the spherical distance.

The following statement for the plane case can be found in [6], see also
Proposition 2.7 in [12].

Proposition 3.1. Let gl : D → D ′l , D
′
l := gl(D), be a sequence of ho-

meomorphisms given in a domain D ⊂ Rn. Suppose that gl converge as l→∞
locally uniformly with respect to the spherical (chordal) metric to a mapping

g : D → D ′ := g(D) ⊂ Rn which is injective. Then g is a homeomorphism and

D ′ ⊂ KernD ′l .

Proof. First of all, the mapping g is continuous as a locally uniform limit
of continuous mappings, see e.g. Theorem 13.VI.3 in [18]. Thus, by Corollary
3.1 g is a homeomorphism.

Now, let y0 be a point in D ′. Consider the spherical ball B∗(z0, ρ) where
z0 := g−1(y0) ∈ D and ρ < h(z0, ∂D). Then

r0 : = min
z∈∂B∗(z0,ρ)

h(y0, g(z)) > 0 .

There is an integer N large enough such that gl(z0) ∈ B∗(y0, r0/2) for all l ≥ N
and simultaneously

B ∗(y0, r0/2) ∩ gl(∂B
∗(z0, ρ)) = B ∗(y0, r0/2) ∩ ∂gl(B

∗(z0, ρ)) = ∅

because gl → g uniformly on the compact set ∂B ∗(z0, ρ). Hence, by the con-
nectedness of balls

B ∗(y0, r0/2) ⊂ gl(B
∗(z0, ρ)) ∀ l ≥ N ,

see e.g. Theorem 46.I.1 in [19]. Consequently, y0 ∈ Kern D ′l , i.e. D
′ ⊂ Kern D ′l

by arbitrariness of y0. �

Remark 3.1. In particular, Proposition 3.1 implies that D ′ := g(D) ⊂ Rn
if D ′l := gl(D) ⊂ Rn for all l = 1, 2, . . . .
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The following statement for the plane case can be found in the paper [16],
see also Lemma 2.16 in the monograph [12].

Lemma 3.1. Let D be a domain in Rn, l = 1, 2, . . . , and let fl be a sequence

of homeomorphisms from D into Rn such that fl converge as l → ∞ locally

uniformly with respect to the spherical metric to a homeomorphism f from D
into Rn. Then f−1

l → f−1 locally uniformly in f(D), too.

Proof. Given a compactum C ⊂ f(D), we have by Proposition 3.1 that
C ⊂ fl(D) for all l ≥ l0 = l0(C). Set gl = f−1

l and g = f−1. The locally
uniform convergence gl → g is equivalent to the so-called continuous conver-
gence, meaning that gl(ul) → g(u0) for every convergent sequence ul → u0

in f(D); see e.g. [9], p. 268 or Theorems 20.VIII.2 and 21.X.4 in [18]. So,
let ul ∈ f(D), l = 0, 1, 2, . . . and ul → u0 as l → ∞. Let us show that
zl := g(ul)→ z0 := g(u0) as l→∞.

It is known that every metric space is L∗-space, i.e. a space with a con-
vergence (see e.g. Theorem 21.II.1 in [18]), and the Uhryson axiom in compact
spaces says that zl → z0 as l → ∞ if and only if, for every convergent sub-
sequence zlk → z∗, the equality z∗ = z0 holds; see e.g. the de�nition 20.I.3
in [18]. Hence, it su�ces to prove that the equality z∗ = z0 holds for every
convergent subsequence zlk → z∗ as k → ∞. Let D0 be a subdomain of D
such that z0 ∈ D0 and D0 is a compact subset of D. Then, by Proposition 3.1,
f(D0) ⊂ Kernfl(D0) and hence, u0 together with its neighborhood belongs to
flk(D0) for all k ≥ K. Thus, with no loss of generality we may assume that
ulk ∈ flk(D0), i.e. zlk ∈ D0 for all k = 1, 2, . . . , and, consequently, z∗ ∈ D.
Then, by the continuous convergence fl → f , we have that flk(zlk) → f(z∗),
i.e. flk(glk(ulk)) = ulk → f(z∗). The latter implies that u0 = f(z∗), i.e.
f(z0) = f(z∗) and hence z∗ = z0. The proof is complete. �

The following statement for the plane case can be found in the paper [31],
see also Proposition 2.6 in the monograph [12].

Theorem 3.1. Let D be a domain in Rn, n ≥ 2, and let fm, m = 1, 2, . . . ,
be a sequence of homeomorphisms of D into Rn converging locally uniformly to

a discrete mapping f : D → Rn with respect to the spherical metric. Then f is

a homeomorphism of D into Rn.

Proof. First of all, let us show by contradiction that f is injective. Indeed,
let us assume that there exist x1, x2 ∈ D, x1 6= x2, with f(x1) = f(x2) and
that x1 6= ∞. Set Bt = B(x1, t). Let t0 be such that Bt ⊂ D and x2 6∈ Bt for
every t ∈ (0, t0]. By the Jordan�Brower theorem, see e.g. Theorem 4.8.15 in
[34], fm(∂Bt) = ∂fm(Bt) splits Rn into two components

Cm := fm(Bt), C ∗m = Rn \ Cm .
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By construction ym := fm(x1) ∈ Cm and zm := fm(x2) ∈ C ∗m. Remark that
the ball B ∗(ym, h(ym, ∂Cm)) is contained inside of Cm and, consequently, its
closure is inside of Cm. Hence,

(3) h(ym, ∂Cm) < h(ym, zm), m = 1, 2, . . . .

By compactness of ∂Cm = fm(∂Bt), there is xm,t ∈ ∂Bt such that

(4) h(ym, ∂Cm) = h(ym, fm(xm,t)) , m = 1, 2, . . . .

By compactness of ∂Bt, for every t ∈ (0, t0], there is xt ∈ ∂Bt such that
h(xmk,t, xt)→ 0 as k →∞ for some subsequence mk. Since the locally uniform
convergence of continuous functions in a metric space implies the continuous
convergence (see [9], p. 268 or Theorem 21.X.3 in [18]), we have that

h(fmk
(xmk,t), f(xt))→ 0

as k →∞. Consequently, from (3) and (4) we obtain that

h(f(x1), f(xt)) ≤ h(f(x1), f(x2)) ∀ t ∈ (0, t0] .

However, by the above assumption f(x1) = f(x2) and we have f(xt) = f(x1)
for every t ∈ (0, t0]. The latter contradicts to the discreteness of f. Thus, f is
injective.

It remains to show that f and f −1 are continuous. A mapping f is
continuous as a locally uniform limit of continuous mappings, see e.g. Theorem
13.VI.3 in [18]. Finally, f −1 is continuous by Corollary 3.1. �

4. CONVERGENCE OF HOMEOMORPHISMS
WITH MODULAR CONDITIONS

Later on, the following lemma plays a very important role. Its plane ana-
log can be found in the paper [7], see also supplement A1 in the monograph [21].

Lemma 4.1. Let fm, m = 1, 2, . . . , be a sequence of homeomorphisms of a

domain D ⊆ Rn into Rn, n ≥ 2, converging to a mapping f uniformly on every

compact set in D with respect to the spherical metric in Rn. Suppose that for

every x0 ∈ D there exist sequences Rk > 0 and rk ∈ (0, Rk), k = 1, 2, . . . , such
that Rk → 0 as k →∞ and mod fm (A (x0, rk, Rk))→∞ as k →∞ uniformly

with respect to m = 1, 2, . . . . Then the mapping f is either a constant in Rn or

a homeomorphism of D into Rn.

Proof. Assume that f is not constant. Let us consider the open set V
consisting of all points in D which have neighborhoods where f is a constant
and show that f(x) 6= f(x0) for every x0 ∈ D \ V and x 6= x0. Without loss of
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generality, we may assume that f(x0) 6=∞. Now, let us �x a point x∗ 6= x0 in
D \ V and choose k = 1, 2, . . . such that R := Rk < |x∗ − x0| and

(5) mod fm (A(x0, r, R)) > (ωn−1/τn(1))1/(n−1)

for r = rk where τn(s) denotes the capacity of the Teichm�uller ring RT,n(s) :=
[Rn \ {te1 : t ≥ s}, [−e1, 0]] , s ∈ (0,∞).

Let cm ∈ fm(S(x0, R)) and bm ∈ fm(S(x0, r)) be such that

min
w∈fm(S(x0,R))

|w − fm(x0)| = |cm − fm(x0)| ,

max
w∈fm(S(x0,r))

|w − fm(x0)| = |bm − fm(x0)| .

Since fm is a homeomorphism, the set fm(A(x0, r, R)) is a ring domain Rm =
(C1

m, C
2
m), where am := fm(x0) and bm ∈ C1

m, cm and ∞ ∈ C2
m. Applying

Lemma 7.34 in [36] with a = am, b = bm and c = cm, we obtain that

(6) capRm = M(Γ(C1
m, C

2
m)) ≥ τn

(
|am − cm|
|am − bm|

)
.

Note that the function τn(s) is strictly decreasing (see Lemma 7.20 in [36]).
Thus, it follows from (5) and (6) that

|am − cm|
|am − bm|

≥ τ −1
n (capRm) > τ −1

n (τn(1)) = 1 .

Hence, there is a spherical ring Am = {y ∈ Rn : ρm < |y − fm(x0)| < ρ ∗m} in the
ring domain Rm for every m = 1, 2, . . . . Since f is not locally constant at x0,
we can �nd a point x ′ in the ball |x−x0| < r with f(x0) 6= f(x ′). The ring Am
separates fm(x0) and fm(x ′) from fm(x∗) and, thus, |fm(x ′) − fm(x0)| ≤ ρm
and |fm(x∗) − fm(x0)| ≥ ρ ∗m. Consequently, |fm(x ′) − fm(x0)| ≤ |fm(x∗) −
fm(x0)| for all m = 1, 2, . . . . Under m→∞ we have then 0 < |f(x ′)−f(x0)| ≤
|f(x∗)− f(x0)| and hence f(x∗) 6= f(x0).

It remains to show that the set V is empty. Let us assume that V has a
nonempty component V0. Then f(x) ≡ z for every x ∈ V0 and some z ∈ Rn.
Note that ∂V0 ∩ D 6= ∅ by connectedness of D because f 6≡ const in D and
the set D \ V0 is also open. If x0 ∈ ∂V0 ∩ D, then by continuity f(x0) = z
contradicting the �rst part of the proof because x0 ∈ D \ V.

Thus, we have proved that the mapping f is injective if f is not constant.
But f is continuous as a locally uniform limit of continuous mappings fm, see
Theorem 13.VI.3 in [18], and then by Corollary 3.1 f is a homeomorphism.
Finally, by Remark 3.1 f(D) ⊂ Rn and the proof is complete. �

Lemma 4.2. Let D be a domain in Rn, n ≥ 2, Qm : D → (0,∞) be

measurable functions, fm, m = 1, 2, . . . , be a sequence of ring Qm-homeomor-
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phisms of D into Rn converging locally uniformly to a mapping f. Suppose

(7)

∫
ε<|x−x0|<ε0

Qm(x) · ψn(|x− x0|) dm(x) = o(In(ε, ε0)) ∀ x0 ∈ D

where o(In(ε, ε0))/In(ε, ε0) → 0 as ε → 0 uniformly with respect to m for

ε0 < dist (x0, ∂D) and a measurable function ψ(t) : (0, ε0)→ [0,∞] such that

(8) 0 < I(ε, ε0) :=

ε0∫
ε

ψ(t) dt <∞ ∀ ε ∈ (0, ε0) .

Then the mapping f is either a constant in Rn or a homeomorphism into Rn.

Remark 4.1. In particular, the conclusion of Lemma 4.2 holds for Q-ho-
meomorphisms fm with a measurable function Q : D → (0,∞) such that

(9)

∫
ε<|x−x0|<ε0

Q(x) · ψn(|x− x0|) dm(x) = o(In(ε, ε0)) ∀ x0 ∈ D .

Proof. By Lusin theorem there exists a Borel function ψ∗(t) such that
ψ(t) = ψ∗(t) for a.e. t ∈ (0, ε0), see e.g. 2.3.6 in [10]. Since Qm(x) > 0 for
all x ∈ D we have from (7) that I(ε, a) → ∞ for every �xed a ∈ (0, ε0) and,
in particular, I(ε, a) > 0 for every ε ∈ (0, b) and some b = b(a) ∈ (0, a). Given
x0 ∈ D and a sequence of such numbers b = εk → 0 as k → ∞, k = 1, 2, . . . ,
consider a sequence of the Borel measurable functions ρε,k de�ned as

ρε,k(x) =

{
ψ∗(|x− x0|)/I(ε, εk), ε < |x− x0| < εk,

0, otherwise .

Note that the function ρε,k(x) is admissible for

Γε,k := Γ(S(x0, ε), S(x0, εk), A(x0, ε, εk))

because ∫
γ

ρε,k(x)|dx| ≥ 1

I(ε, εk)

εk∫
ε

ψ(t)dt = 1

for all (locally recti�able) curves γ ∈ Γε,k (see Theorem 5.7 in [35]). Then by
de�nition of ring Q-homeomorphisms

(10) M(fm(Γε,k)) ≤ 1

In(ε, εk)

∫
ε<|x−x0|<ε0

Q(x) · ψn(|x− x0|) dm(x)

for all m ∈ N. Note that 1
In(ε,εk) = αε,k · 1

In(ε,ε0) , where αε,k :=
(

1 + I(εk,ε0)
I(ε,εk)

)n
is independent on m and bounded as ε→ 0. Then, it follows from (7) and (10)
that there exists ε ∗k ∈ (0, εk) such that for all
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M(fm(Γε ∗k ,k)) ≤ 1

2k
∀m ∈ N .

Applying Lemma 4.1 we obtain a desired conclusion. �

The following important statements follow just from Lemma 4.2.

Theorem 4.1. Let D be a domain in Rn, n ≥ 2, Q : D → (0,∞) a

Lebesgue measurable function and let fm, m = 1, 2, . . . , be a sequence of ring

Q-homeomorphisms of D into Rn converging locally uniformly to a mapping f.
Suppose that Q ∈ FMO. Then the mapping f is either a constant in Rn or a

homeomorphism into Rn.

Proof. Let x0 ∈ D. We may consider further that x0 = 0 ∈ D. Choosing
a positive ε0 < min

{
dist (0, ∂D) , e−1

}
, we obtain by Lemma 2.1 for the

function ψ(t) = 1
t log 1

t

that∫
ε<|x|<ε0

Q(x) · ψn(|x|) dm(x) = O

(
log log

1

ε

)
.

Note that I(ε, ε0) :=
ε0∫
ε
ψ(t) dt = log

log 1
ε

log 1
ε0

. Now, the desired conclusion fol-

lows from Lemma 4.2. �

The following conclusions can be obtained on the basis of Theorem 4.1,
Proposition 2.1 and Corollary 2.1.

Corollary 4.1. In particular, the limit mapping f is either a constant

in Rn or a homeomorphism of D into Rn whenever

lim
ε→0

−
∫
B(x0,ε)

Q(x) dm(x) <∞ ∀ x0 ∈ D

or whenever every x0 ∈ D is a Lebesgue point of Q.

Theorem 4.2. Let D be a domain in Rn, n ≥ 2, and let Q : D → (0,∞)
be a measurable function such that

(11)

ε(x0)∫
0

dr

rq
1

n−1
x0 (r)

=∞ ∀x0 ∈ D

for a positive ε(x0) < dist (x0, ∂D) where qx0(r) denotes the average of Q(x)
over the sphere |x−x0| = r. Suppose that fm, m = 1, 2, . . . , is a sequence of ring

Q-homeomorphisms from D into Rn converging locally uniformly to a mapping

f. Then the mapping f is either a constant in Rn or a homeomorphism into Rn.
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Proof. Fix x0 ∈ D and set I = I(ε, ε0) =
ε0∫
ε
ψ(t) dt, ε ∈ (0, ε0), where

ψ(t) =

{
1/[tq

1
n−1
x0 (t)] , t ∈ (ε, ε0) ,

0 , t /∈ (ε, ε0) .

Note that I(ε, ε0) < ∞ for every ε ∈ (0, ε0). Indeed, by Theorem 3.15 in [25]
on the criterion of ring Q−homeomorphisms, we have that

(12) M(f(Γ(S(x0, ε), S(x0, ε0), A(x0, ε, ε0)))) ≤ ωn−1

In−1
.

On the other hand, by Lemma 1.15 in [22], we see that

M(Γ(f(S(x0, ε)), f(S(x0, ε0)), f(A(x0, ε, ε0))) > 0 .

Then, it follows from (12) that I <∞ for every ε ∈ (0, ε0). In view of (11), we
obtain that I(ε, ε∗) > 0 for all ε ∈ (0, ε∗) with some ε∗ ∈ (0, ε0). Finally, simple
calculations show that (9) holds, in fact,∫

ε<|x−x0|<ε∗

Q(x) · ψn(|x− x0|) dm(x) = ωn−1 · I(ε, ε∗)

and I(ε, ε∗) = o (In(ε, ε∗)) by (11). The rest follows by Lemma 4.2. �

Corollary 4.2. In particular, the conclusion of Theorem 4.2 holds if

qx0(r) = O

(
logn−1 1

r

)
∀x0 ∈ D .

Corollary 4.3. Under assumptions of Theorem 4.2, the mapping f is

either a constant in Rn or a homeomorphism into Rn provided Q(x) has singu-

larities only of the logarithmic type of the order which is not more than n − 1
at every point x0 ∈ D.

Theorem 4.3. Let D be a domain in Rn, n ≥ 2, and Q : D → (0,∞) be

a measurable function such that

(13)

∫
ε<|x−x0|<ε0

Q(x)

|x− x0|n
dm(x) = o

(
logn

1

ε

)
∀x0 ∈ D

as ε → 0 for some positive number ε0 = ε(x0) < dist (x0, ∂D). Suppose that

fm, m = 1, 2, . . . , is a sequence of ring Q-homeomorphisms from D into Rn
converging locally uniformly to a mapping f. Then, the limit mapping f is either

a constant in Rn or a homeomorphism into Rn.

Proof. The conclusion follows from Lemma 4.2 by the choice ψ(t) = 1
t . �
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For every nondecreasing function Φ : [0,∞]→ [0,∞], the inverse function
Φ−1 : [0,∞]→ [0,∞] can be well de�ned by setting

Φ−1(τ) = inf
Φ(t)≥τ

t .

As usual, here inf is equal to ∞ if the set of t ∈ [0,∞] such that Φ(t) ≥ τ is
empty. Note that the function Φ−1 is nondecreasing, too. Note also that if h :
[0,∞] → [0,∞] is a sense-preserving homeomorphism and ϕ : [0,∞] → [0,∞]
is a nondecreasing function, then

(14) (ϕ ◦ h)−1 = h−1 ◦ ϕ−1 .

Theorem 4.4. Let D be a domain in Rn, n ≥ 2, let Q : D → (0,∞)
be a measurable function and Φ : [0,∞] → [0,∞] be a nondecreasing convex

function. Suppose that

(15)

∫
D

Φ (Q(x))
dm(x)

(1 + |x|2)n
≤ M <∞

and

(16)

∞∫
δ

dτ

τ [Φ−1(τ)]
1

n−1

= ∞

for some δ > Φ(0). Suppose that fm, m = 1, 2, . . . , is a sequence of ring Q-
homeomorphisms of D into Rn converging locally uniformly to a mapping f.
Then, the mapping f is either a constant in Rn or a homeomorphism into Rn.

Proof. It follows from (15)�(16) and Theorem 3.1 in [26] that the integral
in (11) is divergent for some positive ε(x0) < dist (x0, ∂D). The rest follows by
Theorem 4.2. �

Remark 4.2. We may assume in Theorem 4.4 that the function Φ(t) is
not convex on the whole segment [0,∞] but only on the segment [t∗,∞] where
t∗ = Φ−1(δ). Indeed, every non-decreasing function Φ : [0,∞] → [0,∞] which
is convex on the segment [t∗,∞] can be replaced by a non-decreasing convex
function Φ∗ : [0,∞]→ [0,∞] in the following way. Set Φ∗(t) ≡ 0 for t ∈ [0, t∗],
Φ(t) = ϕ(t) for t ∈ [t∗, T∗] and Φ∗ ≡ Φ(t) for t ∈ [T∗,∞], where τ = ϕ(t) is the
line passing through the point (0, t∗) and touching the graph of the function
τ = Φ(t) at a point (T∗,Φ(T∗)), T∗∈(t∗,∞). By the construction, we have that
Φ∗(t) ≤ Φ(t) for all t ∈ [0,∞] and Φ∗(t) = Φ(t) for all t ≥ T∗ and, consequently,
the conditions (15) and (16) hold for Φ∗ under the same M and every δ > 0.

Furthermore, by the same reasons it is su�cient to assume that the func-
tion Φ is only minorized by a nondecreasing convex function Ψ on a segment
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[T,∞] such that

(17)

∞∫
δ

dτ

τ [Ψ−1(τ)]
1

n−1

= ∞

for some T ∈ [0,∞) and δ > Ψ(T ). Note that the condition (17) can be written
in terms of the function ψ(t) = log Ψ(t) :

(18)

∞∫
∆

ψ(t)
dt

tn′
= ∞

for some ∆ > t0 ∈ [T,∞) where t0 := sup
ψ(t)=−∞

t, t0 = T if ψ(T ) > −∞,

and where 1
n′ + 1

n = 1, i.e., n′ = 2 for n = 2, n′ is decreasing in n and
n′ = n/(n − 1) → 1 as n → ∞, see Proposition 2.3 in [26]. It is clear that if
the function ψ is nondecreasing and convex, then the function Φ = eψ is so but
the inverse conclusion generally speaking is not true. However, the conclusion
of Theorem 4.4 is valid if ψ : [0,∞] → [0,∞] and ψm(t), t ∈ [T,∞], is convex
and (18) holds for ψm under some m ∈ N because eτ ≥ τm/m! for all m ∈ N.

Corollary 4.4. In particular, the conclusion of Theorem 4.4 is valid if,

for some α > 0,

(19)

∫
D

eαQ
1

n−1 (x) dm(x)

(1 + |x|2)n
≤ M <∞ .

The same is true for any function Φ = eψ where ψ(t) is a �nite product of the

function αtβ, α > 0, β ≥ 1/(n− 1), and some of the functions [log(A1 + t)]α1,

[log log(A2 + t)]α2 , . . . , αm ≥ −1, Am ∈ R, m ∈ N, t ∈ [T,∞], ψ(t) ≡ ψ(T ),
t ∈ [0, T ] for a large enough T .

Remark 4.3. For further applications, the integral conditions (15) and (16)
for Q and Φ can be written in other forms that are more convenient for some

cases. Namely, by (14) with h(t) = t
1

n−1 and ϕ(t) = Φ(tn−1), Φ = ϕ ◦ h, the
couple of conditions (15) and (16) is equivalent to the following couple

(20)

∫
D

ϕ
(
Q

1
n−1 (x)

) dm(x)

(1 + |x|2)n
≤ M <∞

and

(21)

∞∫
δ

dτ

τϕ−1(τ)
= ∞

for some δ > ϕ(0).Moreover, by Theorem 2.1 in [32] the couple of the conditions
(20) and (21) is in turn equivalent to the next couple
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(22)

∫
D

e
ψ

(
Q

1
n−1 (x)

)
dm(x)

(1 + |x|2)n
≤ M <∞

and

(23)

∞∫
∆

ψ(t)
dt

t2
= ∞

for some ∆ > t0 where t0 := sup
ψ(t)=−∞

t, t0 = 0 if ψ(0) > −∞, ψ(t) = log ϕ .

Finally, as it follows from Lemma 4.2 all the results of this section are
valid if fm are Qm-homeomorphisms and the above conditions on Q hold for
Qm uniformly with respect to the parameter m = 1, 2, . . ..

5. ON COMPLETENESS OF RING HOMEOMORPHISMS

The following result for the plane case can be found in the paper [31],
Theorem 4.1, see also the monograph [12], Theorem 6.2.

Theorem 5.1. Let fm : D → Rn, m = 1, 2, . . . , be a sequence of ring

Q-homeomorphisms at a point x0 ∈ D. If fm converges locally uniformly to a

homeomorphism f : D → Rn, then f is also a ring Q-homeomorphism at x0.

Proof. Note �rst that every point w0 ∈ D ′ = f(D) belongs to D ′m =
fm(D) for all m ≥ N together with B ∗(w0, ε), where B

∗(w0, ε) = {w ∈ Rn :
h(w,w0) < ε} for some ε > 0 (see Proposition 3.1).

Now, we note that D ′ =
⋃∞
l=1 Cl where Cl = D∗l , and D

∗
l is a connected

component of the open set Ωl = {w ∈ D ′ : h(w, ∂D ′) > 1/l}, l = 1, 2, . . . ,
including a �xed point w0 ∈ D ′. Indeed, every point w ∈ D ′ can be joined
with w0 by a path γ in D ′. Because the locus |γ| is compact we have that
h(|γ|, ∂D ′) > 0 and, consequently, |γ| ⊂ D ∗l for large enough l = 1, 2, . . . .

Next, take an arbitrary pair of continua E and F in D which belong to the
di�erent connected components of the complement of a ring A = A(x0, r1, r2) =
{x ∈ Rn : r1 < |x − x0| < r2}, x0 ∈ D, 0 < r1 < r2 < r0 = dist (x0, ∂D). For
l ≥ l0, continua f(E) and f(F ) belong to D ∗l . Then, the continua fm(E) and
fm(F ) also belong to D ∗l for large enough m. Fix one such m. It is known that

M(Γ(fm(E), fm(F ), D ∗l )) → M(Γ(f(E), f(F ), D ∗l ))

as m → ∞, see e.g. Theorem A.12 in [20]. However, D ∗l ⊂ fm(D) for large
enough m and hence

M(Γ(fm(E), fm(F ), D ∗l )) ≤M(Γ(fm(E), fm(F ), fm(D)))

and, thus, by de�nition of ring Q-homeomorphisms
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M(Γ(f(E), f(F ), D ∗l )) ≤
∫
A

Q(x) · ηn(|x− x0|) dm(x) ,

for every measurable function η : (r1, r2)→ [0,∞] such that
∫
η(r) dr ≥ 1. Fi-

nally, since Γ =
∞⋃
l=l0

Γl where Γ = Γ(f(E), f(F ), f(D)), Γl = Γ(f(E), f(F ), D ∗l )

is increasing in l = 1, 2, . . . , we obtain that M(Γ) = lim
l→∞

M(Γl), see e.g. The-

orems A.7 and A.25 in [20]. Thus,

M(Γ(f(E), f(F ), f(D)) ≤
∫
A

Q(x) · ηn(|x− x0|) dm(x) ,

i.e., f is a ring Q-homeomorphism at x0. �

6. NORMAL CLASSES OF RING Q-HOMEOMORPHISMS

Given a domain D in Rn, n ≥ 2, a measurable function Q : D → (0,∞),
and ∆ > 0, denote by FQ,∆ the family of all ring Q-homeomorphisms f of D
into Rn such that h

(
Rn \ f(D)

)
≥ ∆. Recall that a class of mappings is called

normal if every sequence of mappings in the class contains a subsequence that
converges locally uniformly.

Lemma 6.1. Let D be a domain in Rn, n ≥ 2, and let Q : D → (0,∞)
be a measurable function. If the conditions (8)�(9) hold, then the class FQ,∆
forms a normal family for all ∆ > 0.

Proof. By Lemma 7.5 in [20], cf. also Lemma 4.1 in [25], for y ∈ B(x0, r0),
r0 < dist (x0, ∂D), S0 = {x ∈ Rn : |x− x0| = r0} and S = {x ∈ Rn : |x− x0| =
|y − x0|} we have that

(24) h(f(y), f(x0)) ≤ αn
∆
· exp

(
−
{

ωn−1

M (Γ (f(S), f(S0), f(D)))

}1/n−1
)
,

where ωn−1 is the area of the unit sphere Sn−1 in Rn, αn = 2λ2
n with λn ∈

[4, 2en−1), λ2 = 4 and λ
1
n
n → e as n → ∞. We may consider that ψ is a Borel

function, because, by 2.3.4 and 2.3.6 in [10] there exists a Borel function ψ∗(t)
with ψ(t) = ψ∗(t) for a.e. t ∈ (0, ε0). Given ε ∈ (0, ε0), consider a Borel
measurable function ρε de�ned as

ρε(x) =

{
ψ∗(|x− x0|)/I(ε, ε0), ε < |x− x0| < ε0,

0, otherwise .

Note that ρε(x) is admissible for Γε := Γ(S(x0, ε), S(x0, ε0), A(x0, ε, ε0)) be-
cause
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∫
γ

ρε(x)|dx| ≥ 1

I(ε, ε0)

ε0∫
ε

ψ(t)dt = 1

for all (locally recti�able) curves γ ∈ Γε (see Theorem 5.7 in [35]). Then, by
de�nition of ring Q-homeomorphism at the point x0

(25) M(f(Γε)) ≤ J (ε) :=
1

In(ε, ε0)

∫
ε<|x−x0|<ε0

Q(x) ·ψn(|x−x0|) dm(x) ,

for all f ∈ FQ,∆. It follows from (9) that, given σ > 0, there exists δ = δ(σ)
such that J (ε) < σ for all ε ∈ (0, δ). Then, from (24) and (25) we have that

(26) h(f(x), f(x0)) ≤ αn
∆
· exp

(
−
{ωn−1

σ

}1/n−1
)

provided |x − x0| < δ. In view of arbitrariness of σ > 0 the equicontinuity of
FQ,∆ follows from (26). �

Remark 6.1. In particular, the conclusion of Lemma 6.1 holds if at least
one of the conditions on Q in Theorems 4.1�4.4 and Corollary 4.1�4.4 holds.
The corresponding normality results have been formulated in [25] and [26] and
hence, we will not repeat them in the explicit form here.

Furthermore, as it follows from the analysis of the proof of Lemma 6.1,
its conlusion is valid for a more wide class F∆, ∆ > 0, consisting of all ring
Q-homeomorphisms f of D into Rn such that h

(
Rn \ f(D)

)
≥ ∆ satisfying

the uniform condition (9) for the variable Q but with a �xed function ψ in (8).
Thus, the conclusion of Lemma 6.1 is also valid if at least one of the conditions
on Q in Theorems 4.1�4.4 and Corollary 4.1�4.4 is uniform with respect to the
variable functional parameter Q.

All notes in Remarks 4.2 and 4.3 are also valid for the normality results.

7. ON COMPACT CLASSES OF RING Q-HOMEOMORPHISMS

Given a domain D in Rn, n ≥ 2, a measurable function Q : D → (0,∞),
x1, x2 ∈ D, y1, y2 ∈ Rn, x1 6= x2, y1 6= y2, set RQ the class of all ring Q-ho-
meomorphisms from D into Rn, n ≥ 2, satisfying the normalization conditions
f(x1) = y1, f(x2) = y2.

Recall that a class of mappings is called compact if it is normal and closed.
Combining the above results on normality and closure, we obtain the following
results on compactness for the classes of ring Q-homeomorphisms.

Theorem 7.1. If Q ∈ FMO, then the class RQ is compact.
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Corollary 7.1. The class RQ is compact if

lim
ε→0

−
∫
B(x0,ε)

Q(x) dm(x) <∞, ∀ x0 ∈ D.

Corollary 7.2. The class RQ is compact if every x0 ∈ D is a Lebesgue

point of Q.

Theorem 7.2. Let Q satisfy the condition

ε(x0)∫
0

dr

rq
1

n−1
x0 (r)

=∞, ∀x0 ∈ D,

for some ε(x0) < dist (x0, ∂D) where qx0(r) denotes the average of Q(x) over

the sphere |x− x0| = r. Then, the class RQ is compact.

Corollary 7.3. The class RQ is compact if Q(x) has singularities only

of the logarithmic type of the order which is not more than n− 1 at every point

x0 ∈ D.

Theorem 7.3. The class RQ is compact if∫
ε<|x−x0|<ε0

Q(x)

|x− x0|n
dm(x) = o

(
logn

1

ε

)
∀x0 ∈ D

as ε→ 0 for some ε0 = ε(x0) < dist (x0, ∂D).

Theorem 7.4. The class RQ is compact if

(27)

∫
D

Φ (Q(x))
dm(x)

(1 + |x|2)n
≤ M < ∞,

for a nondecreasing convex function Φ : [0,∞]→ [0,∞] such that

(28)

∞∫
δ

dτ

τ [Φ−1(τ)]
1

n−1

= ∞,

for some δ > Φ(0).

Corollary 7.4. In particular, the conclusion of Theorem 7.4 is valid if,

for some α > 0,

(29)

∫
D

eαQ
1

n−1 (x) dm(x)

(1 + |x|2)n
≤ M <∞ .

The same is true for any function Φ = eψ where ψ(t) is a �nite product of the

function αtβ, α > 0, β ≥ 1/(n− 1), and some of the functions [log(A1 + t)]α1,
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[log log(A2 + t)]α2 , . . . , αm ≥ −1, Am ∈ R, m ∈ N, t ∈ [T,∞], ψ(t) ≡ ψ(T ),
t ∈ [0, T ] with a large enough T ∈ (0,∞).

Remark 7.1. Note that the condition (28) is not only su�cient but also
necessary for the compactness of the classes RQ with integral constraints of the
type (27) on Q, see Theorem 5.1 in [26], and (28) is equivalent to the following
condition

(30)

∞∫
∆

log Φ(t)
dt

tn′
= +∞,

for all ∆ > t0 where t0 := sup
Φ(t)=0

t, t0 = 0 if Φ(0) > 0, and where 1
n′ + 1

n = 1,

i.e., n′ = 2 for n = 2, n′ is strictly decreasing in n and n′ = n/(n − 1) → 1 as
n→∞, see Remark 4.2 in [26].

Finally, all the notes in Remarks 4.2, 4.3 and 6.1 above are also related
to the compactness results in this section.

These results will have, in particular, wide applications to the conver-
gence and compactness theory for the Sobolev homeomorphisms as well as for
the Orlicz�Sobolev homeomorphisms, cf. e.g. [17], [24] and [27], that will be
published elsewhere.

REFERENCES

[1] C. Andreian Cazacu, In�uence of the orientation of the characteristic ellipses on the

properties of the quasiconformal mappings, Proceedings of Romanian-Finnish Seminar
on Teichm�uller Spaces and Riemann Surfaces, Bucharest, 1971, 65�85.

[2] C. Andreian Cazacu, Moduli inequalities for quasiregular mappings. Ann. Acad. Sci.
Fenn. Math. 2 (1976), 17�28.

[3] C. Andreian Cazacu, On the length-area dilatation. Complex Var. Theory Appl. 50
(2005), 7�11, 765�776.

[4] K. Astala, A remark on quasiconformal mappings and BMO-functions. Michigan Math.
J. 30 (1983), 209�212.

[5] K. Astala and F.W. Gehring, Injectivity, the BMO norm and the universal Teichmuller

space. J. Anal. Math. 46 (1986), 16�57.

[6] B. Bojarski, V. Gutlyanskii and V. Ryazanov, On Beltrami equations with two charac-

teristics. Complex Var. Elliptic Equ. 54 (2009), 10, 933�950.

[7] M. Brakalova and J. Jenkins, On solutions of the Beltrami equation. II. Publ. Inst.
Math. (Beograd) (N.S.) 75(89) (2004), 3�8.

[8] M. Cristea, Local homeomorphisms having local ACLn inverses. Complex Var. Elliptic
Equ. 53 (2008), 1, 77�99.

[9] J. Dugundji, Topology. Allyn and Bacon, Inc., Boston, 1966.

[10] H. Federer, Geometric Measure Theory. Springer-Verlag, Berlin and New York, 1969.



19 On convergence and compactness of spatial homeomorphisms 103

[11] F.W. Gehring, Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc.
103 (1962), 353�393.

[12] V.Ya. Gutlyanskii, V.I. Ryazanov, U. Srebro and E. Yakubov, The Beltrami Equation:

A Geometric Approach. Developments in Mathematics, Vol. 26, Springer, New York,
2012.

[13] A. Ignat'ev and V. Ryazanov, Finite mean oscillation in the mapping theory. Ukr. Math.
Bull. 2 (2005), 3, 395�417.

[14] F. John and L. Nirenberg, On functions of bounded mean oscillation. Comm. Pure
Appl. Math. 14 (1961), 415�426.

[15] P.M. Jones, Extension theorems for BMO. Indiana Univ. Math. J. 29 (1980), 41�66.

[16] Yu. Kolomoitsev and V. Ryazanov, Uniqueness of approximate solutions of the Beltrami

equations. Proc. Inst. Appl. Math. Mech. NASU 19 (2009), 116�124.

[17] D. Kovtonyuk, V. Ryazanov, R. Salimov and E. Sevost'yanov, On mappings in the

Orlicz-Sobolev classes. Ann. Univ. Buchar. Math. Ser. 3 (LXI) (2012), 1, 67�78.

[18] K. Kuratowski, Topology, Vol. 1. Academic Press, New York and London, 1966.

[19] K. Kuratowski, Topology, Vol. 2. Academic Press, New York and London, 1968.

[20] O. Martio, V. Ryazanov, U. Srebro and E. Yakubov, Moduli in Modern Mapping Theory.
Springer Monographs in Mathematics, Springer, New York, 2009.

[21] O. Martio, V. Ryazanov and M. Vuorinen, BMO and Injectivity of Space Quasiregular

Mappings. Math. Nachr. 205 (1999), 149�161.

[22] R. N�akki, Boundary behavior of quasiconformal mappings in n-space. Ann. Acad. Sci.
Fenn. Ser. A. 484 (1970), 1�50.

[23] H.M. Reimann and T. Rychener, Funktionen Beschr�ankter Mittlerer Oscillation. Springer,
Berlin, 1975.

[24] V. Ryazanov, R. Salimov and E. Sevost'yanov, Convergence and compactness of the

Sobolev mappings, www.arxiv.org, arXiv:1208.1687v2.

[25] V. Ryazanov and E. Sevost'yanov, Toward the theory of ring Q-homeomorphisms. Israel
Math. J. 168 (2008), 101�118.

[26] V. Ryazanov and E. Sevost'yanov, Equicontinuity of mappings quasiconformal in the

mean. Ann. Acad. Sci. Fen. Math. 36 (2011), 231�244.

[27] V. Ryazanov and E. Sevost'yanov, On compactness of Orlicz-Sobolev mappings. Ann.
Univ. Buchar. Math. Ser. 3 (LXI) (2012), 1, 79�87.

[28] V. Ryazanov, U. Srebro and E. Yakubov, Degenerate Beltrami equation and radial

Q-homeomorphisms, 2003, Preprint of Department of Mathematics, University of Helsinki,
2003.369.

[29] V. Ryazanov, U. Srebro and E. Yakubov, On ring solutions of Beltrami equations.
J. Anal. Math. 96 (2005), 117�150.

[30] V. Ryazanov, U. Srebro and E. Yakubov, The Beltrami equation and ring homeomor-

phisms. Ukr. Mat. Visn. 4 (2007), 1, 79�115; transl. in Ukr. Math. Bull. 4 (2007), 1,
79�115.

[31] V. Ryazanov, U. Srebro and E. Yakubov, On strong solutions of the Beltrami equations.

Complex Var. Elliptic Equ. 55 (2010), 1�3, 219�236.

[32] V. Ryazanov, U. Srebro and E. Yakubov, On integral conditions in the mapping theory.

Ukr. Mat. Visn. 7 (2010), 1, 73�87; transl. in Ukr. Math. Bull. 7 (2010), 1, 73�87.

[33] V. Ryazanov, U. Srebro and E. Yakubov, Integral conditions in the theory of Beltrami

equations. Complex Var. Elliptic Equ. 57 (2012), 12, 1247�1270.

[34] E. Spanier, Algebraic Topology. McGraw-Hill, New York � London, 1966.



104 V. Ryazanov and E. Sevost'yanov 20

[35] J. V�ais�al�a, Lectures on n-Dimensional Quasiconformal Mappings. Lecture Notes in
Math. 229, Springer-Verlag, Berlin � New York, 1971.

[36] M. Vuorinen, Conformal Geometry and Quasiregular Mappings. Lecture Notes in Math.
1319, Springer-Verlag, Berlin � New York, 1988.

Received 18 October 2012 National Academy of Sciences of Ukraine,

Institute of Applied Mathematics and Mechanics,

74 Roze Luxemburg Str., Donetsk,

83114, UKRAINE

vlryazanov1@rambler.ru;

brusin2006@rambler.ru


	www.csm.ro
	http://www.csm.ro/reviste/Revue_Mathematique/pdfs/2013/1/6_RS_30-01-13_REV_ROUM.pdf


