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ON THE CONVERGENCE OF SPATIAL HOMEOMORPHISMS
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Various theorems on the convergence of general spatial homeomorphisms are proved and,
on this basis, convergence theorems for classes of the so-called ring (-homeomorphisms are
obtained. These results will have wide applications to Sobolev’s mappings.
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JlokazaHbl pa3IndHbIe TEOPEMBI O CXOTUMOCTH OOIITUX ITPOCTPAHCTBEHHBIX TOMEOMOPMU3MOB
u, Ha ITON OCHOBE, IIOJIYYI€HbI T€OPEMbI O CXOAUMOCTHU JIJId TaK Ha3bIBa€MbIX KOJIBIIEBBIX Q*FOIVIQ-
Ol\IOp(bI/ISI\lOB. STI/I pe3y/IbTaThl 6yﬂyT UMETDH IMUPOKUE IIPUJIOZKEHUA K OTO6pa}K€HI/IH1\l KJIaCCOB
Cobosesa.

1. Introduction. We give here foundations of the convergence theory for general homeo-
morphisms in the space and then develop the convergence theory for the so-called ()-homeo-
morphisms. The ring ()-homeomorphisms have been introduced first in a plane in connection
with the study of the degenerate Beltrami equations, see e.g. the papers [22]-[26] and the
monographs [8] and [16]. The theory of ring )~homeomorphisms is applicable to various
classes of mappings with finite distortion intensively investigated in many recent works, see
e.g. [13] and [16] and further references therein. The present paper is a natural continuation
of our previous works [20] and [21].

Given a family T' of paths v in R™, n > 2, a Borel function p: R" — [0, 00] is called
admissible for T', abbr. p € amd T, if f7 p(x)|dz| > 1 for each v € I'. The modulus of T" is
the quantity

M(T) = inf { /n p"(x)dm(z): p € amd F}.

Given a domain D and two subsets E and F of R", n > 2, ['(E, F, D) denotes the family
of all paths 7: [a,b] — R" which join E and F in D, i.e., y(a) € E,v(b) € F and 7(t) € D
fora <t <b Weset I'(E,F) = F(E,F,En) it D =R". A ring domain, or shortly a ring
in R", is a domain R in R" whose complement has two connected components. Let R be
aring in R". If C; and C, are the connected components of R" \ R, we write R = R(C4, Cy).
The capacity of R can be defined by the equality cap R(C}, Cy) = M(I'(Cy, Cy, R)), see e.g.
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5.49 in [30]. Note also that M (I'(Cy, Cy, R)) = M(T'(Cy, Cs)), see e.g. Theorem 11.3 in [29].
A conformal modulus of a ring R(C4, Cy) is defined by

Wi 1/(n—1)
mod R(Cl, Cz) == (m) )

where w,,_; denotes the area of the unit sphere in R, see e.g. (5.50) in [30].

The following notion was motivated by the ring definition of quasiconformality in |7]. Let
D be a domain in R", Q: D — (0,00) be a (Lebesgue) measurable function. Set
A(zg,r1,m2) = {x € R": 11 < |z — 20| < 12}, S(w0,75) = {x € R™: |x — 20| =13} (7 € {1,2}).

We say (see [20]) for the spatial case, that a homeomorphism f of D into R" is a ring
Q—homeomorphism at a point xq € D if

M (T (f(S) t/@ (12 — o) dm(z) (1)

for every ring A = A(xg,r1,7r2), 0 < 13 < 19 < 19 = dist(xg,0D), S; = S(xg,m) i€ {1,2},
and for every Lebesgue measurable function n: (r1,r2) — [0, 00| such that f " nlr)dr > 1.

If condition (1) holds at every point xy € D, then we also say that f is a ring Q homeo-
morphism in the domain D.

2. On BMO and FMO functions. Recall that a real valued function ¢ € L} (D), given
in a domain D C R", is said to be of bounded mean oscillation by John and Nierenberg,
abbr. ¢ € BMO(D) or simply ¢ € BMO, see [10], if

1
Il = sup —/ |p(z) = ppldm(z) < oo,
scp |B| /B

where the supremum is taken over all balls B in D and

),
v =— [ @(x)dm(x
518 )y

is the average of the function ¢ over B. For connections of BMO functions with quasicon-
formal and quasiregular mappings, see e.g. [1], [2], [11], [17] and [19].

Following [9], we say that a function ¢: D — R has finite mean oscillation at a point
xg € D if

lgwﬂbL/m — Guldm(z) < oo, 2)
where ¢, = Wlw)' Il B(xoyg)go(x)dm(x) is the average of the function (z) over the ball

B(zg,e) = {z € R": |z — z¢| < €}. Note that under (2) it is possible that &. — oo as e — 0.

We also say that a function ¢: D — R is of finite mean oscillation in the domain D, abbr.
¢ € FMO(D) or simply ¢ € FMO, if ¢ has finite mean oscillation at every point x € D.
Note that FMO is not BMO),., see examples in [16], p. 211. It is well-known that L>(D) C
BMO(D) C Li (D) for all 1 < p < oo, see e.g. [10] and [19], but FMO(D) ¢ L? (D) for
any p > 1.

loc

Recall some facts on finite mean oscillation from [9], see also 6.2 in [16].
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Proposition 1. If, for some numbers . € R, e € (0, g¢],

ll—r}(l)‘B $07 |/mos @E‘dm( ) o

then ¢ has finite mean oscillation at x.

Corollary 1. If, for a point xq € D,

lim——— / z)|dm(z) < oo,
| B(xzo, e)

e—0 |B Zg, €

then o has finite mean oscillation at x.

Lemma 1. Let p: D — R,n > 2, be a nonnegative function with a finite mean oscillation

at 0 € D. Then ; X
/ —cp(x) ml(x) =0 <log log —)
e<|z|<eo (|1’|10g m)n €

as € — 0 for a positive gy < dist(0,0D).

This lemma takes an important part in many applications to the mapping theory as well
as to the theory of the Beltrami equations, see e.g. the monographs [8] and [16].

3. Convergence of general homeomorphisms. In what follows, we use in R =
R™U{oo} the spherical (chordal) metric h(z,y) = |m(x) — m(y)| where 7 is the stereographic
projection of R™ onto the sphere S™(3e,41,3) in R™™ ie.

|z —y| 1

, T # 00, Yy # 00, h(x,oo):—2.
\/1+|x| V1t Iyl J1+ ]

It is clear that R" is homeomorphic to the unit sphere S in R+,

The spherical (chordal) diameter of a set E C R" is h(E) = sup{h(z,y): z,y € E}. We
also define h(z, E) for z € R" and E C R" as a infimum of h(z,y) over all y € E and h(F, E)
for F C R" and E C R" as the infimum of h(z,y) over all z € F and y € E. Later on, we
also use the notation B*(z,p), zo € R, p € (0,1), for the balls {z € R": h(z,z0) < p}
with respect to the spherical metric.

Let us start with a simple consequence of the well-known Brouwer theorem on invariance
of domains.

Corollary 2. Let U be an open set in R" and let f: U — R be continuous and injective.
Then f is a homeomorphism of U onto V = f(U).

Proof. Let yo € f(D) and zo:=f"'(yo). Set B = B*(wo,&¢) where 0 < gy < h(xg,dD).
Then B C D. Note that the mapping fo:=f|5 is injective and continuous and maps the
compactum B into the Hausdorff topological space R™. Consequently, f, is a homeomorphism
of B onto the topological space fy(B) with the topology induced by that of R™ (see Theorem
41.111.3 in [15]). By the Brouwer theorem on invariance domains (see e.g. Theorem 4.7.16
in [28]), f maps the ball B onto a domain in R" as a homeomorphism. Hence the mapping
f~1(y) is continuous at the point go. Thus, f: D — R’ is a homeomorphism. O
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The kernel of a sequence of open sets 4 C R, 1 =1,2,...is the open set

Qo = Kern Q:= D Int <ﬁ Ql) ,
m=1 l=m

where Int A denotes the set consisting of all inner points of A; in other words, Int A is the
union of all open balls in A with respect to the spherical distance.

The following statement for the plane case can be found in [3|, see also Proposition 2.7
in [8].

Proposition 2. Let g;: D — Dj, D;:=g;(D), be a sequence of homeomorphisms defined on
a domain D C R'". Suppose that g, converges as | — oo locally uniformly with respect to the
spherical (chordal) metric to a mapping g: D — D":=g(D) C R" which is injective. Then g
is a homeomorphism and D' C Kern D).

Proof. First of all, the mapping ¢ is continuous as a locally uniform limit of continuous
mappings, see e.g. Theorem 13.VL.3 in [14]|. Thus, by Corollary 2 g is a homeomorphism.

Now, let yo be a point in D’. Consider the spherical ball B*(zg, p) where zq:=¢ ! (yo) € D
and p < h(z,0D). Then ro:=min,eop+(z.p "(Yo,g(z)) > 0. There is an integer N large
enough such that ¢;(z9) € B*(yo,70/2) for all [ > N and simultaneously

B*(yo,70/2) N g1(0B* (20, p)) = B*(y0,70/2) N 0gi(B" (20, p)) = &

because g, — ¢g (I — +00) uniformly on the compact set dB*(zg, p). Hence by the connec-
tedness of balls
B*<y07r0/2) Cgl(B*(ZOaP)) vi > Na

see e.g. Theorem 46.1.1 in [15]. Consequently, yo € Kern Dj, i.e. D' C Kern D] by arbitrariness
of Yo- ]

Remark 1. In particular, Proposition 2 implies that D":=¢(D) C R" if Dj:=g,(D) C R" for
all =12, ...

The following statement for the plane case can be found in the paper [12], see also
Lemma 2.16 in the monograph [8].

Lemma 2. Let D be a domain in R", | € {1,2,...}, and let f; be a sequence of homeomor-
phisms from D into R such that f; converges as | — oo locally uniformly with respect to
the spherical metric to a homeomorphism f of D into R". Then fz_l — f~ ! locally uniformly
in f(D), too.

Proof. Given a compactum C' C f(D), we have by Proposition 2 that C' C f;(D) for all
I > 1y =1(C). Set g = f;' and g = f~!. The locally uniform convergence g, — g is
equivalent to the so-called continuous convergence, meaning that g;(u;) — g(ug) for every
convergent sequence u; — ug in f(D); see e.g. [5], p. 268 or Theorems 20.VIIL.2 and 21.X.4
in [14]. So, let w; € f(D), 1 € {0,1,2,...} and w; — wp as | — oo. Let us show that
zii=g(w;) = zo:=g(up) as | — oc.

It is known that every metric space is an L*-space, i.e. a space with a convergence (see,
e.g., Theorem 21.11.1 in [14]), and the Urysohn axiom for compact spaces says that z;, — zg as
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[ = oo if and only if, for every convergent subsequence z;,, — 2, the equality 2z, = 2 holds;
see e.g. the definition 20.1.3 in [14]. Hence it suffices to prove that the equality z, = zy holds
for every convergent subsequence z;, — z, as k — oo. Let Dy be a subdomain of D such
that zy € Dy and Dy is a compact subset of D. Then by Proposition 2, f (Do) C Kernfi(Dy)
and hence ugy together with its neighborhood belongs to f;, (Do) for all k¥ > K. Thus, with
no loss of generality we may assume that w;,, € fi, (Do), i.e. 2, € Dy for all k € {1,2,...},
and, consequently, z, € D. Then, by the continuous convergence f; — f, we have that
fi.(z) = f(z0),1e. fi, (g, (w,)) = w, — f(z). The latter condition implies that uy = f(2),
i.e. f(z0) = f(z) and hence z, = 2. O

The following statement for the plane case can be found in the paper [26], see also
Proposition 2.6 in the monograph [8].

Theorem 1. Let D be a domain in R, n > 2, and let f,,, m € {1,2,...}, be a sequence
of homeomorphisms of D into R converging locally uniformly to a discrete mapping f:
D — R" with respect to the spherical metric. Then f is a homeomorphism of D into R".

Proof. First of all, let us show by contradiction that f is injective. Indeed, let us assume that
there exist xy,x9 € D, 1 # x9, with f(z1) = f(z2) and that x; # oco. Set B; = B(z1,1).
Let to be such that B, C D and xo € B, for every t € (0,%o]. By the Jordan—Brower
theorem, see e.g. Theorem 4.8.15 in [28], £, (0B;) = 0 fm(B,) splits R" into two components
Coni=Im(B), Cp =R\ .

By construction y,,:=fn(r1) € C,, and z,:=fn,(z2) € C}. Remark that the ball
B*(Ym, M(Ym, OCy,)) is contained inside of C,, and, consequently, its closure is inside of C,,.

Hence

h(Ym, OC) < h(Ym, 2m), m € {1,2,...}. (3)
By compactness of 0C,, = f,,(0B;), there is x,,; € 0B; such that
h(Ym, OCm) = h(Ym, frn(Tme)), me{1,2,...}. (4)

By compactness of 0B, for every t € (0, o], there is x; € 0B; such that h(z,, +, x1) — 0
as k — oo for some subsequence my. Since the locally uniform convergence of continuous
functions in a metric space implies the continuous convergence (see [5], p. 268 or Theorem
21.X.3 in [14]), we have that A(fm, (Tm,t), f(z:)) = 0 as k — oo. Consequently, from (3)
and (4) we obtain that h(f(x1), f(z:)) < h(f(z1), f(x2)) Vt € (0,t0]. However, by the above
assumption f(z1) = f(x2) and we have f(x;) = f(z1) for every t € (0,to]. The latter
condition contradicts the discreteness of f. Thus, f is injective.

It remains to show that f and f~! are continuous. The mapping f is continuous as
a locally uniform limit of continuous mappings, see e.g. Theorem 13.V1.3 in [14]. Finally, f~!
is continuous by Corollary 2. O]

4. Convergence of homeomorphisms and moduli. Later on, the following lemma plays
a very important role. Its plane analog can be found in the paper [4], see also supplement
Al in the monograph [8].

Lemma 3. Let f,,, m € {1,2,...}, be a sequence of homeomorphisms of a domain D C R"
into R™, n > 2, converging to a mapping f uniformly on every compact set in D with respect
to the spherical metricin R . Suppose that for every xg € D there exist sequences Ry, > 0 and
re € (0, Ry), k € {1,2,...}, such that R, — 0 as k — oo and mod f,, (A (xg, 1k, Ri)) — 00
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as k — oo uniformly with respect tom € {1,2,...}. Then the mapping f is either a constant
in R" or a homeomorphism of D into R".

Proof. Assume that f is not constant. Let us consider the open set V' consisting of all points
in D which have neighborhoods where f is a constant and show that f(z) # f(zo) for every
xg € D\ V and x # xy. Without loss of generality, we may assume that f(z¢) # co. Now,
let us fix a point z, # zo in D \ V and choose k € {1,2,...} such that R:=Ry, < |z. — x|
and

mod f, (A(zo, 7, R)) > (wn_1 /7 (1) ¥m e {1,2,...} (5)

for r = 17, where 7,(s) denotes the capacity of the Teichmiiller ring Rr,(s):=
[R™\ {tei: t > s}, [—e1,0]], s € (0,00).
Let ¢m € fi(S(xo, R)) and by, € fin(S(zo,7)) be such that

min w — fm(o)| = |Cm — fim(T0)], max W — fm(xo)| = by, — frn(x0)].
L fulo)l = e = fuCa)l, | max = )] = o = fuoo)
Since f,, is a homeomorphism, the set f,,(A(xo,7, R)) is a ring domain R,, = (C},C?),
where a,,:=f,,(z0) and b,, € C!, ¢, and co € C?. Applying Lemma 7.34 in [30] with
a = a,, b ="0,, and ¢ = ¢,,, we obtain that

cap®,, = M(D(CL,, C2)) > 7, (M) | (6)
Am — Om
Note that the function 7,(s) is strictly decreasing (see Lemma 7.20 in [30]). Thus, it
follows from (5) and (6) that

|am_cm|

P > 7. (capR,) > 7, Hma(1) = 1.

Hence there is a spherical ring A,, = {y € R™: p,, < |y — fin(x0)| < pf,} in the ring domain
R, for every m € {1,2,...}. Since f is not locally constant at xy, we can find a point
«' in the ball |z — x| < r with f(z¢) # f(2'). The ring A,, separates f,(xo) and f,(z')
from f,,(z.) and, thus, |f(2") — fi(z0)| < pm and |fin(z.) — fi(x0)| > pf,. Consequently,
|fm(2) — fin(@o)| < |fin(xs) — fin(mo)] for all m € {1,2,...}. Under m — oo we have then
0 < |f(') = flwo)] < |f(x.) — f(x0)| and hence f(z.) £ f(zo).

It remains to show that the set V' is empty. Let us assume that V' has a nonempty
component Vy. Then f(z) = z for every 2 € V; and some z € R". Note that dVoN D # @ by
connectedness of D, because f # const in D and the set D\ V; is also open. If 2y € VN D,
then by continuity, f(zy) = 2z contradicting the assertion established in the first part of the
proof because o € D\ V.

Thus, we have proved that the mapping f is injective if f is not constant. But f is
continuous as a locally uniform limit of continuous mappings f,,, see Theorem 13.V1.3 in
[14], and then by Corollary 2 f is a homeomorphism. Finally, by Remark 1 f(D) C R™ and
the proof is complete. O

Lemma 4. Let D be a domain in R", n > 2, Q,,,: D — (0, 00) be measurable functions, f,,,
m € {1,2,...}, be a sequence of ring Q,,-homeomorphisms of D into R"™ converging locally
uniformly to a mapping f. Suppose

/<| i Qm(x) - V" (Jx — xo|)dm(z) = o(I"(g,80)) Vo € D, (7)
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where o(I™(e,e0))/I"(g,€0) — 0 as € — 0 uniformly with respect to m for ey < dist(zg,0D)
and a measurable function ¥ (t): (0,e9) — [0, 00| such that

0<I(g,e0):= /EO Y(t)dt < oo Ve € (0,ep). (8)

Then the mapping f is either a constant in R or a homeomorphism into R™.

Remark 2. In particular, the conclusion of Lemma 4 holds for ()-homeomorphisms f,, with
a measurable function Q: D — (0,00) such that

/<| e Qz) - V" (| — zo|)dm(z) = o(I" (g, £0)) V2o € D. 9)

Proof. By Luzin’s theorem, there exists a Borel function v, (t) such that (t) = 1.(t) for
a.e. t € (0,g9), see e.g. 2.3.6 in [6]. Since @y, (z) > 0 for all x € D we have from (7) that
I(g,a) — oo for every fixed a € (0,¢() and, in particular, I(¢,a) > 0 for every € € (0,b) and
some b = b(a) € (0,a). Given zy € D and a sequence of such numbers b = ¢, — 0 as k — o0,
ke {1,2,...}, consider the sequence of the Borel measurable functions p. j defined by

pe(z) = {zp*(pc —xol)/I(e,er), €< |r— 20| < ERY

0, otherwise.

Note that the function p.x(x) is admissible for I'. j:=I'(S(x¢,€), S(z0, ex), A(xo, €, €k))

because ) .
(@)]dz| > tydt =1
[ pest@aol = s [

for all (locally rectifiable) curves v € I'. ; (see Theorem 5.7 in [29]). Then by the definition
of ring —homeomorphisms

1
MUATa) < i [ Q) el = aol)dm(a) (10
‘[ (67€k) 8<|JJ—CIZ()|<€()
for all m € N. Note that m = Qe m, where a, j:= (1 + %) is independent

on m and bounded as £ — 0. Then it follows from (7) and (10) that there exists €} € (0,¢x)
such that for all M(f,, (I ) < 2=% ¥m € N. Applying Lemma 3 we obtain the desired
conclusion. ]

The next important statements follows from Lemma 4.

Theorem 2. Let D be a domain in R", n > 2, Q: D — (0,00) a Lebesgue measurable
function and let f,,, m € {1,2,...}, be a sequence of ring Q-homeomorphisms of D into R"
converging locally uniformly to a mapping f. Suppose that () € FMO. Then the mapping f
is either a constant in R" or a homeomorphism into R".

Proof. Let xqg € D. We may consider further that o = 0 € D. Choosing a positive gy <
min {dist (0,0D),e '}, we obtain by Lemma 1 for the function ¥(t) = ﬁ that
t

/6<Ix|<so Qz) - " (Jxl)dm(z) = O<10g log é)

Note that I(e,e0):= [ ¢(t)dt = log 11;%' Now the desired conclusion follows from
€0

Lemma 4. O
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The following conclusions can be obtained on the basis of Theorem 2, Proposition 1 and
Corollary 1.

Corollary 3. In particular, the limit mapping f is either a constant in R or a homeomor-
phism of D into R™ whenever

lim——— d < Vo € D
EIE)%’B an |/{L‘0€) )m( ) > $0

or whenever every xo € D is a Lebesgue point of Q).

Theorem 3. Let D be a domain in R", n > 2, and let Q: D — (0,00) be a measurable
function such that

(o) g
/ TT =00 Vxg € D (11)
0 rgr, (1)
for a positive e(xy) < dist(zg, 0D) where q,,(r) denotes the average of QQ(x) over the sphere
|z — xg| = r. Suppose that f,,, m € {1,2,...}, is a sequence of ring )-homeomorphisms

from D into R™ converging locally uniformly to a mapping f. Then the mapping f is either
a constant in R or a homeomorphism into R™.

Proof. Fix z9g € D and set I = I(e,20) = [ 4(t)dt, € € (0, ), where
1/[tq1’o ( )]7 te (5750)7
¢( ) {0 s t ¢ (6,80).

Note that I(e,e) < oo for every € € (0,£0). Indeed, by Theorem 3.15 in [20] on the criterion
of ring Q—homeomorphisms, we have that

(S

n—1

Jn—1 '

M(f(F(S(:co,g),S(a;o,ao),A(xo,g,eo))>)§ (12)

On the other hand, by Lemma 1.15 in [18], we see that

M(F(f(S(a:o,s)), f(S(:vo,50)),f(A(a:0,5,50)))>> 0.

Then it follows from (12) that I < oo for every ¢ € (0,e0). In view of (11), we obtain
that I(g,e.) > 0 for all € € (0,e,) with some ¢, € (0,¢¢). Finally, simple calculations show
that (9) holds, in fact,

/<| - Q(x) - V" (|x — xo|)dm(x) = wy—1 - (g, €4)

and I(g,e.) = 0 (I"(g,e4)) by (11). The rest follows by Lemma 4. O

Corollary 4. In particular, the conclusion of Theorem 3 holds if q,,(r) = O (log" ' 1) for
all xzg € D.

Corollary 5. Under assumptions of Theorem 3, the mapping f is either a constant in R"
or a homeomorphism into R™ provided Q)(x) has singularities only of the logarithmic type of
the order which is not more than n — 1 at every point xo € D.
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Theorem 4. Let D be a domain in R", n > 2, and Q: D — (0,00) be a measurable function
such that .
/ ﬂ)ndm(m) =0 (log" —> Vao € D (13)
€<|zfxo‘<€0 ’x - xol €
as € — 0 for some positive number ¢y = e(xy) < dist(zg, D). Suppose that f,, m €
{1,2,...}, is a sequence of ring Q-homeomorphisms from D into R" converging locally
uniformly to a mapping f. Then the limit mapping f is either a constant in R or a
homeomorphism into R™.

Proof. The conclusion follows from Lemma 4 by the choice ¥(t) = 1. O

For every nondecreasing function ®: [0, oo] — [0, oc], the inverse function ®~1: [0, co] —
0,00] can be well defined by setting ®'(7) = infey)>,t. As usual, here inf is equal to
oo if the set of all ¢ € [0,00] such that ®(t) > 7 is empty. Note that the function ®~! is
nondecreasing, too. Note also that if h: [0,00] — [0, 0] is a sense—preserving homeomorp-
hism and ¢: [0, 00] — [0, 0] is a nondecreasing function, then

(poh)t=h"lop (14)

Theorem 5. Let D be a domain in R", n > 2, let Q: D — (0, 00) be a measurable function
and ®: [0,00] — [0,00] be a nondecreasing convex function. Suppose that

/D ) % <M< (15)
and
o0 dr
T (16)
/a ()

for some 6 > ®(0). Suppose that f,,, m € {1,2,...}, is a sequence of ring ()-homeomor-
phisms of D into R™ converging locally uniformly to a mapping f. Then the mapping f is
either a constant in R" or a homeomorphism into R™.

Proof. 1t follows from (15)—(16) and Theorem 3.1 in [21] that the integral in (11) is divergent
for some positive e(xq) < dist(zo, dD). The rest follows by Theorem 3. O

Remark 3. We may assume in Theorem 5 that the function ®(¢) is convex not on the
whole segment [0, 00] but only on the segment [t,,o00] where t, = ®71(§). Indeed, every
non-decreasing function ®: [0, 00] — [0, 00] which is convex on the segment [t.,o0] can be
replaced with a non-decreasing convex function ®,: [0,00] — [0,00] in the following way.
Set ®,(t) =0 for t € [0,t.], ®(t) = p(t) for t € [t,,T] and &, = $(¢t) for ¢t € [T, oo|, where
T = (t) is the line passing through the point (0, ,) and touching the graph of the function
7 = ®(t) at a point (T, P(T%)), Tk € (., 00). By the construction, we have that @, (t) < &(¢)
for all ¢ € [0, 00] and @, (t) = ®(¢t) for all t > T, and, consequently, conditions (15) and (16)
hold for &, under the same M and every 6 > 0.

Furthermore, by the same reasons it is sufficient to assume that the function ® is only
minorized by a nondecreasing convex function W on a segment [T, 00| such that

o0 dr
= 17
| e "
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for some T' € [0,00) and § > W(T'). Note that condition (17) can be written in terms of the
function 1 (t) = log ¥(t)

[ v = (13)
A

for some A >ty € [I',00], where to:=supyy)—_oot, to = T if Y(T) > —oo, and where
$+% =1,ie,n =2forn=2,n'isdecreasing in n and n’ =n/(n—1) — 1 as n — oo, see
Proposition 2.3 in [21]. It is clear that if the function 1 is nondecreasing and convex, then
the function ® = e¥ is so but the inverse conclusion generally speaking is not true. However,
the conclusion of Theorem 5 is valid if ¢™(t), t € [T, o], is convex and (18) holds for ¢™
under some m € N because e” > 7™ /m/! for all m € N.

Corollary 6. In particular, the conclusion of Theorem 5 is valid if, for some o > 0,

/ eaczﬁ(w% < M < 0.
D (1+ [z[?)

The same is true for any function ® = e¥, where 1)(t) is a finite product of the function at”,
a > 0,8 > 1/(n—1), and some of the functions [log(A; + t)]**, [loglog(As + t)]*2, ...,
am > —1, A, e Rym e N, t € [T,00], (t) =(T), t € [0,T].

Remark 4. For further applications, integral conditions (15) and (16) for @) and ® can
be written in other forms that are more convenient for some cases. Namely, by (14) with

h(t) = tiT and o(t) = ®(t" 1), ® = poh, the couple of conditions (15) and (16) is equivalent
to the following couple

[ o (05 @) g < M < (19)

/;Od—T:oo (20)

for some 6 > (0). Moreover, by Theorem 2.1 in [27] the couple of the conditions (19) and
(20) is in turn equivalent to the next couple

@b(Q"lI (a:)) dm(z) /OO dt
<K — =
/De AT = M < oo and A Wp(t) v 00

and

for some A > ty, where to:=sup,;—_o t, to = 0 if 9(0) > —oc.

Finally, as it follows from Lemma 4 all the results of this section are valid if f,, are
Q,,-homeomorphisms and the above conditions on () hold for (), uniformly with respect to
the parameter m € {1,2,...}.
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