УДК 546.431′42′32′882′814

Ю.О. Тітов, Н.М. Білявина, В.Я. Марків, член-кореспондент НАН України М.С. Слободяник, В.В. Полубінський, В.В. Чумак

Синтез та кристалічна структура $Sr_6Nb_4SnO_{18}$ й $Ba_5KNb_5O_{18}$

Синтезовано сполуки $Sr_6Nb_4SnO_{18}$ й $Ba_5KNb_5O_{18}$, методом рентгенівської дифракції на порошках визначено їх шаруваті перовськітоподібні структури (ШПС). Встановлено належність їх ШПС до структурного типу $Ba_6Nb_4TiO_{18}$. Параметри елементарних комірок, нм: a = 0,5661(1), c = 4,186(1) ($Sr_6Nb_4SnO_{18}$) та a = 0,57840(7), c = 4,2532(5)($Ba_5KNb_5O_{18}$); просторова група R-3m. Значення факторів недостовірності R_B дорівноють 0,073 ($Sr_6Nb_4SnO_{18}$) і 0,079 ($Ba_5KNb_5O_{18}$). Проаналізовано особливості ШПС $A_6^{II}Nb_4B^{IV}O_{18}$ (A^{II} – Ba, Sr; B^{IV} – Ti, Sn) та встановлено взаємозв'язки склад – будова ШПС.

Розвиток сучасної науки і техніки неможливий без створення на базі неорганічних сполук нових термостійких функціональних матеріалів з особливими електрофізичними властивостями та підвищеними характеристиками. До числа таких сполук безперечно належать п'ятишарові представники сімейства оксидних сполук типу $A_n B_{n-1} O_{3n}$ (n = 6) із шаруватою перовськітоподібною структурою (ШПС), які володіють цінним комплексом електрофізичних та оптичних властивостей [1–5]. Однак на сьогодні чисельність таких сполук обмежена [1], що в поєднанні з недостатністю даних щодо особливостей їх будови істотно утруднює встановлення для них взаємозв'язків склад — будова — властивість.

У даній роботі виконано дослідження нових п'ятишарових сполук складу $Sr_6Nb_4SnO_{18}$ й $Ba_5KNb_5O_{18}$ та визначено їх кристалічну структуру.

Ніобатостанат стронцію (Sr₆Nb₄SnO₁₈) отримано термообробкою (1570 K, 2 год) шихти́ спільноосаджених гідроксикарбонатів із співвідношенням Sr : Nb : Sn = 6 : 4 : 1. Полікристалічні зразки ніобату барію калію (Ba₅KNb₅O₁₈) синтезовано за керамічною технологією шляхом послідовного прожарювання при температурах 870–1370 K (T = 100 K, $\tau = 2$ год) запресованої в диски еквімолярної механічної суміші чотиришарового Ba₅Nb₄O₁₅ та перовськіту KNbO₃ із перетиранням та перепресовкою зразків після кожної стадії термообробки. Слід відзначити, що сполука Ba₅KNb₅O₁₈ є першою сполукою типу A_nB_{n-1}O_{3n}, до складу якої входять атоми лужного металу. Рентгенівські дифракційні спектри записано на дифрактометрі ДРОН-3 у дискретному режимі (крок сканування 0,03°, експозиція в точці 5 с) на мідному фільтрованому випромінюванні. Управління процесом зйомки та збором інформації, початкова обробка дифрактограм, а також структурні розрахунки виконано з використанням апаратно-програмного комплексу [6].

Аналіз дифрактограм синтезованих за наведеними вище режимами зразків $Sr_6Nb_4SnO_{18}$ й $Ba_5KNb_5O_{18}$ показав їх подібність до дифрактограм відомого п'ятишарового ніобатотитанату барію ($Ba_6Nb_4TiO_{18}$) (пр. гр. R-3m [7]). Дифрактограми сполук $Sr_6Nb_4SnO_{18}$ й $Ba_5KNb_5O_{18}$ задовільно індексуються в тригональній сингонії, а аналіз погасань відбиттів та особливості будови ШПС сполук типу $A_nB_{n-1}O_{3n}$ з n = 6 (чергування шарів AO_3 за

[©] Ю.О. Тітов, Н.М. Білявина, В.Я. Марків, М.С. Слободяник, В.В. Полубінський, В.В. Чумак, 2013

Рис. 1. Фрагмент дифракційного спектра порошків (кружки) та розрахунковий спектр (суцільна лінія) сполуки $Ba_5KNb_5O_{18}$ (Си $K\alpha_1$ випромінювання)

типом ($\epsilon\kappa\kappa\kappa\epsilon$)₃ [8]) вказують на належність ШПС Sr₆Nb₄SnO₁₈ й Ba₅KNb₅O₁₈ до центросиметричної просторової групи R-3m.

Для побудови початкових моделей ШПС $Sr_6Nb_4SnO_{18}$ й $Ba_5KNb_5O_{18}$ використано структурні дані сполуки $Ba_6Nb_4TiO_{18}$ [7]. Зіставлення експериментальних і розрахованих для таких моделей структури інтенсивностей показало їх задовільний збіг. Результати визначення структури $Sr_6Nb_4SnO_{18}$ й $Ba_5KNb_5O_{18}$, а також їх дифракційні дані демонструють табл. 1, 2 та рис. 1–3. Уточнені при розрахунку структури склади цих сполук у межах похибки визначення відповідають експериментально заданим.

Позиція	Атом	$\mathrm{Ba}_5\mathrm{KNb}_5\mathrm{O}_{18}$				$Sr_6Nb_4SnO_{18}$			
		X	Y	Z	З.п.*	X	Y	Ζ	З. п.*
6c	Ba(1)	0	0	0,1415(2)	0,83	_	_	_	_
6c	K(1)	0	0	0,1415(2)	$0,\!17$	—	—	—	_
6c	Sr(1)		—	—	—	0	0	0,1450(2)	1
6c	Ba(2)	0	0	0,3140(3)	0,83	—	—	_	_
6c	K(2)	0	0	0,3140(3)	$0,\!17$	—	—		—
6c	Sr(2)		—	—	—	0	0	0,3151(3)	1
6c	Ba(3)	0	0	0,4134(3)	0,83	—	—		—
6c	K(3)	0	0	0,4134(3)	$0,\!17$	—	—		—
6c	Sr(3)		—	—	—	0	0	0,4130(2)	1
6c	Nb(1)	0	0	0,0511(3)	1	0	0	0,0466(2)	$0,\!95$
6c	$\operatorname{Sn}(1)$		_	—		0	0	0,0466(2)	$0,\!05$
6c	Nb(2)	0	0	0,2246(3)	1	0	0	0,2258(3)	$0,\!95$
6c	$\operatorname{Sn}(2)$		_	—	—	0	0	0,2258(3)	$0,\!05$
3b	Nb(3)	0	0	$_{0,5}$	1	0	0	0,5	0,21
3b	$\operatorname{Sn}(3)$		_	—	—	0	0	0,5	0,79
18h	O(1)	0,499(2)	-x	0,144(3)	1	0,494(2)	-x	0,144(2)	1
18h	O(2)	0,495(3)	-x	0,306(2)	1	0,499(2)	-x	0,306(2)	1
18h	O(3)	0,497(2)	-x	0,419(2)	1	0,504(3)	-x	0,419(2)	1
Пр.	група	R-3m (no 166)			R-3m (no 166)				
Параметри гратки, нм		a = 0.57840(7), c = 4.2532(5)				a = 0,5661(1), c = 4,186(1),			
		$\alpha = 90^{\circ}, \ \beta = 90^{\circ}, \ \gamma = 120^{\circ}$				$\alpha = 90^{\circ}, \ \beta = 90^{\circ}, \ \gamma = 120^{\circ}$			
Незалежні відбиття		119			148				
Загальний ізотропний		$1,26(7) \cdot 10^{-2}$				$0,274(6) \cdot 10^{-2}$			
В-фактор, нм ²					,				
Параметр текстури		0,42(1) вісь текстури [001]				_			
Фактор недостовірності		$R_{\rm B} = 0.079$			$R_{\rm B} = 0.073$				

Таблиця 1. Кристалографічні дані сполук Ва5KNb5O18 й Sr6Nb4SnO18

*Заповнення позиції.

ISSN 1025-6415 Доповіді Національної академії наук України, 2013, № 8

Рис. 2. Кристалічна структура Sr₆Nb₄SnO₁₈ у вигляді октаедрів (Nb,Sn)O₆ та атомів Sr (чорні кружки)

В елементарній комірці $Sr_6Nb_4SnO_{18}$ і $Ba_5KNb_5O_{18}$ ($A_6B_5O_{18}$) міститься три формульні одиниці цих сполук (Z = 3). Їх кристалічна структура складається з двовимірних перовськітоподібних блоків завтовшки в п'ять шарів, з'єднаних вершинами октаедрів BO_6 , які розділені шаром вакантних октаедрів $\Box O_6$ (див. рис. 2). Зв'язки типу $B-O-B^I$ між зов-

Таблиця 2. Деякі міжатомні відстані та ступінь деформації (Δ) поліедрів MeO_{12} , NbO₆ і (Nb, Sn)O₆ у кристалічній структурі Ba₅KNb₅O₁₈ й Sr₆Nb₄SnO₁₈

Ba_5KNb_5	$_{5}O_{18}$	$\rm Sr_6Nb_4SnO_{18}$			
атоми	d, нм	атоми	d, нм		
(Ba, K)(1) - 3O(1)	0,264(2)	Sr(1) - 3O(1)	0,251(2)		
6O(1)	0,289(2)	6O(1)	0,283(3)		
$3\mathrm{O}(3)$	0,292(3)	3O(3)	0,295(2)		
$(Ba, K)(1) - O_{cep}$	0,2835	$Sr(1) - O_{cep}$	0,278		
$\Delta(\mathrm{Ba},\mathrm{K})(1)\mathrm{O}_{12}$	$16 \cdot 10^{-4}$	$\Delta Sr(1)O_{12}$	$35 \cdot 10^{-4}$		
$(Ba, K)(2) - 3O(2)^*$	0,256(2)	$Sr(2) - 3O(2)^*$	0,251(2)		
6O(2)	0,291(2)	6O(2)	0,286(2)		
3O(3)	0,326(3)	$3\mathrm{O}(3)$	0,328(3)		
$(Ba, K)(2) - O_{cep}$	0,291	$Sr(2) - O_{cep}$	0,288		
$\Delta(\mathrm{Ba},\mathrm{K})(2)\mathrm{O}_{12}$	$72 \cdot 10^{-4}$	$\Delta Sr(2)O_{12}$	$90 \cdot 10^{-4}$		
(Ba, K)(3) - 3O(2)	0,277(2)	Sr(3) - 3O(2)	0,273(2)		
$6\mathrm{O}(3)$	0,290(3)	$6\mathrm{O}(3)$	0,284(2)		
3O(1)	0,319(3)	3O(1)	0,312(3)		
$(Ba, K)(3) - O_{cep}$	0,294	$Sr(3) - O_{cep}$	0,288		
$\Delta(\mathrm{Ba},\mathrm{K})(3)\mathrm{O}_{12}$	$27 \cdot 10^{-4}$	$\Delta Sr(3)O_{12}$	$25 \cdot 10^{-4}$		
Nb(1) - 3O(2)	0,200(1)	(Nb, Sn)(1) - 3O(2)	0,183(1)		
$3\mathrm{O}(3)$	0,225(2)	3O(3)	0,228(2)		
$Nb(1) - O_{cep}$	0,2125	$(Nb, Sn)(1) - O_{cep}$	0,2055		
$\Delta Nb(1)O_6$	$35 \cdot 10^{-4}$	$\Delta(\mathrm{Nb},\mathrm{Sn})(1)\mathrm{O}_6$	$120 \cdot 10^{-4}$		
Nb(2) - 3O(3)	0,191(1)	(Nb, Sn)(2) - 3O(3)	0,191(1)		
3O(1)	0,225(2)	3O(1)	0,228(2)		
$Nb(2) - O_{cep}$	0,208	$(Nb, Sn)(2) - O_{cep}$	0,2095		
$\Delta Nb(2)O_6$	$67 \cdot 10^{-4}$	$\Delta(\mathrm{Nb},\mathrm{Sn})(2)\mathrm{O}_6$	$78 \cdot 10^{-4}$		
Nb(3) - 6O(1)	0,192(2)	(Nb, Sn)(3) - 6O(1)	0,184(2)		
$Nb(3) - O_{cep}$	0,192	$(Nb, Sn)(3) - O_{cep}$	0,184		
$\Delta Nb(3)O_6$	0	$\Delta(\mathrm{Nb},\mathrm{Sn})(3)\mathrm{O}_6$	0		

Примітка. Ступінь деформації полієдрів MeO_n у кристалічній структурі Ba₅KNb₅O₁₈ й Sr₆Nb₄SnO₁₈ розраховували за формулою: $\Delta = 1/n \sum [(R_i - \overline{R})/\overline{R}]^2$, де R_i — відстань Me-O; \overline{R} — середня відстань Me-O; n — координаційне число [9].

^{*}Міжблочна відстань (O2 -атом оксигену октаєдрів Nb(1)O₆ або (Nb, Sn)(1)O₆ із сусіднього перовськітоподібного блока).

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2013, № 8

Рис. 3. Будова міжблочної границі в шаруватій перовськітоподібній структурі Ва₅KNb₅O₁₈ у вигляді октаедрів NbO₆ та атомів (Ba, K)(2) (сірий кружок)

нішньоблочними октаедрами сусідніх перовськітоподібних блоків у ШПС $Sr_6Nb_4SnO_{18}$ й $Ba_5KNb_5O_{18}$ є відсутніми. "Зшивання" блоків здійснюється за допомогою шару кубооктаедрів $A(2)O_{12}$, який їх з'єднує через зв'язки -O-A(2)-O-. Таке розташування кубооктаедра $A(2)O_{12}$ обумовлює його найбільшу ступінь деформації серед усіх поліедрів ШПС $Sr_6Nb_4SnO_{18}$ й $Ba_5KNb_5O_{18}$.

У ШПС сполук $Sr_6Nb_4SnO_{18}$ й $Ba_5KNb_5O_{18}$ ($A_6B_5O_{18}$) у зовнішньоблочному поліедрі $A(2)O_{12}$ із 12 атомів оксигену дев'ять (шість O(2) і три O(3)) належать до того самого блока, що й атоми A(2), а три атоми оксигену O(2) — до сусіднього (див. рис. 3). Координаційним поліедром внутрішньоблочних атомів A(1) й A(3) також є деформований кубооктаедр AO_{12} . Розподіл атомів барію та калію по позиціях типу A у ШПС $Ba_5KNb_5O_{18}$ ($A_6B_5O_{18}$) має повністю невпорядкований статистичний характер.

Розподіл атомів Nb й Sn у ШПС Sr₆Nb₄SnO₁₈ є досить високовпорядкованим з істотно переважною локалізацією 80% атомів Sn у центрі перовськітоподібного блока (див. табл. 1). Аналіз даних цієї роботи та даних статей [7, 10, 11] про розподіл катіонів типу B у перовськітоподібних блоках п'ятишарових сполук $A_6^{II}Nb_4B^{IV}O_{18}$ ($A^{II} - Ba$, Sr; $B^{IV} - Ti$, Sn) дозволив виявити існування певної закономірності в характері локалізації катіонів B^{4+} і Nb⁵⁺ в октаедричних позиціях їх ШПС. У ШПС сполук $A_6^{II}Nb_4B^{IV}O_{18}$ ($A^{II} - Sr$; $B^{IV} - Ti$, Sn) та Ba₆Nb₄TiO₁₈ чотиризарядні катіони B^{4+} майже повністю локалізовані в центральних (найбільша частка) та проміжних позиціях блока, а положення на границях блока більш ніж на 90% заповнені п'ятизарядними катіонами Nb⁵⁺. У ШПС Ba₆Nb₄SnO₁₈ катіони Sn⁴⁺ упорядковано розташовані лише в центрі перовськітоподібного блока. Аналогічний характер локалізації чотирьох та п'ятизарядних катіонів має місце і в титаноніобатах Ba_{6-x}La_xNb_{4-x}Ti_{1+x}O₁₈ [12]. Найбільш вірогідними причинами такого розподілу катіонів B⁴⁺ і Nb⁵⁺ у перовськітоподібних блоках є, очевидно, особливості їх електронної будови та необхідність зарядового балансу на границях блока.

Центральні октаедри перовськітоподібних блоків (Nb, Sn)(3)O₆ та Nb(3)O₆ у ШПС Sr₆Nb₄SnO₁₈ й Ba₅KNb₅O₁₈ є ідеальними (їх $\Delta = 0$), у той час як для октаедрів (Nb, Sn)(1)O₆, Nb(1)O₆, (Nb, Sn)(2)O₆ та Nb(2)O₆ характерні досить значні різниця у довжинах зв'язків Me-O (0,025–0,045 нм) та величина Δ (35–120 · 10⁻⁴) (див. табл. 2). Слід відзначити, що незначна ступінь деформації внутрішньоблочних октаедрів BO₆ характерна для більшості сімейств шаруватих перовськітоподібних оксидних сполук. Найбільш деформованими в ШПС Sr₆Nb₄SnO₁₈ є зовнішньоблочні октаедри (Nb, Sn)(1)O₆, а в ШПС Ba₅KNb₅O₁₈ — октаедри Nb(2)O₆ проміжного шару.

ISSN 1025-6415 Доповіді Національної академії наук України, 2013, № 8

Зіставлення отриманих нами даних про ШПС $Sr_6Nb_4SnO_{18}$ з аналогічними даними для $Ba_6Nb_4SnO_{18}$ [10] дало змогу виявити деякі особливості впливу розміру катіона лужноземельного металу A^{2+} на будову ШПС п'ятишарових сполук типу $A_6^{II}Nb_4SnO_{18}$.

Порівняння значень ступенів деформації октаедрів MeO_6 у ШПС $Sr_6Nb_4SnO_{18}$ (див. табл. 2) та $Ba_6Nb_4SnO_{18}$ [10] показало, що при зменшенні радіуса лужноземельного металу в кілька разів збільшуються ступені деформації октаедрів $Me(1)O_6$ зовнішньоблочного шару та октаедрів $Me(2)O_6$ проміжного шару перовськітоподібного блока.

Аналіз величин довжин зв'язків $A^{II}-O$ і ступенів деформації зовнішньоблочних поліедрів $A^{II}O_{12}$ у ШПС $Sr_6Nb_4SnO_{18}$ (див. табл. 2) та $Ba_6Nb_4SnO_{18}$ [10] показав, що зменшення розміру катіона лужноземельного металу A^{2+} супроводжується зменшенням середніх відстаней $A^{II}-O$, але призводить до збільшення ступеня деформації цих поліедрів та відповідно зростання напруженості на міжблочній границі. Це буде дестабілізувати шарувату структуру сполук типу $A_6^{II}Nb_4SnO_{18}$ і, очевидно, саме цей фактор (поряд із зростанням ступеня деформації зовнішньоблочних октаедрів (Nb, Sn)(1)O₆) обумовлює відсутність Са-вмісних сполук із ШПС складу $Ca_6B_4^VSnO_{18}$.

Таким чином, нами синтезовано два нових п'ятишарових представника сімейства шаруватих сполук типу $A_n B_{n-1} O_{3n}$ складу $Sr_6 Nb_4 SnO_{18}$ й $Ba_5 KNb_5 O$, методом рентгенівської дифракції визначено їх кристалічну структуру та встановлено взаємозв'язки склад — особливості будови для п'ятишарових сполук типу $A_6^{II} Nb_4 B^{IV} O_{18}$ ($A^{II} - Ba$, Sr; $B^{IV} - Ti$, Sn), а також з'ясовано фактори, які сприяють руйнації ШПС для Са-вмісних сполук $Ca_6 Nb_4 B^{IV} O_{18}$.

- Lichtenberg F., Herrnberge A., Wiedenmann K. Synthesis, structural, magnetic and transport properties of layered perovskite-related titanates, niobates and tantalates of the type A_nB_nO_{3n+2}, A^IA_{k-1}B_kO_{3k+1} and A_mB_{m-1}O_{3m} // Progr. Sol. State Chem. - 2008. - 36, No 4. - P. 253-387.
- Fang L., Zhang H., Yuan R., Dronskowski R. Synthesis, characterization and dielectric properties of a new cation-deficient perovskite Ba₄La₂Ti₃Nb₂O₁₈ // J. Mat. Sci. 2004. **39**, No 23. P. 7093–7095.
- Fang L., Chen L., Zhang H. et al. Microwave dielectric properties of Ba_{5+n}Ti_nNb₄O_{15+3n} ceramics // J. Mat. Sci.: Mater. Electron. - 2005. - 16, No 3. - P. 149–151.
- Zhang H., Fang L., Su H. Microwave dielectric properties of a new A₆B₅O₁₈-type cation deficient perovskites: Sr₅LaTi₂Nb₃O₁₈ // Ibid. 2009. 20, No 8. P. 741–744.
- 5. Fang L., Zhang H., Chen L. et al. Preparation and characterization of new dielectric ceramics Ba₅LnTi₂Nb₃O₁₈ (Ln = La, Nd) // Ibid. 2005. **16**, No 1. P. 43-46.
- Марків В. Я., Белявіна Н. М. Апаратно-програмний комплекс для дослідження полікристалічних речовин за їх дифракційними спектрами // Тез. доп. Другої міжнар. конф. "КФМ-97", 14–16 жовт., 1997. – Львів: Вид-во наук. тов-ва ім. Т.Г. Шевченка, 1997. – С. 260–261.
- Duivenboden H. C., Zandbergen H. W., Ijdo D. J. W. Hexabarium titanium (IV) tetraniobate (V); a Rietveld refinement of neutron powder diffraction data // Acta Crystallogr. – 1986. – C42, No 3. – P. 266–268.
- 8. Абакумов А. М., Антипов Е. В., Ковба Л. М. и др. Сложные оксиды со структурами когерентного срастания // Успехи химии. 1995. **64**, № 8. С. 769–780.
- Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and halcogenides // Acta Crystallogr. – 1976. – A32, No 5. – P. 751–767.
- 10. *Тітов Ю. О., Білявина Н. М., Марків В. Я., Полубінський В. В.* Синтез та кристалічна структура Ва₆В^V₄SnO₁₈ (В^V = Nb, Ta) // Materialy VIII Mezinar. vedecko-prakticka conf. "Dny vedy-2012". – Praha, 2012. – Dil 77 "Chemie a chemicka technologie". – P. 59–62.
- Drews A. R., Wong-Ng W., Vanderah T. A., Roth R. S. Preparation and crystal structure of Sr₆TiNb₄O₁₈ // J. Alloys and Compounds. – 1997. – 255, No 1./2. – P. 243–247.
- 12. Zhang H., Fang L., Dronskowski R. et al. Some A₆B₅O₁₈ cation-deficient perovskites in the BaO-La₂O₃-TiO₂-Nb₂O₅ system // J. Sol. State Chem. 2004. **177**, No 11. P. 4007-4012.

Київський національний університет ім. Тараса Шевченка Надійшло до редакції 11.10.2012

154

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2013, № 8

Ю. А. Титов, Н. Н. Белявина, В. Я. Маркив,

член-корреспондент НАН Украины **Н.С. Слободяник**, **В.В. Полубинский**, **В.В. Чумак**

Синтез и кристаллическая структура $Sr_6Nb_4SnO_{18}$ и $Ba_5KNb_5O_{18}$

Синтезированы соединения $Sr_6Nb_4SnO_{18}$ и $Ba_5KNb_5O_{18}$, методом рентгеновской дифракции на порошках определены их слоистые перовскитоподобные структуры (СПС). Установлена принадлежность их СПС к структурному типу $Ba_6Nb_4TiO_{18}$. Параметры элементарных ячеек, нм: a = 0,5661(1), c = 4,186(1) ($Sr_6Nb_4SnO_{18}$) и a = 0,57840(7), c = 4,2532(5)($Ba_5KNb_5O_{18}$); пространственная группа R-3m. Значения факторов недостоверности R_B составляют 0,073 ($Sr_6Nb_4SnO_{18}$) и 0,079 ($Ba_5KNb_5O_{18}$). Проанализированы особенности СПС $A_6^{II}Nb_4B^{IV}O_{18}$ (A^{II} – Ba, Sr; B^{IV} – Ti, Sn) и установлены взимосвязи состав – строение СПС.

Yu. A. Titov, N. M. Belyavina, V. Ya. Markiv, Corresponding Member of the NAS of Ukraine M. S. Slobodyanik, V. V. Polybinskii, V. V. Chumak

Synthesis and crystal structure of Sr₆Nb₄SnO₁₈ and Ba₅KNb₅O₁₈

 $Sr_6Nb_4SnO_{18}$ and $Ba_5KNb_5O_{18}$ have been synthesized, and their crystal layer perovskite-like structures (LPS) are determined by X-ray powder diffraction. It is found that the LPS of $Sr_6Nb_4SnO_{18}$ and $Ba_5KNb_5O_{18}$ belong to the $Ba_6Nb_4TiO_{18}$ -type structure. The cell constants are: a = 0.5661(1) nm, c = 4.186(1) nm ($Sr_6Nb_4SnO_{18}$), a = 0.57840(7) nm, c = 4.2532(5) nm ($Ba_5KNb_5O_{18}$), and space group is R-3m. The final R_B value is equal to 0.073 ($Sr_6Nb_4SnO_{18}$) and 0.079 ($Ba_5KNb_5O_{18}$). The peculiarities of LPS of $A_6^{II}Nb_4B^{IV}O_{18}$ ($A^{II} = Ba$, Sr; $B^{IV} = Ti$, Sn) are analyzed, and the correlations composition – constitution of LPS have been identified.