APPLICATION OF SYMMETRIC POLYNOMIALS

... "To be beautiful means to be symmetric and proportional"

Platon

People use a lot of approaches, ideas, methods in order to know the world. The most fundamental among them is the idea of symmetry. It is difficult to find a person who does not have any idea about symmetry. "Symmetry" is a word of the Greek origin. It, as well as the word "harmony", means correspondence, presence of some order, peculiarities of the parts arrangement.

The purpose of work is a search of ways to solve various problems of algebra using symmetry.
Symmetry is widely used in algebra. An example of symmetry application may be found in symmetric polynomials.

A polynomial $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is called symmetric regard to variables $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, if, as a result of arbitrary transposition of variables $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, we will get a polynomial that equals a given one.

A polynomial $x^{2} y+x y^{2}$ is symmetric. Opposite, a polynomial $x^{3}-3 y^{3}$ is nonsymmetric: substituting x by y, and y by x it transforms into a polynomial $y^{3}-3 x^{3}$ that does not coincide with the primary one.

We have already met with the important examples of symmetric polynomials while studying the theorem of Viet [2, c. 298].

If we mark $x_{1}, x_{2}, \ldots, x_{n}$, as the roots of polynomial $f(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ then the Viet's formulas will be represented as follows:

$$
\begin{aligned}
& x_{1}+x_{2}+\ldots+x_{n}=-a_{n-1} \\
& x_{1} x_{2}+x_{1} x_{3}+\ldots+x_{n-1} x_{n}=a_{n-2} \\
& \ldots \ldots \\
& x_{1} x_{2} \ldots x_{n}=(-1)^{n} a_{0}
\end{aligned}
$$

Signifying the left parts of these formulas through $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ then we will get:

$$
\begin{aligned}
& \sigma_{1}=x_{1}+x_{2}+\ldots+x_{n}, \\
& \sigma_{2}=x_{1} x_{2}+x_{1} x_{3}+\ldots+x_{n-1} x_{n} \\
& \ldots . \\
& \sigma_{n}=x_{1} x_{2} \ldots x_{n}
\end{aligned}
$$

According to these operations we get basic symmetric polynomials.
There are a lot of tasks, where it is necessary to find some expressions that contain the radicals of a quadratic equation. It is possible to solve these tasks using symmetric polynomials.

Example. Let's take a quadratic equation $x^{2}+6 x+10=0$. Your task is to make a new equation the radicals of which are roots of this equation.

We will denote the radicals of the set equation by x_{1} and x_{2}, the radicals of the desired equation by y_{1} and y_{2}, coefficients of the desired equation by p and q. According to the Viet's theorem for this equation we have the following: $\begin{aligned} & \sigma_{1}=x_{1}+x_{2}=-6 \\ & \sigma_{2}=x_{1} x_{2}=10\end{aligned}$

The same is for the desired equation: $y_{1}+y_{2}=-p$

$$
y_{1} y_{2}=q
$$

By the data of the problem we have: $y_{1}=x_{1}{ }^{2}, y_{2}=x_{2}{ }^{2}$. This allows to write the formula for the coefficients: $p=-\left(y_{1}+y_{2}\right)=-\left(x_{1}{ }^{2}+x_{2}{ }^{2}\right)=-S_{2}$,

$$
q=y_{1} y_{2}=x_{1}^{2} x_{2}^{2}=\sigma_{2}^{2}=100
$$

where S_{2} is the second sum of powers, which is expressed through basic symmetric polynomials using the sum of powers table [1, c.47].

$$
\begin{aligned}
& p=-\left(\sigma_{1}{ }^{2}-2 \sigma_{2}\right)=-16 \\
& q=\sigma_{2}{ }^{2}=100
\end{aligned}
$$

So, the desired quadratic equation has the form $y^{2}-16 y+100=0$.
Taking everything into account, symmetry takes an important place in algebra particularly in application of symmetric polynomials.

LITERATURE

1. Болтянский В. Г., Виленкин Н. Я. Симметрия в алгебре. - М.: МЦНМО, 2002. - 240 с.
2. Завало С. Т., Костарчук В. Н., Хацет Б. І. Алгебра і теорія чисел. Частина 2. - К.: Вища шк., 1980. - 406 c.
