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APPLICATION OF SYMMETRIC POLYNOMIALS 

 

…“To be beautiful means to be symmetric and proportional” 

Platon 

People use a lot of approaches, ideas, methods in order to know the world. The most fundamental among 

them is the idea of symmetry. It is difficult to find a person who does not have any idea about symmetry. 

“Symmetry” is a word of the Greek origin. It, as well as the word “harmony”, means correspondence, 

presence of some order, peculiarities of the parts arrangement. 

The purpose of work is a search of ways to solve various problems of algebra using symmetry. 

Symmetry is widely used in algebra. An example of symmetry application may be found in symmetric 

polynomials. 

A polynomial )...,,,( 21 nxxxf  is called symmetric regard to variables )...,,,( 21 nxxx , if, as a result of 

arbitrary transposition of variables )...,,,( 21 nxxx , we will get a polynomial that equals a given one. 

A polynomial 
22 xyyx   is symmetric. Opposite, a polynomial 

33 3yx   is nonsymmetric: 

substituting x by y, and y by x it transforms into a polynomial 
33 3xy   that does not coincide with the 

primary one. 

We have already met with the important examples of symmetric polynomials while studying the 

theorem of Viet [2, c. 298]. 

If we mark nxxx ...,,, 21 , as the roots of polynomial 
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Signifying the left parts of these formulas through n ...,,, 21  then we will get: 
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According to these operations we get basic symmetric polynomials. 

There are a lot of tasks, where it is necessary to find some expressions that contain the radicals of a 

quadratic equation. It is possible to solve these tasks using symmetric polynomials. 

Example. Let’s take a quadratic equation 01062  xx . Your task is to make a new equation the 

radicals of which are roots of this equation.  

We will denote the radicals of the set equation by 1x  and 2x , the radicals of the desired equation by 1y  

and 2y , coefficients of the desired equation by р and q. According to the Viet’s theorem for this equation we 

have the following: 
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The same is for the desired equation: 
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By the data of the problem we have:
2

22
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11 , xyxy  . This allows to write the formula for the 

coefficients: 
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where 2S  is the second sum of powers, which is expressed through basic symmetric polynomials using the 

sum of powers table [1, с.47]. 
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So, the desired quadratic equation has the form .0100162  yy  

Taking everything into account, symmetry takes an important place in algebra particularly in application 

of symmetric polynomials. 
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